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Abstract. Long-run covariance plays a major role in much of time-series inference,
such as heteroskedasticity- and autocorrelation-consistent standard errors, gener-
alized method of moments estimation, and cointegration regression. We propose a
Stata command, lrcov, to compute long-run covariance with a prewhitening strat-
egy and various kernel functions. We illustrate how long-run covariance matrix
estimation can be used to obtain heteroskedasticity- and autocorrelation-consistent
standard errors via the new hacreg command; we also illustrate cointegration re-
gression with the new cointreg command. hacreg has several improvements com-
pared with the official newey command, such as more kernel functions, automatic
determination of the lag order, and prewhitening of the data. cointreg enables the
estimation of cointegration regression using fully modified ordinary least squares,
dynamic ordinary least squares, and canonical cointegration regression methods.
We use several classical examples to demonstrate the use of these commands.

Keywords: st0272, lrcov, hacreg, cointreg, long-run covariance, fully modified or-
dinary least squares, dynamic ordinary least squares, canonical cointegration re-
gression

1 Introduction

Long-run covariance (LRCOV) plays a major role in much of time-series inference, such as
heteroskedasticity- and autocorrelation-consistent (HAC) standard errors, efficient gener-
alized method of moments (GMM) estimation, cointegration regression, etc. Asymptotic
theory for estimators has developed rapidly within the literature, primarily focused on
the LRCOV. Practical applications of robust inference that take into account poten-
tial heteroskedasticity and autocorrelation of unknown forms in the data involve LRCOV

matrix estimation, such as White heteroskedasticity robust standard errors and Newey–
West HAC standard errors.

Unit-root tests and cointegration tests are now routinely used in empirical research.
LRCOV has been widely applied to nonstationary time-series analysis, such as the

c© 2012 StataCorp LP st0272



516 Long-run covariance and its applications in cointegration regression

Phillips–Perron unit-root test (Phillips and Perron 1988), cointegration tests (Marmol
and Velasco 2004) and panel cointegration tests (Pedroni 2004), a model’s stability
based on fully modified ordinary least squares (FMOLS) (Hansen 1992), canonical cor-
relation regression (CCR) with both I(1) and I(2) variables (Choi, Park, and Yu 1997),
fully modified value at risk (VAR), and fully modified GMM estimation (Quintos 1998).

Three approaches are popular for computing LRCOV: the nonparametric kernel meth-
od, the parametric method, and the prewhitened kernel method. The kernel method
has a long history for which the kernel and bandwidth are two important determinants
of the finite-sample properties of LRCOV. Many kernels have been proposed (Priestley
1981), among which the Bartlett, Parzen, and quadratic spectral may be the most
popular choices. Some new kernels have been proposed recently, such as the class of
steep-origin kernels of Phillips, Sun, and Jin (2007).

To date, there are two widely used formulas for selecting the bandwidth, proposed
in Andrews (1991) and Newey and West (1994). Hirukawa (2010) proposed an alter-
native approach, namely, the two-stage plug-in bandwidth selection approach. For the
parametric approach, econometric models are used to prewhiten the data; these mod-
els include the VAR prewhitening of den Haan and Levin (1997) and the autoregressive
moving-average (ARMA) prewhitening of Lee and Phillips (1994). The prewhitened ker-
nel method (Andrews and Monahan 1992) combines the parametric method and the
nonparametric kernel method. All three approaches will be discussed in section 2.

Some software is able to compute LRCOV and fit some relevant models with its
applications (software such as EViews, Rats, and the Coint package of Gauss). The
time-series utilities of Stata have increased rapidly. Some existing Stata commands
estimate LRCOV implicitly (newey, ivreg2, etc.), but there is still no explicit command
available.

In this article, we offer the lrcov command for computing the symmetric and one-
sided LRCOV in Stata. The lrcov program supports Andrews (1991) and Newey and
West (1994) automatic bandwidth selection methods for kernel estimators, as well as
information criteria–based lag-length selection methods for value-at-risk HAC (VARHAC)
and prewhitening estimation. We also provide two additional commands, hacreg and
cointreg, as applications of lrcov. hacreg estimates HAC standard error and extends
Stata’s official newey command in some ways. cointreg estimates FMOLS, dynamic
ordinary least squares (DOLS), and CCR.

