|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Australian Journal of Agricultural Economics, Vol. 38, No. 2 (August 1994), pp 143-170

PRICE-LINKED FARM AND SPATIAL
EQUILIBRIUM MODELS

R. L. BATTERHAM & T. G. MACAULAY*
Department of Agricultural Economics,
University of Sydney, NSW, 2006

The integration of detailed farm supply models with the basic spatial equilibrivm
model, is outlined. The direct linking of farm linear programming models with the
spatial equilibrium model is achieved so that both prices and quantities are
endogenous. Both the farm model and the spatial equilibrium model must be
specified in primal-dual form to make the linkages. Limited details of the use of
such a model in a study of a segment of the grain handling system in New South
Wales are presented along with conclusions relating to the pricing of grain handling
services.

For some time it has been recognised that a simple input-output
structure could be used to generate a supply relationship in a spatial
trading system (Takayama and Judge 1971). A method of linking spatial
equilibrium models and linear programming representations of farm mod-
els is outlined in this paper. The links are made through endogenous price
and quantity variables. The models used to illustrate the approach were
developed as part of research conducted for the Royal Commission into
Grain Storage, Handling and Transport (MacAulay, Batterham and Fisher
1988a and 1988c). The detailed policy analysis resulting from this work
is presented in the Royal Commission reports.

The approach used is a modified application of the activity analysis
models of Takayama and Judge (1964b and 1971, ch. 14). Farm linear
programming models are embedded in the spatial equilibrium model and
replace the estimated farm or regional supply functions of the standard
spatial equilibrium model. The contribution of this work is to illustrate
that such farm models can be linked both in terms of prices and quantities
when a primal-dual form of the spatial equilibrium model is used.

With price and quantity linked farm and spatial equilibrium models,
assumed changes in any part of the production and marketing system can
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be analysed in terms of the consequences on any other parts of that system.
For example, the effects of a policy change at some point in the marketing
chain can be analysed in terms of its possible effects at the farm level and
at the market level. Similarly, any change in technology or farmer behav-
iour that may affect farm or regional supply can be considered in terms
of its effects further up the marketing chain.

In addition, incorporating farm models into spatial equilibrium models
provides a means of generating an endogenous estimate of supply when
econometric estimates are difficult to make, such as in the case of very
limited time series data. The technique used in the linking of farm models
within a spatial equilibrium model is to specify both as primal-dual
models.

Spatial Equilibrium Model

A primary purpose for developing a spatial equilibrium model is to
determine equilibrium values for prices, quantities and trade flows be-
tween spatially (and/or temporally) separated regions or markets. In the
simplest form of the model the assumption of perfect competition between
regions is adopted and supply, demand and transport costs between each
of the regions are assumed to be known. A two-region, single-commodity
model can be solved graphically (see Bressler and King 1970 or Tomek
and Robinson 1981). Slightly more complex models can be solved alge-
braically using the concepts of consumer and producer surplus (Samuel-
son 1952).

The formulation of the problem as a quadratic programming model by
Takayama and Judge (1964a) allowed direct numerical solution of rea-
sonably large models. More importantly, their formulations permitted
incorporation of policy interventions of various types such as tariffs and
quotas between regions and non-competitive market structures. Since the
development by Takayama and Judge, spatial equilibrium models have
been used to analyse many applied economic problems in agriculture and
other sectors of the economy (see, for example, Judge and Takayama
1973, Takayama and Labys 1986, Harker 1985).

Takayama and Judge (1971) showed that the original form of model
based on a net social welfare objective function could also be solved using
what they termed ‘net social monetary gain’ as an objective function
(referred to in this paper as ‘net revenue’). This form of the objective
function required a self-dual form of the spatial model. This more general
form of the model could incorporate non-symmetric supply and demand
coefficient matrices and still provide a solution which satisfied the re-
quirements for a competitive market solution. In addition, it was recog-
nised that it could be solved as a complementarity problem (Takayama
and Judge 1971, p. 255).

In this paper the price form of the spatial equilibrium model as outlined
by Takayama and Judge (1971) will be used (a simpler presentation is
given in Martin 1981). With a net revenue objective function the model
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is self-dual model! and thus has both price and quantity variables included
as active variables (MacAulay and Casey 1987). Inclusion of price and
quantity variables provides additional scope in the specification of policy
intervention mechanisms that can be included in the model. It also has the
interesting consequence that the optimum value of the objective function
is zero since the dual problem is subtracted from the primal and if the
mathematical problem is a concave programming problem then at the
optimum the primal value is equal to the dual. This provides a helpful
check on the logic of model specification and on the accuracy of data
entry.

It is also the primal-dual character of the model that permits the
connection of farm models with the spatial model by linking the output
of the commodity modelled at the farm level to both price and quantity
variables for the same commodity in the spatial equilibrium model. Thus,
there is a simultaneous determination of equilibrium prices and quantities
in the farm and spatial models. The result of this simultaneous solution is
that if a higher price is generated for the commodity modelled in the
spatial equilibrium model this price is transmitted to the farm model. The
farm model solution will simultaneously generate a larger amount of the
commodity since relative prices in the farm component of the model will
have changed in favour of the higher priced commodity. However, at the
same time, the farm solution will be subject to the input-output coeffi-
cients and resource constraints so that with a price rise for the commodity,
the imputed shadow values on the effective farm resource constraints will
also rise.

A detailed matrix representation of the model, along with a simple
numerical example are presented in the Appendix.