The remainder of the article is organized as follows. The background of LRCOV

is introduced in section 2. In section 3, we introduce the syntax of lrcov and its
applications in the calculation of HAC standard error and GMM estimation. hacreg and
cointreg are illustrated in sections 4 and 5. In section 6, we draw conclusions and
outline future research.
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2 Background of LRCOV

For second-order stationary processes, the long-run variance is defined as the sum of all
autocovariances or, equivalently, in terms of the spectrum at frequency zero. Consider
a sequence of mean-zero random p-vectors, vt(θ), that have K parameters. The LRCOV

matrix Ω of vt(θ) is

Ω =

∞∑

j=−∞
Γj

Γj = E(vtv
′
t−j), j ≥ 0

Γj = Γ′
−j , j < 0

where Γj is the autocovariance matrix of vt at lag j. Define the one-sided LRCOV Λ0

and strict one-sided LRCOV Λ1 as

Λ0 =
∞∑

j=0

Γj = Λ1 + Γ0

Λ1 =

∞∑

j=1

Γj

where Γ0 is the contemporaneous covariance. So the symmetric two-sided LRCOV can
also be written as

Ω = Λ1 +Λ1
′ + Γ0 = Λ0 +Λ0

′ − Γ0

Given the definition of Ω =
∑∞

j=−∞ Γj , it is natural to estimate Ω using the sample

autocovariances, Γ̂j = T−1
∑T

t=j+1 vtv
′
t−j , as estimates of their population analogs.

This leads to the one-sided estimator

Ω̂ = Γ̂0 +
∑K

j=1
Γ̂j

White and Domowitz (1984) first proposed this type of estimator and showed its

consistency. While Ω̂ converges in probability to a positive-definite matrix, it may
be indefinite in finite samples. As argued by Hall (2005), the source of the trouble
lies in the weights given to the sample autocovariances. The solution is to construct an
estimator in which the contributions of the sample autocovariance matrices are weighted
to downgrade their role sufficiently in finite samples to ensure positive semidefiniteness;
however, the weights also need to tend to one as T → ∞ to ensure consistency. This
is the intuition behind the nonparametric kernel approach of HAC matrices (Andrews
1991; Newey and West 1987). The nonparametric kernel approach estimates the LRCOV

by taking a weighted sum of the sample autocovariances of the observed data

Ω̂ = Γ̂0 +
∑K

j=1
k(j)Γ̂j
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where k(j) is known as the kernel (or weight). The kernel must be chosen to ensure the
twin properties of consistency and positive semidefiniteness.

Below we will discuss the nonparametric kernel method and two other methods to
estimate Ω, that is, the parametric VARHAC approach (den Haan and Levin 1997) and
the prewhitened kernel approach (Andrews and Monahan 1992).

2.1 Nonparametric kernel method

The class of kernel HAC covariance matrix estimators in Andrews (1991) may be written
as

Ω̂ =
T

T −K

∞∑

j=−∞
k(j/bT )Γ̂j

Γ̂j =
1

T

T∑

t=j+1

vtv
′
t−j , j ≥ 0

Γ̂j = Γ̂
′
−j , j < 0

(1)

k is a symmetric kernel (or lag window) function that is continuous at the origin
and satisfies k(x) ≤ 1 and k(0) = 1. The allowed kernels in lrcov are listed in table 1.
Candidate kernel functions can be found in standard texts, for example, Brillinger (1980)
and Priestley (1981). bT is the bandwidth parameter, which depends on the number
of observations. bT controls the number of autocovariances included in the LRCOV

estimator for some kernels, such as the Bartlett and Parzen kernels. T/(T −K) is an
optional correction of degrees of freedom associated with the parameters in the model.
So the nonparametric kernel estimator can be viewed as a weighted average of sample
autocovariances. The weights are just values of the lag window function evaluated at
different lag lengths.