Farm Linear Programming Models

Linear Programming Models and Estimation of Farm Level
Supply Functions

Three methods have been commonly used to estimate supply functions
at the farm level. They are econometric methods, producer panels and
linear programming models. Each method has well known advantages and
limitations when applied to particular situations (see, for example, Cowl-
ing and Gardner 1963 and Shumway and Chang 1977). The major diffi-
culties with the use of econometric methods are the lack of historical farm
level data, and the difficulty of specifying the complexity of supply
response functions. Producer panels rely on the correspondence between
interview responses and actual farm behaviour in the supply of the
commodity in question.

I A special purpose Fortran program was written to convert a primal spatial
equilibrium model into a primal-dual model. The program incorporates several error
checking routines, and is available from the authors.
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Major limitations to using linear programming in supply response
analysis are the costs of data collection, model construction and solution
interpretation. The data required are technical relationships drawn from
the biological sciences such as agronomy and animal science, and from
engineering. Model construction and the interpretation of solutions re-
quire a skilful analyst and are therefore costly. The principal advantage
of linear programming is the flexibility of the behavioural assumptions
that can be accommodated in such models. It is easy to model alternative
farmer objectives, or the impact of alternative government policies on
farm decision making.

In the late 1920s, Black and Johnson pioneered the use of budgeting
methods to estimate farm supply functions. The use of linear program-
ming models to estimate farm supply response functions is based on the
same theoretical concepts, that is, the generally accepted neoclassical
theory of the firm (Wu and Kwang 1960). Many studies have made use
of linear programming in supply estimation (for example, Ladd and
Easley 1959). Similar early Australian work includes Knight and Taplin
(1971), and the Aggregate Programming Model of Australian Agriculture
constructed at the University of New England (see Kennedy 1972).

Linear programming models for supply estimation are generally built
using a series of alternative farm activities (production, marketing, fi-
nancing, and so on) which are constrained by the resources (physical,
financial and human), assumed to be available to a farm entrepreneur. The
entrepreneur 1s assumed to maximise profit or a similar quantifiable
objective function. The supply functions are then estimated using para-
metric programming methods. The parametric programming technique
systematically changes the objective function coefficient that represents
the price of the commodity in question. This then permits a stepped
marginal cost or supply function to be traced out. The economic meaning
of the resultant supply function was examined in detail by Kottke (1967).
It is relatively easy to use the technique to trace out cross-commodity
supply effects by observing the change in the supply of one commodity
in the model as a result of the change in the price of another commodity.

Representative Farm Models and Aggregation of Farm Level
Supply Functions

The theory of aggregating farm level supply functions to regional or
industry supply functions is derived from the theory of the firm. Industry
(or regional) supply functions are the horizontal summation of the indi-
vidual farm supply functions. Obviously, it is generally impossible to
model all farms in an industry (or region). The problem therefore becomes
one of selecting representative farms to model and aggregating the repre-
sentative supply functions to the industry or regional level.

The concept of the representative firm and the horizontal summation
of the firms supply functions to an industry supply function originally
came from Marshall (1959). However, problems of ‘aggregation bias’
arise when supply functions that would be estimated using models of all
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farms are different from those that would be estimated using repre-
sentative farm models (Frick and Andrews 1965). Two solutions to the
problems of aggregation and aggregation bias have been developed. The
first is a pragmatic one with farm types within regions being stratified
into farm enterprises having similar yields, prices and costs. Repre-
sentative farm models are constructed for each strata in a region using
secondary data. Sufficient conditions for exact aggregation using this
approach were developed by Day (1963). The conditions are that each
representative farm model should exhibit proportional variation in the
constraints and net incomes, and that similar technology be employed by
the farms modelled. The second approach stratifies farms based on the
most limiting resource with different representative farms being con-
structed depending on which resource is limited (Barker and Stanton
1965). In more recent work Onal and McCarl (1989 and 1991) argue that
firms are essentially heterogeneous and that, under these circumstances,
aggregation can be achieved using decomposition techniques in linear
programming.

Primal Model Links to the Spatial Equilibrium Model

For the models considered in this paper the representative farm linear
programming models can be initiaily specified in a primal form in a
similar way to that outlined in any textbook on the use of linear program-
ming in farm management (see, for example, Dent, Harrison and Wood-
ford 1987). There are, however, some minor differences to the
specification of the farm models when they are linked to spatial equilib-
rium models.

The first of these modifications is in the objective function. In ‘stand
alone’ farm models the objective function is usually one of maximising
profit. When combined with the spatial model this becomes part of the
overall objective function of net social revenue in the spatial equilibrium
model, The objective of maximising farm profit means that farm fixed
costs have to be estimated and deducted from the total gross margin which
is the usual objective of linear programming farm planning models. This
is required since in a regional context individual farm fixed costs will be
variable and is accomplished in the farm models by inserting a fixed cost
activity constrained to equal cne.

In addition, the production, marketing and financing activities for each
of the agricultural activities considered to be feasible in the region or
strata represented were included in the model. Although often done in
conventional farm planning models, it is essential to separate the produc-
tion and marketing activities in the combined models. The marketing
activity forms the connection between the farm and spatial equilibrium
models for the commodity in question. It is the transfer vector from the
farm model into the regional (or strata) supply row of the spatial equilib-
rium model. The objective function coefficient for this marketing activity
for the farm model is zero, as it is specified in the spatial equilibrium part
of the model. The objective function value for the farm models thus
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represents the net variable supply cost of the commodity to the spatial
equilibrium model.

The resource constraints for the farm models can either be defined in
terms of the total resources represented by the representative farm model
or they can be for one representative farm and the production and objec-
tive function coefficients then scaled to represent all farms.