Andrews (1991) shows that the quadratic spectral weights are optimal in the sense
that they minimize an asymptotic mean-squared-error criterion for the estimation of
LRCOV. His results imply that this choice only marginally dominates the Parzen weights,
but Parzen and quadratic spectral weights should be much better than the Bartlett
weights. However, neither dominates the Bartlett weight to the extent predicted by
the theory. Newey and West (1994) conclude that the choice between the kernels is not
particularly important and the bandwidth is a much more important determinant of
the finite-sample properties of LRCOV. For consistency, bT must tend to infinity with T .
Andrews (1991) shows that the asymptotic mean squared error is minimized by setting
bT equal to O(T 1/3) for the Bartlett weights and equal to O(T 1/5) for both the Parzen
and quadratic spectral weights. However, this type of condition provides little practical
guidance.
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Table 1. Kernel function properties

Kernel Function ck q rate

Bartlett k(x) =

{
1− |x| if x ≤ 1.0

0 otherwise
1.1447 1 2/9

Bohman k(x) =

{
(1− |x|) cos(πx) +

sin(π|x|)
π

if x ≤ 1.0

0 otherwise
2.4202 2 4/25

Daniell k(x) = sin(πx)/(πx) 0.4462 2 –

Parzen k(x) =






1− 6x2(1− |x|) if 0 ≤ |x| ≤ 0.5

2(1− |x|)3 if 0.5 < |x| ≤ 1.0

0 otherwise

2.6614 2 4/25

Parzen–Riesz k(x) =

{
1− x2 if x ≤ 1.0

0 otherwise
1.1340 2 4/25

Parzen–Geometric k(x) =

{
1/(1 + |x|) if x ≤ 1.0

0 otherwise
1.0000 1 2/9

Parzen–Cauchy k(x) =

{
1/(1 + x2) if x ≤ 1.0

0 otherwise
1.0924 2 4/25

Quadratic spectral k(x) = 25
12π2x2

{
sin(1.2πx)

1.2πx
− cos(1.2πx)

}
1.3221 2 2/25

Tukey–Hamming k(x) =

{
0.54 + 0.46 cos(πx) if x ≤ 1.0

0 otherwise
1.6694 2 4/25

Tukey–Hanning k(x) =

{
0.50 + 0.50 cos(πx) if x ≤ 1.0

0 otherwise
1.7462 2 4/25

Tukey–Parzen k(x) =

{
0.436 + 0.564 cos(πx) if x ≤ 1.0

0 otherwise
1.8576 2 4/25

Truncated uniform k(x) =

{
1 if |x| ≤ 1.0

0 otherwise
0.6611 1/5 –

Note: ck and q are used to compute optimal bandwidth; rate is the optimal rate of increase for the
lag selection in Newey and West (1987).

Andrews (1991) and Newey and West (1994) offer two automatic bandwidth selec-
tion techniques based on observations to estimating bT . Both methods estimate bT
according to the following rule

b̂T = ck{α̂(q)T}1/(2q+1)

where ck and q depend on the type of kernel function and are also listed in table 1.
The Andrews (1991) method estimates bT parametrically by fitting a simple parametric
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time-series model to the original data, and then deriving the autocovariances and cor-
responding α(q). For the univariate autoregressive AR(1) models corresponding to the
p variables,

α̂(q) =

∑p
s=1 ws

(
f̂qs

)2

∑p
s=1 ws

(
f̂0s

)2

f̂qs =
1

2π

∑∞

j=−∞
|j|qΓ̃s,j

(2)

where Γ̃s,j are the estimated autocovariances at lag j implied by the univariate AR(1)

specification for the sth variable. ws is the weight for the sth variable. Andrews (1991)
suggests using either ws = 1 for all or for all but the instrument corresponding to the
intercept in regression settings. However, to date, no further guidance is available about
how this choice should be made or its impact on the finite-sample properties of LRCOV.

Newey and West (1994) use a nonparametric approach. First, define the scalar au-
tocovariance estimators

σ̂j =
1

T

T∑

t=j+1

w′vtv
′
t−jw = w′Γ̂jw (3)

where w = (w1, w2, . . . , wp)
′. Then compute nonparametric truncated kernel estimators

of the Parzen measures of smoothness:

f̂qs =
1

2π

∑n

j=−n
|j|qσ̂j (4)

The Newey and West (1994) estimator for α(q) is

α̂(q) =
(
f̂q/f̂0

)2

Kiefer and Vogelsang (2002a,b) proposed the use of inconsistent HAC estimates based
on conventional kernels but with the bandwidth set equal to the sample size. They show
that such estimates lead to asymptotically valid tests that can have better finite-sample-
size properties than tests based on consistent HAC estimates. Their power analysis
and simulations reveal that the Bartlett kernel produces the highest power function in
regression testing with bT = T , although power is noticeably less than what can be
attained using conventional procedures involving consistent HAC estimators.