The use of an advanced non-linear programming code, such as MINOS
(Murtagh and Saunders 1987), makes possible more realistic farm models
(Fox 1986). Nonlinear cost functions or production functions and non-
linear functions for cash flows and credit constraints are among the
possibilities. The introduction of integer programming into MINOS fur-
ther extends the possibilities.?

Primal-dual Farm Models and Links to the Spatial Equilibrium
Model

To incorporate the farm models into a primal-dual spatial equilibrium
model so as to replace the supply functions in the standard spatial equi-
librium model it is necessary that the farm models be in a primal-dual
form also. The farm models can be transformed to dual models in the
standard way using the method described in Baumol (1977, p. 107). The
rows become the columns and the right hand side the objective function,
and the dual objective function is subtracted from the primal objective
function. If the primal-dual form of the farm models are solved as models
in their own right then, as is the case with the spatial equilibrium model,
the optimum value of the objective function is zero.

The dual variables of the farm models are the shadow prices on the
resource constraints given the prices determined in the spatial equilibrium
part of the system. In the dual part of the spatial equilibrium model the
regional (or strata) supply row of the primal model becomes a regional
supply price in the dual part of the model. This regional supply price is
the price used in the dual part of the farm model. Thus the farm model is
linked to the spatial equilibrium model in two ways, by quantity through
the primal part of the farm and spatial equilibrium models, and by price
through the dual part of these models. The tableau for a simple farm and
spatial equilibrium model is given in Table A.1 in the Appendix.

The solution of standard spatial equilibrium models is normally carried
out using quadratic programming methods (Takayama and Judge 1971)
or general non-linear programming methods such as included in MINOS
(Murtagh and Saunders 1987). A listing of alternative solution methods
is given in MacAulay (1992). Recent methods have involved fixed-point
algorithms (Mackinnon 1975) and variational inequality approaches
(Nagurney 1992).

2 Personal communication, B.A. Murtagh, University of New South Wales, 1989.
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An Example of Linked Farm and Spatial Equilibrium
Models

To illustrate the type of model discussed above a ‘farm-to-ship’ model
developed as part of research conducted for the Royal Commission into
Grain Storage, Handling and Transport (MacAulay, Batterham and Fisher
1988a and 1988c) will be outlined. This model was designed to permit an
examination of the effects of different wheat payment arrangements, of
changes in transport costs and of changes in on- and off-farm grain storage
charges on the shipment of wheat from farms through to ports. The model
was constructed so as to represent the shipping of grain from a series of
farms at varying distances from a number of country receival points and
sub-terminals through to two ports. Transport by road and rail was per-
mitted where appropriate and the storage and handling of grain at each of
the sites was included. The possibility of shipment by road to a port
terminal was also incorporated into the model. The transport possibilities
are illustrated in Figure 1.

FIGURE 1
Grain Transport Schematic
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The model consisted of two parts: the first was a non-linear spatial
model of the grain transport and handling system and the second a
representation of farms producing grain. These models were tested sepa-
rately and then combined with the spatial system. The result was a
non-linear model of grain production, transport, storage and shipping.
Quadratic average cost functions, reflecting the cost of handling grain at
receival sites, were used for some experiments so that the total cost
functions were cubic functions and the whole problem solved as a concave
cubic programming problem (MacAulay, Batterham and Fisher 1989).
The model was designed to be half-yearly in character.

Network Structure

The spatial equilibrium model was designed to cater for eight grain
handling sites and two ports. The port-level demands were represented by
linear functions. Associated with the local delivery sites were five repre-
sentative farms. Each farm was assumed to have six or seven destinations
to which wheat could be sent by road; the three nearest local receival sites,
two sub-terminals and the two ports. A rail network also transported grain
from the local receival sites and sub-terminals to the ports. To take into
account the supply of grain from outside the area represented by the five
representative farms, additional supplies were allowed for the sub-termi-
nals and the ports. These additional supplies were assumed to be sensitive
to price and by consideration of the data on the historical flows through
the system, supply functions were derived. Demand functions repre-
senting wheat for human consumption were also specified for some of the
sites. Thus the model included both standard linear supply and fixed
supply quantities and representative farm models.

Objective Function

As with the simplified representation discussed above, the complete
model was based on a net revenue objective function with which the farm
models were linked. This type of objective function is suitable for linking
directly to farm models which have net profit as their objective function.

Demand functions

Little, if any, information was available on the demand for wheat faced
by exporters from ports around Australia. Hence, it was necessary to make
a judgement as to the likely elasticities of demand at the ports and to use
these to derive linear demand functions. Myers, Piggott and MacAulay
(1985) estimated an elasticity of export demand of —6.17 based on a price
flexibility of —0.162. Given the elasticity value, the volumes of grain
outloaded from the ports, together with an export price for Australian
Standard White (ASW) wheat of $175 per tonne, demand function coef-
ficients could then be calculated. To derive the demand functions for each
of the ports it was assumed that they had the same slope as the national
demand function with the implication that the elasticities were much
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larger in absolute value than the national export demand elasticity. It was
assumed that the export of grain from the ports was evenly spread between
the two six-month periods. The six-monthly functions were calculated by
dividing the intercept and slope coefficients of the quantity-dependent
demand functions by two.