2.2 Parametric VARHAC method

One of the mechanisms that can improve covariance matrix estimates is derived from the
idea of prewhitening. Prewhitening has a long history in time-series analysis. Recently,
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it has also been applied to the estimation of LRCOV. The stated idea of prewhitening
is as follows. One first prefilters the original data to obtain a less dependent series
that has a flatter spectrum. The spectral density function of the filtered data can then
be estimated with less bias and recolored to produce an estimator for the spectrum of
the original series with reduced bias. If the true data-generating process belongs to
the parametric class that is used for prewhitening, then the parametric prewhitened
estimator has improved the convergence rate.

den Haan and Levin (1997) proposed the VARHAC parametric method to estimate
LRCOV. They first whiten the data using the VAR(q) model and compute the contem-
poraneous covariance for the whitened data. They then recolor it to the original data.

Let the filtered data be

v∗
t = vt −

∑q

j=1
Âjvt−j

with contemporaneous covariance

Γ̂
∗
0 =

1

T − q

∑T

t=q+1
v∗
tv

∗
t
′

The two-sided LRCOV is

Ω̂ =
T − q

T − q −K
D̂Γ̂

∗
0D̂

D̂ =
(
Ip −

∑q

j=1
Âj

)−1

where Γ̂
∗
0 is the contemporaneous covariance of v∗

t . den Haan and Levin (1996) recom-
mend choosing the lag length via a model-selection criterion. Their theoretical analysis
suggests that the Bayesian information criterion is a better choice than Akaike’s infor-
mation criterion (AIC); however, their simulation evidence suggests that the two criteria

perform comparably in this context. den Haan and Levin (1996) show that Ω̂ is con-
sistent provided that q → ∞ as T → ∞ and q = O(T 1/3).

The VARHAC estimators for the one-sided LRCOV, Λ0 and Λ1, do not have simple

expressions in terms of Â and Γ̂
∗
0. For the VAR(1) model, the one-sided LRCOV may be

written as (QMS 2010)

Λ̂0 =
T − q

T − q −K

(
Ip − Â1

)−1

Γ̂0

Λ̂1 =
T − q

T − q −K
Â1

(
Ip − Â1

)−1

Γ̂0

where Γ̂0 can be computed using (1).



522 Long-run covariance and its applications in cointegration regression

2.3 Prewhitened kernel method

The prewhitened kernel approach is a hybrid method that combines the parametric
method and the nonparametric kernel method. The prewhitened method uses a para-
metric model to obtain residuals that prefilter the data and a nonparametric kernel
estimator to obtain an LRCOV estimator of the whitened data. Andrews and Monahan
(1992) proposed a VAR prewhitening procedure for the estimation of the covariance ma-
trix. Lee and Phillips (1994) used the Hannan–Rissanen recursive estimation procedure
and order-selection methods and proposed an ARMA prewhitened long-run variance esti-
mator. All of these prewhitened estimators use parametric (AR or ARMA) prewhitening
procedures in the time domain. The resulting prewhitened LRCOV estimate is then
recolored to undo the effects of the transformation.

To estimate LRCOV using the method of Andrews and Monahan (1992), we first
filter the data using VAR(q). We then construct the innovation’s kernel LRCOV using
(1). The formula of one-sided LRCOV for VAR(1) was given in Hansen (1992):

Λ̂0 = D̂Λ̂
∗
0D̂

′ + D̂Â1Γ̂0

The one-sided LRCOV for the VAR(q) model is derived by Park and Ogaki (1991):

Λ̂1 = D̂Λ̂
∗
1D̂

′ + D̂
∑q−1

j=0

∑q

i=j+1
ÂiΓ̂j

The VARHAC method is advantageous because the LRCOV can be estimated straight-
forwardly from the model. den Haan and Levin (2000) found that once data-dependent
VAR prewhitening has been used in linear regression, the effect of the prewhitened
kernel method is negligible or even counterproductive. The potential disadvantage is
that if the model is incorrect, then the LRCOV estimator is inconsistent. The closer
the prewhitened model is to the true model, the less bias in the estimator. Indeed,
Andrews and Monahan (1992) exhibit examples where the mean squared error can ac-
tually be worse than that of the standard estimator. Sul, Phillips, and Choi (2005)
showed that the small-sample bias in the estimation of autoregressive coefficients is
transmitted to the recoloring filter, leading to HAC variance estimates that can be badly
biased. They recommended using recursive demeaning procedures to mitigate the effects
of small-sample autoregressive bias.

For the kernel method, the LRCOV estimator is consistent under much weaker condi-
tions than the VARHAC method. Unfortunately, these more general estimators can ex-
hibit poor finite-sample performance, which prompted the construction of prewhitened
kernel estimator.

As argued by Andrews and Monahan (1992) and Lee and Phillips (1994), the pre-
whitened kernel estimator of the LRCOV reduces bias and improves the rate of conver-
gence of existing estimators. Simulation evidence in Newey and West (1994) suggests
that the use of prewhitening and recoloring improves the finite-sample performance of
the parameters’ asymptotic confidence intervals. Xiao and Oliver (2002) proposed a
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nonparametric spectral density estimator for time-series models with general autocor-
relation. Their simulation study showed that the prewhitened kernel estimator reduces
bias and mean squared error in spectral density estimation. Christou and Pittis (2002)
conducted a Monte Carlo study to investigate the finite-sample properties in the FMOLS

procedure. Their results suggest that the prewhitened kernel estimator minimizes the
second-order asymptotic bias effects in cointegration regression.

In our Stata lrcov and cointreg commands, the default specification is the non-
parametric kernel method. Users can choose to prewhiten the data or not.

3 lrcov: Stata command to compute LRCOV

lrcov computes LRCOV in Mata. For the prewhitened kernel method, matrix inversion
is required. lrcov uses the invsym and pinv commands.

3.1 Syntax

lrcov varlist
[
if
] [

in
] [

, wvar(varname) nocenter constant dof(#)

vic(string) vlag(#) kernel(string) bwidth(#) bmeth(string) blag(#)

bweig(numlist) bwmax(#) btrunc disp(string)
]

varlist may contain factor variables or time-series operators.

3.2 Options

wvar(varname) specifies the weight of the observation; that is, multiply each variable
in varlist with varname.

nocenter requests that lrcov not center the data before computing. By default, lrcov
centers the data using the mean before computing LRCOV.

constant adds constant to varlist. This option may only be used with the wvar()

option.

dof(#) adjusts the LRCOV by degrees of freedom. The default is dof(0).

vic(string) specifies the information criteria to select the optimal lags in VAR. aic,
bic, and hq are allowed. To prewhiten the data, both vic() and vlag() must be
specified.

vlag(#) specifies the maximum lag to select the optimal lag length if the vic() option
is specified. Otherwise, # is the lag order of the VAR model to estimate. If the
user specified vic() but not vlag(), lrcov automatically sets the maximum lag to
int(T 1/3). To prewhiten the data, both vic() and vlag() must be specified.



524 Long-run covariance and its applications in cointegration regression

kernel(string) specifies the type of kernel function. string may be none, bartlett,
bohman, daniell, parzen, qs, priesz, pcauchy, pgeometric, thamming, thanning,
or tparzen. If the user specifies kernel(none), the bwidth(), bmeth(), blag(),
bweig(), and btrunc options will be ignored.

bwidth(#) specifies the bandwidth by hand. If this option is specified, the program
will ignore the bmeth(), blag(), bweig(), and btrunc options.

bmeth(string) specifies the bandwidth selection procedure, including nwfixed [Newey–
West fixed lag, that is, 4 × (T/100)2/9], andrews, and neweywest. The default is
bmeth(nwfixed).

blag(#) specifies the parameter of n in bandwidth selection (4). If this option is not
specified, the program will set it based on 20(n/100)r, where (x) means the largest
integer less than x and r depends on the kernel function.

bweig(numlist) specifies the weight vector w when automatically computing the band-
width according to (2) and (3). The number of elements in numlist should be equal
to the number of variables in varlist. The default weight is 1 for all variables.

bwmax(#) specifies the maximum bandwidth. If the bandwidth supplied by the user or
automatically determined by the procedure is greater than #, then lrcov will use
# as the bandwidth.

btrunc truncates the bandwidth to an integer.

disp(string) requests that lrcov display the detailed results, including two (two-sided
LRCOV), one (one-sided LRCOV), sone (strict one-sided LRCOV), and cont (contem-
poraneous covariance). The default is disp(two).