The demand for wheat for human consumption was specified in a
similar way. Again, very little information could be obtained on the
elasticities of demand at individual terminals. For purposes of the study
an elasticity of demand of —0.3 was assumed. This is consistent with the
range of elasticities cited in Myers (1982, p. 46). The price used to derive
the demand functions was $213.89 (free on rail). To keep the size of the
model as small as possible, it was assumed that the margin between the
domestic consumption price of $213.89 and the port price less transport
to the port was constant so that the demand by mills could be represented
in terms of a ‘silo-door’ price for ASW wheat. The demand functions used
in the model are given in Table 1.

TABLE 1
Estimated Demand Functions for Selected Locations

Location ($ft2r(ifle) Elasticity (ng)tigfg;s) Slope
Port 1 173.22 -48.9 99478.0 -562.78
Port 2 173.00 -71.4 98726.0 -562.78
Local silo 3 199.75 -0.3 9.246 -0.0107
Local silo 4 199.64 -0.3 4.249 -0.0049
Sub terminal 1 198.49 -0.3 62.283 -0.0724

Source: MacAulay, Batterham and Fisher (1988c), p. 114.

Farm Supplies

The supply of grain to the local receival sites in the base year was
derived from inloadings data. These supplies were then apportioned to the
individual farm models as discussed below. The supplies from the farm
models were endogenous. However, the model farms represented an area
from which grain could be shipped to various specific receival points. The
relative contributions of each of these areas was set according to their
observed shares in a base year. The farm supplies were based on an
allocation of the deliveries to the nearest local delivery site. The local
supplies at each of the country receival points were assumed to be only
from the five representative farms. The individual farm supplies were
weighted by appropriate aggregation factors so that the total supply
equalled the total amount delivered by farms to the five receival points in
the base year.



152 AUSTRALIAN JOURNAL OF AGRICULTURAL ECONOMICS

The supplies to each of the sub-terminals consisted of deliveries by rail
and by road from farms other than those located in areas represented by
the farm models. The supply at the ports consisted of deliveries from
points other than the area studied. In this way the grain movements
through each of the receival points and the sub-terminals could be ap-
proximated. To provide for price sensitive supply response at the various
delivery sites, estimates of supply functions were prepared for the two
ports, the sub-terminals, and one local delivery point. The addition of
these supply functions completed the supply side of the model. These
functions are shown in Table 2.

The linear programming models generated the necessary supplies for
the local receival points and the additional supply functions provided for
the interaction with the rest of the regions’ wheat production. To obtain
the functions, a supply elasticity of 0.8 was assumed. This estimate is
consistent with those for the wheat-sheep zone made by Vincent, Powell
and Dixon (1982) and Wall (1987).

TABLE 2
Estimated Supply Functions
Location Price Elasticity Intercept Slope
($/tonne) (000 tonnes)
Port 1 156.07 0.8 276.6 7.089
Port 2 155.85 0.8 249.7 6.409
Local silo 1 138.69 0.8 20.9 0.602
Sub terminal 1 132.58 0.8 374 1.128
Sub terminal 2 138.34 0.8 40.12 1.160

Source: MacAulay, Batterham and Fisher (1988c), p. 117.

Carryover Stocks

The levels of opening and closing stocks in the system were specified
according to the levels reported at the beginning and end of the base year.
In some instances these levels were zero or negative because of drying
and other losses. In these circumstances, a very small amount (5 tonnes)
was used so that suitable prices resulted from the model solutions. The
cost of storing grain was assumed to be largely the interest cost of the
funds tied up in the grain valued at the price generated by the model. The
carryover charge was thus endogenous to the model. A real interest rate
of 5 per cent per annum was used. The carryover charge was applied to
end-of-period stocks.

Transport Costs

Two main sets of transport rates were required for the model. These
were the rates from the farm gate to local receival points and, from
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receival points to another receival point, sub-terminal or port. The farm
to receival point rates were derived by considering a representative
location for each of the five farms, calculating the distance and applying
a trucking rate obtained after discussion with local farmers and trans-
porters. In locating each representative farm it was necessary to limit the
number of possible delivery routes available to each farm so as to keep
the dimensions of the model to a reasonable size. In calculating the truck
rate for farm deliveries it was assumed that the contract rate and the
implicit rate charged by farmers for their own trucks were equivalent.

Attempts were also made to collect information on road freight rates
for grain transported direct from the farm to seaboard terminal. The
information collected was for small volumes of grain carted to cities
where the seaboard terminals are located and were responses from a very
small and non-random sample of carriers. They do not include any
estimate of the social costs of road damage or accident that may be
involved in such long-distance haulage.

Various rail freight rates were used in the model based on a number of
alternative policy assumptions. The rates used reflected the nature of the
research questions being investigated.

Storage Capacities

The setting of storage capacities for the model proved to be difficult
because of the absolute nature of programming mode! restrictions. For the
purposes of carrying out experiments with the model, it seemed that the
sub-terminals, at least, should not cause restrictions on the flow through
the system because of their relatively large capacity in relation to the
volume of grain delivered from the representative farms. Hence, very
large capacities were specified for these sites.

In the case of the local receival points the actual physical capacity of
vertical, horizontal and bunker storage was specified. The possibility of
a turnover rate greater than 1.0 within a six month period was not allowed.
This assumption in the model could be changed easily. The effective
annual turnover rate was specified at 2.0 but the rate allowed for in the
model was less because the major deliveries take place within a short part
of the summer period.

Components of the Farm Models

The representative farm models were based on the physical charac-
teristics of actual farms delivering wheat in the area studied. Farms
delivering wheat to the local receival points were identified from delivery
records for the base season. Each farm was given a location on maps of
the local government areas. Information on the areas of farms, distance
from receival point and the apparent area of wheat grown on each farm
was estimated using average shire yields (Australian Bureau of Statistics
1985) and these were used to calibrate the programming models.