3.3 Saved results

lrcov saves the following in r():

Scalars
r(bwidth) bandwidth b(vlag) lag of VAR model

Macros
r(kernel) kernel function r(vic) type of information criterion
r(bmeth) automatic bandwidth method

Matrices
r(Omega) two-sided LRCOV r(Omega0) contemporaneous covariance
r(Omegaone) one-sided LRCOV (lag) r(Omegasone) strict one-sided LRCOV (lag)

3.4 Examples

We use the macroeconomic data downloaded from Stata’s official website to illustrate
the use of lrcov. The data include macroeconomic indicators of industrial production
index, ipman; an aggregate weekly hours index, hours; aggregate unemployment, unemp;
and real disposable income, income.
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. webuse dfex
(St. Louis Fed (FRED) macro data)

. describe

Contains data from http://www.stata-press.com/data/r12/dfex.dta
obs: 443 St. Louis Fed (FRED) macro data
vars: 6 14 May 2011 17:59
size: 19,492

storage display value
variable name type format label variable label

month float %tm Month
unemp double %10.0g Civilian unemployment rate
hours double %10.0g Aggregate weekly hours worked

index: total private industries
inc96 double %10.0g Real disposable personal income
ipman double %10.0g Industrial production;

manufacturing (NAICS)
income double %10.0g Real disposable income (100´s)

Sorted by: month

Examples of different specifications

We assume the variables are I(1), so we compute the LRCOV of the differenced series
directly.

Default case: Bartlett kernel. No prewhitening, Newey–West automatic bandwidth
selection.

. lrcov d.(ipman income hours unemp)

Long Run Covariance:

VAR Pre-whitening = no
Kernel type = Bartlett
Bandwidth (Newey-West) = 16.896
Dof adjustment = 0

D. D. D. D.
Two-sided ipman income hours unemp

D.ipman .9930469 .1527449 .5334321 -.2557916
D.income .1527449 .0889101 .0795833 -.0443571
D.hours .5334321 .0795833 .3991929 -.1804581
D.unemp -.2557916 -.0443571 -.1804581 .0967915

The header consists of VAR Pre-whitening (or it could have VAR Lag and the in-
formation criterion: AIC, Bayesian, or Hannan and Quinn), Kernel type, Bandwidth
and its automatic selection method (Andrews, Newey–West, or N–W fixed), and Dof

adjustment. The row title of the matrix depends on the specification of the disp()

option (disp(two) by default).
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Case 2: Nonparametric kernel approach. Quadratic spectral kernel, fixed bandwidth
at 10.

. lrcov d.(ipman income hours unemp), kernel(qs) bwidth(10)

Long Run Covariance:

VAR Pre-whitening = no
Kernel type = Quadratic Spectral
Bandwidth (user) = 10
Dof adjustment = 0

D. D. D. D.
Two-sided ipman income hours unemp

D.ipman .9734461 .1399095 .5141061 -.2525444
D.income .1399095 .0768796 .0741796 -.0403469
D.hours .5141061 .0741796 .3711272 -.176326
D.unemp -.2525444 -.0403469 -.176326 .0963466

Case 3: Parametric approach. VARHAC estimation using VAR(1).

. lrcov d.(ipman income hours unemp), vlag(1) kernel(none)

Long Run Covariance:

Var lag (user) = 1
Kernel type = None
Dof adjustment = 0

D. D. D. D.
Two-sided ipman income hours unemp

D.ipman .5507148 .0803142 .2716553 -.131211
D.income .0803142 .165078 .0401646 -.018165
D.hours .2716553 .0401646 .1962499 -.0792629
D.unemp -.131211 -.018165 -.0792629 .0503728

Case 4: Prewhitened kernel approach. Prewhiten using VAR(1), Parzen kernel, and
Andrews automatic bandwidth.