The activities included in the representative farm models were two
winter cereal crops (wheat and barley); two summer crops (sorghum and
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sunflower); a sheep activity (wethers); a cattle activity (breeding
weaners), two pasture activities (on arable and non-arable land); and
fodder sorghum and oat activities. The data for these activities were based
on O’Sullivan (1985) and Rickards and Passmore (1977). Some of the
farm activities spanned two periods. The possibility of storing wheat on
farms after harvest for subsequent delivery in the following period was
also included in the model. Storage costs were based on Benson et al.
(1987).

The wheat selling activities form the major link between the repre-
sentative farm models and the spatial equilibrium model. Wheat prices
were determined in the dual part of the spatial equilibrium model and then
formed the basis for supply decisions in the farm models.

A common rotation in the area is four years of wheat (or wheat and
barley) followed by two years of other crops (often sorghum). To repro-
duce the pattern, a rotational constraint was introduced which required
that for every two hectares of wheat or barley grown there must be at least
one hectare of sorghum, sunflower, fodder oats or sorghum or native
pasture on arable land. However, it was also assumed that this constraint
could be relaxed by undertaking an additional weed spraying activity.

It was assumed that owner-operator labour was available on the repre-
sentative farms. No cost allowance was made for the operator labour, nor
was labour hiring allowed in the model.

Each of the modelled farms represents a number of similar farms
stratified by size. The aggregation factors were calculated using delivery
records for each receival point for the base season and represent the factor
by which the output from each representative farm is multiplied to give
sub-regional output. The farm models were constructed by assuming that
land and labour were the most limiting resources. Following the approach
by Day (1963) outlined above, farms within a strata were assumed to have
proportional variation between constraints, and to use similar technology.
These assumptions seemed realistic given the nature of the agriculture of
the region being modelled and the dominance of wheat growing in the
region.

Results

The policy questions investigated with the aid of the model included:
1) the effects on the grain handling system of pooled charging for han-
dling and transport compared with charges disaggregated for the various
services provided; 2) the effect of the introduction of competition (or the
lack of it) between the ports; 3) the effects of applying various rail
transport charges on the optimal transport pattern of grain; and 4) the
effects of more efficient handling and storage systems. This latter ques-
tion was examined by varying the cost function used in the model, but
this set of experiments is not considered further in the paper.

The results were reported in terms of changes to the handling and
storage system, including the volume of grain transported by road and
rail, and the effects of various options on the modelled farms. A large
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volume of information on the system was obtained for any given model
run (MacAulay, Batterham and Fisher 1988b, 1988d). The price informa-
tion included the end of year price of stored grain, supply and demand
prices at the silo door (equal for any given receival point), offer prices at
the silo door, and at the farm gate. Shadow values were generated where
storage or transport capacity was limiting. Similarly, opportunity costs on
the potential use of non-optimal transport routes were generated. Quantity
information included grain throughput at any site, grain transported by
individual transport methods and routes and the production of various
commodities in the farm models.

An initial run was used to characterise the then existing grain produc-
tion, handling and storage system. Average costs of running the grain
handling and storage system were pooled, together with a capital cost
recovery charge. Rail freight rates were set at actual charges (without a
‘drought’ subsidy that was widely used in New South Wales at the time).
Equilibrium prices were determined for the system given the export and
local demand functions, the charges by the handling authority and trans-
port charges, the price sensitive supply functions representing regions
outside the area of the farm models and the endogenous supply from the
modelled farms. The equilibrium prices generated were consistent with
the price regime in operation throughout the actual handling and storage
system, thus providing reasonable validation of the model.

By disaggregating the costs of handling and storage charges in the
model it was found that the flow of exports would be more evenly
distributed through the year and that most local silo offer prices and hence
farm gate prices would increase. With such a change more grain would
be stored on farms, incomes would increase, and hence returns to land,
labour and management would increase on most farms. However, one of
the modelled local silos and attached farms showed price decreases. A
consequence was decreased income and returns to resources on that
modelled farm. This illustrates the possibility of estimating the redistribu-
tive effects of a policy change by using such price-linked farm and spatial
equilibrium models. Clearly, these results are dependant on the nature of
the cost functions at each of the local silos, the throughput of the silos
and the location of the farms in relation to the silos. With the closure of
one of the silos grain had to be transported over longer distances, again
implying a distributional effect.

An experiment comparing competition between the ports versus ‘no
competition’ was modelled by assuming f.o.b. prices which were the same
for the ports in the ‘no competition case’, and differed by the transport
and wharfage charges in the ‘competition’ case. The port demand func-
tions were also recalculated for the competition case. The obvious result
of the experiment was a decrease in the exports from the higher cost port
under the competitive assumption. The consequences in terms of changes
in prices, and quantities shipped, throughout the system were observed.
There were losses for modelled farms that shipped through the higher cost
port.
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An analysis of the effects of applying various rail transport charges on
the optimal transport pattern of grain was accomplished relatively easily
by varying the rail transport charges. Road transport charges were also
varied with the changes based on various estimates of road transport
charges. With rail freight rates only a little above the then current rates
considerable quantities of grain would be trucked to the nearest port.
Obviously, this result was interpreted cautiously, as no constraints were
imposed to limit the trucking of large volumes of grain to the port.

Summary and Suggestions for Further Research

In this paper a method of linking farm models to a primal-dual spatial
equilibrium model through price and quantity variables has been demon-
strated. The linked models can be used to determine the consequences of
change in any part of a production and marketing system on all other parts
of that system. An example of the use of a large-scale model was given
in the ‘farm-to-ship’ model employed to examine of the effects of differ-
ent transport, storage and payment arrangements in the wheat industry.

There are many possible extensions and uses of linked farm and spatial
equilibrium models. Linked models could be used in situations where the
farm (or firm) level consequences of government interventions in a
marketing system are being examined. Thus, both price and quantity
variables are endogenous within the models. It is worth noting also, that
this concept could be extended to model the behaviour of individual
consumers or households and so replace the regional demand functions.
Such modelling could also prove useful for studies of farm-household
interactions in developing countries.

An obvious extension of linked farm and spatial equilibrium models is
to multi-commodity situations. In the example outlined above, three
grades of wheat were represented in the farm models, and had data been
available on the demand for each grade, each of the grades could have
been considered in the spatial equilibrium model. Representation of
different grades, and different commodities is simple conceptually. A
similar extension from two time periods, as represented in the above
model, to many time periods is also straightforward. The limitation to
these extensions is model size, in terms of computer capacity and the cost
of building and debugging large-scale models. These limitations are
becoming less restrictive with continuing developments in computer
hardware and software.

Another possible extension is to develop ‘rest of the world” compo-
nents in the spatial equilibrium model. The influence of changes in the
international trade regime (for example, increasing demand for wheat in
another part of the world, or the freeing of trade) could be traced through
the processing, storage and transport sector, back to the farm level.

A further extension is to explicitly model behaviour through time.
Recursive medels could be constructed to analyse marketing or trade
policy issues by simulating such systems through time (MacAulay 1976).
Alternatively, they could be used to consider farm adjustment problems
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(Kingma and Kerridge 1977). Recursive models provide a means of
considering multiple time period problems in a relatively compact form.
Linked recursive models can be used to simultaneously solve the farm
and spatial equilibrium models. The models simplify the process of
considering the dynamic effects of policy changes on farm production
patterns, and hence farm income. The modelled effect of the policy
change on other parts of the marketing system is resolved simultaneously.
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APPENDIX A
Mathematical Formulation of the Price-Linked
Models: An Illustrative Example

The Standard Spatial Model

For a set of n regions, the inverse supply and demand functions may
be defined in linear terms as follows:

(A1) p,=A-Qy
(A2) p,=v+Hx

where p, and p, are (n x 1) vectors of unrestricted demand and supply

prices for n regions; y and x are (n x 1) vectors of demand and supply
quantities; A and v are (n x 1) vectors of the intercepts of the demand and
supply functions respectively; € and H are (n x n) matrices of slope
coefficients for the demand and supply functions respectively. Both ma-
trices may include off-diagonal elements and be non-symmetric.

The standard spatial equilibrium model is a quadratic programming
problem. The set of constraints ensure that the characteristics of a com-
petitive spatial equilibrium are defined such that the supply and demand
functions must hold, that the supply and demand quantities and the
quantities traded must balance and that the spatially competitive price
arbitrage conditions must hold (Takayama and Judge 1971; Martin 1981).
The primal-dual form of the model in the quantity domain can be defined
as follows:

(A.3) Maximise
GO, x, X, p, p,) = A-Qy)y-(v+Hx) x-TX~-0p,~0p,

subject to

(A.4) -GyX+y< 0 (-GyX+y)y=0

(A.5) —GX-x<0 (-G X-x)x=0

(A.6) —py+A-Qy<0 (—py+A-Qy)py=0
(A.T) px—V—Hx <0 (px—v—-Hx)px=0

(A.8) ~T+Gypy+ Gxpr <0 (- T+G'ypy+Gxpx)’X=0
and

(A9)  y,x.X,p,p,20,

where for all n regions py and px are non-negative Lagrangian multipliers
which at the optimal solution represent the market prices. T'X is the total
transportation cost where T is a (n? x 1) vector of unit transport costs
(1, between region i and j) and X a (n® x 1) vector of of the quantities

transported (x,; from region i to region j) between each of the n regions.
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The matrices G, and G are (n x n?) and designed to ensure that the sum

of the quantities transported into or out of a region can be equated to the
supply and demand quantities and they are of the following form:

1 1 1
1 1 1
Gy - ) ) ,
1 1 1
(n xn?
-1 —-1...—-1 ]
-1-1..-1
Gx =
-1 -1..—-1
.. —
(n x n?)

In the constraints (A.4) to (A.8) the second set of conditions are
‘complementary slackness’ conditions and require that if the variable
concerned is not zero then the marginal condition contained in the brack-
ets will be zero (Lee, Moore and Taylor 1981, p. 130 and pp. 696-698 and
Takayama and Judge 1964). These conditions are automatically incorpo-
rated into the solution algorithm of quadratic programming routines.

The objective function of the problem (A.3) to (A.9) can be interpreted
as a measure of the social monetary gain (py) less the total social

production cost (px) less the total transport cost T'X for the regional

trading system. The net social monetary gain objective may be conven-
iently referred to as a net revenue objective function. Thus:

(A.10) Netrevenue=p y-p x-T'X

For the quantity form of the spatial equilibrium model (as indicated
above) the supply and demand prices are replaced by the indirect supply
and demand functions (A.1) and (A.2) while for the price form of the
model the quantities are replaced by the supply and demand functions.
The net revenue form of the objective function is convenient for the
purpose of linking farm models to the spatial equilibrium model.

Representative Farm Models

Farm models can be represented as linear programming problems in
which net profit or the total gross margin is the objective function. This
function is then subject to a set of resource constraints (A.13) and
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constraints which translate per unit production activities to supply by

multiplying by yield. To incorporate a farm model into the supply side of

a spatial equilibrium model it is appropriate to envisage the farm as

producing a given level of the output indicated by x. This given supply is

then made endogenous to the complete model and valued at the market

price determined in the spatial equilibrium part of the model. Thus:
Find z 20 that maximises the primal problem Z

All) Z = 'z
subject to

(A12) —-Yz <x
(A.13) Az <b
and

(A.14) z 20

where z is an (r x 1) vector of r farm-level activities, some of which
contribute to the product supply and can be considered as marketing
activities related to the products in the spatial equilibrium model; c is an
(r x 1) vector of costs and returns associated with the farm activities; A
is a (k x r) matrix of input-output coefficients reflecting the production
activities and the constraints under which the farm operates; Y is an
(n x r) matrix of yield coefficients reflecting the yield of the products
generated by the farm activity assumed to be on a per hectare basis (the
matrix may be structured to allow single activities to generate multiple
products and to include the possibility that a number of activities may
have no product output); b is a (¢ x 1) vector of right-hand-side values
reflecting the resources available to the farm; and x represents the fixed
supply of the products (or product) required to be generated from the
resources used.
The dual form of this sub-model is

Find p,, p, 20 that minimises the dual objective value Z,
(A.15) Z,=xp —b'p,
subject to
(A16) Y'p —A'p, <c
(A.17) p, 20

where p_is a (k x 1) vector of shadow prices for the resources used and
p, is a (k x 1)vector of implicit product prices which link to the spatial
equilibrium part of the model for the combined model.
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Combined Price-linked Farm and Spatial Models-quantity Form

The linear programming primal-dual form of the model (A.11) to
(A.17), when combined with the spatial equilibrium model, becomes:

(A.18) Maximise G (y,x, X, 2,p,, P, p,) = (A=Qy)'y-c’z
-TX -0p,— 0p ~b’p,

(A.19) ~GyX+y< 0 (-GyX+y)y=0

(A.20) -G X-Yz<0 (-GxX-Yz)z=0

(A.21) Az— b<0 {Az— b)'z=0

(A.22) —py+A—Qy<0 (= py+ A —Qy)py=0
(A.23) Y'px—A'p; <c (Y 'px—A'p;)'z =0
(A.24) “T+Gypy+Gxpx <0 (-T+Gypy+Gxpx)’X =0
and

(A.25) ¥ % X, Py P> Pz 20.

The primal constraints (A.19) and (A.20) reflect the requirement that
supply and demand quantities must balance with the trade flows and,
constraint (A.21) that the resource availability (vector b) cannot be
exceeded in the production of the products in the system. The dual
constraint (A.22) implies that the demand relationship must hold, and
(A.23) reflects the condition that the yield-weighted supply prices less
the imputed cost of producing the products from the available resources
valued at their shadow prices must be less than or equal to the gross
margins involved in producing the products. The constraint (A.25) is the
equivalent of the spatial arbitrage condition for a single region and
requires that demand prices be less than or equal to the supply prices. In
a more compact matrix form the problem can be written in the quantity
form as follows.

(A.26) Find(y'z'X’p,”p,”p,") 20 that maximizes

r - —~ - — oy !

Al - o o -1 o 0] [yN [y

-C 0 0O o0 0o r -a' z b4

(A27) Z = | -T + 0 0 0 -GY -G 0 X [ X
’ q o I 0 Gy 0 0 0 Py Py

0 0 -Y G« o o ol |p<|| |ps
| -b_ | 0 A 0 0 0 0] _Pz_‘ | Pz |

subject to
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— - — - - -

A -Q 0 0 -1 0 0 y
—c 0 0 O 0 Y -A z
-T 0 0 0 -GY -GY 0
(A.28) + <0
0 0 ¥ G 0 0 O0f|ps
b 0O A 0 0 0 0] |pe

- g L. - b

(A29) and(y'z'X'p,"p/p,/) 20,

where the Marshallian (indirect) market demand and supply functions
are used, and T is a transport cost vector (n2 x 1) and

Py p! Pa

p2 pZ pzZ
(A30) p,=| |20, p=|. | 20, and p,=| | 20

P, | P ] | P |

are non-negative demand, p,, and supply, p,, price vectors each (n x 1)
and resource shadow prices, p, (k x 1).

Price Formulation

The alternative formulation of the model in the price domain is often
convenient as supply and demand functions are frequently estimated with
quantity as the dependent variable (Takayama and Judge 1971, ch. 8). In
this case the supply and demand functions are defined as

(A31) y =a-Bp,

=o-B(p,-w)

(A32) x=0+TIp,
x=0+T(p +v)

where for all n regions p,=p —w is a (n x 1) unrestricted vector of

demand prices and w is a (# x 1) non-negative vector of slack variables;
p.=p,+tVisa (n x1) vector of unrestricted supply prices and v is an
(n x 1) non-negative vector of slack variables; o is an (n x 1) vector of
demand intercept terms; B is an (# x n ) matrix of demand slope coefficients;
Bis an (n x 1) vector of supply intercept terms; and I"'is an (n X 7 ) matrix
of supply slope coefficents. The slack variables are used to ensure that
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p, and p, are non-negative. For most practical purposes w and v can be

ignored provided that any calculated solutions are not likely to include
negative prices or quantities.

By substituting for the quantities y and x instead of the prices in the
net revenue objective function (A.10) and choosing the appropriate con-
straints the price formulation of the combined model can be specified as
follows:

(A33) Find (p,p, p, X' 7')20 that maximizes

o -B 0 0 -Gy 0]]p, P,
0 0 O 0 -G -Y{|p, P,
(A.34) Zp=4|=b[+{ O O 0 0 Aflp,p |p,
-T Gy GY 0 0 0O||X X
L—<] L O Y -A 0 O0Jlz] Lz
subject to
o] [-B 0 0 -Gy 0][p]
0 0 O 0 -G -Y||p,
(A.35) -bi{+[ 0O O 0 0 Al}p, |0
-T Gy G 0 0 0||X
-} | 0 Y -A 0 0f|z]

(A36) (p,p P’ X'7) 20"

Model Constraint Types
The constraints in the model can be classified into two types:

e Those relating to the supply and demand balances of the primal model and
those relating to supply and demand prices in the dual part of the model; and

¢ Constraints relating to the farm model, which include limits on land areas,
pasture production and utilisation, family and hired labour, machinery avail-
ability, cash constraints and the related resource valuation constraints in the
dual part of the model.

A general representation of the matrix used in the model in its primal-
dual form and in the quantity domain is given in Table A.1.
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TABLE A.1
Quadratic Programming Tableau for the Price-linked Farm
and Spatial Equilibrium Model in the Quantity Domain

Maximise y z X Py Pz Px RHS
Quadratic -
Linear A ~C 0 -b
Constraints 1 -1 <
A <
-Y Iy <
-Q —I < A
-A’ Y < c
Iy ~I'x <

An [lllustrative Example

To illustrate the basic structure of the price-linked farm and spatial
equilibrium models an artificial example was constructed. The data for
the basic spatial equilibrium model were those of Takayama and Judge
(1971, p. 169). The model was constructed so as to include one spatially
traded commodity ‘wheat’ and ‘barley’ and ‘oats’ as non-traded goods but
sold from the regional farms (it was assumed that the trade in these two
commodities was of no interest). It would be possible to include such
trade in a much expanded multi-commodity model.

The indirect demand functions for ‘wheat’ were assumed to be as
follows:

p,=200-10y, p, =100-5y, p, =160-8y, .

Since the supply of ‘wheat’ was generated in the farm models, supply
was endogenous to the model and so no supply functions were specified.
The transfer costs for ‘wheat’ were as follows:

t11=0 tiz=2 t3=2
r21=12 122=0 m3=1
t31=2 3y =1 t33 = 0.

The input-output coefficients for the farm models in each of the regions
can be seen in the full tableaus in Table A.3 (quantity form) and A.4 (price
form), but the detailed values for region 1 are given in Table A.2. The
values for the farms in regions 2 and 3 are slightly changed from those in
region 1. Note that the full tableau is specified as a minimisation problem
so that there is a change in sign of the objective function values. The
problem was solved using RAND QP (Cutler and Pass 1971).



1994 PRICE-LINKED FARM AND SPATIAL EQUILIBRIUM MODELS 167

TABLE A .2
Illustrative Farm Model for Region 1

Item Wheat Oats Barley As\:l:;)i:)?:::l:
Gross margin ($) -3.0 8.0 10.0 -
Land (ha) 1.0 1.0 1.0 100
Cash ($) 3.0 5.0 4.0 280
Labour (hours) 0.5 0.5 0.5 50

a The gross margin for wheat is the variable costs of production only since the return from the
sale of wheat is included in the spatial part of the model.

The solution to the complete model is given in Table A.5. For a
primal-dual model it is necessary that the primal solution be duplicated
in the dual variables. In addition, the objective function value must be
zero at the optimum since the dual problem is subtracted from the primal
and both must have the same objective function value at the optimum.
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TABLE A.5

Solution for the Illustrative Primal-Dual Model®

Primal variables Dual variables
Y1 85.34 RY1 85.34
Y2 37.67 RY2 37.67
Y3 52.27 RY3 52.27
Wil 93.33 RW1 93.33
Bl 6.11 RBI1 6.11
01 1.29 ROl 1.29
w2 61.11 RW2 61.11
B2 19.26 RB2 19.26
02 2.54 RO2 2.54
W3 20.83 RW3 20.83
B3 3.71 RB3 3.71
o3 55.56 RO3 55.56
X11 85.34 RX11 85.34
X12 1.00 RX12 1.00
X13 7.99 RX13 7.99
X21 3.00 RX21 3.00
X22 37.67 RX22 37.67
X23 23.44 RX23 2344
X31 4.00 RX31 4.00
X32 2.00 RX32 2.00
X33 20.83 RX33 20.83
DP1 11.47 RDP1 11.47
DP2 12.47 RDP2 12.47
DP3 13.47 RDP3 13.47
SP1 11.47 RSP1 11.47
SP2 12.47 RSP2 12.47
SP3 13.47 RSP3 13.47
PLND1 6.67 RPLND1 6.67
PCSHI1 2.82 RPCSH1 2.82
RPLABI1 3.33 PLABI 333
PLND2 17.09 RPLND?2 17.09
PCSH2 0.25 RPCSH2 0.25
PLAB2 12.80 RPLAB2 12.80
PLND3 23.61 RPLND?3 23.61
PCSH3 1.06 RPCSH3 1.06
PLAB3 7.61 RPLAB3 7.61

* The reported solution is for the quantity form of the model but both forms give the same set of
solutions and have an objective function value of zero. Variables are as defined in Table A.3. The
dual variables are the shadow values on the constraints of the full problem and in a primal-dual
model represent a duplicate solution pair.