. lrcov d.(ipman income hours unemp), vlag(1) kernel(parzen) bmeth(andrews)

Long Run Covariance:

Var lag (user) = 1
Kernel type = Parzen
Bandwidth (Andrews) = 3.8986
Dof adjustment = 0

D. D. D. D.
Two-sided ipman income hours unemp

D.ipman .5298245 .0898282 .2534481 -.1231246
D.income .0898282 .1415811 .0394046 -.0187237
D.hours .2534481 .0394046 .1764541 -.0760452
D.unemp -.1231246 -.0187237 -.0760452 .0473085
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Case 5: More flexible options. Prewhiten using VAR with lag selected by AIC,
quadratic spectral kernel, Newey–West automatic bandwidth with truncated lag = 10.

. lrcov d.(ipman income hours unemp), vic(aic) kernel(qs) bmeth(neweywest)
> blag(10)

Long Run Covariance:

Var lag (AIC) = 7
Kernel type = Quadratic Spectral
Bandwidth (Newey-West) = 11.958
Dof adjustment = 0

D. D. D. D.
Two-sided ipman income hours unemp

D.ipman 1.47109 .2149076 .8322045 -.4151169
D.income .2149076 .0898623 .1285044 -.0700764
D.hours .8322045 .1285044 .6190196 -.2999706
D.unemp -.4151169 -.0700764 -.2999706 .1593269

Using lrcov to compute HAC variance

Next we use lrcov to compute the robust covariance matrix in linear regression, y =
Xβ+u,Var(u) = Ω. The ordinary least squares (OLS) estimators are β̂ = (X′X)−1X′y,

and their covariance is Cov
(
β̂
)
= (X′X)−1(X′ΩX)(X′X)−1. We assume the equation

to be arbitrarily specified as

∆ipmant = β0 + β1∆incomet + β2∆hourst + β3∆unempt + ut

The HAC covariance matrix is computed as follows:

. quietly regress d.ipman d.(income hours unemp)

. quietly predict u, res

. quietly lrcov d.(income hours unemp), wvar(u) constant dof(4) kernel(none)

. matrix covu = r(Omega)

. matrix accum xx = d.(income hours unemp)
(obs=442)

. matrix xxi = invsym(xx)

. matrix cov = 442*xxi*covu*xxi

. matlist cov

D. D. D.
income hours unemp _cons

D.income .0021644 -.0005001 .0006004 1.16e-06
D.hours -.0005001 .0051949 .0021574 -.0011289
D.unemp .0006004 .0021574 .014977 -.000245

_cons 1.16e-06 -.0011289 -.000245 .0006414



528 Long-run covariance and its applications in cointegration regression

In fact, the hacreg command described below computes the robust covariance matrix
in just the same way. The same results can be obtained using the following Stata
commands:

. quietly regress d.ipman d.(income hours unemp), vce(robust)

. matlist e(b)

(output omitted )

. matlist e(V)

(output omitted )

Using lrcov to perform GMM estimation

Similar computation is easily applied to GMM estimation. The GMM estimator and its
variance are

β̂GMM = (X′ZWZ′X)−1X′ZWZ′y

Cov
(
β̂GMM

)
= n(X′ZWZ′X)−1X′WŜWZ′X(X′ZWZ′X)−1

where X are explanatory variables and Z are instrumental variables. Ŝ, the estimator
of E(ziuiuiz

′
i), is calculated using the residuals based on β̂GMM. The weight matrix

W = (Z′ΩZ)−1 is calculated using the residuals from the initial two-stage least-squares

estimates. If we set W = Ŝ−1, then we obtain the optimal two-step GMM estimator,

and the covariance matrix reduces to Cov
(
β̂GMM

)
= n(X′ZWZ′X)−1. The following

commands estimate the two-step GMM estimator using the lrcov command:

. * one-step GMM (two-stage least squares)

. qui ivregress 2sls d.ipman d.income (d.hours d.unemp = DL(1/2).(hours unemp))

. qui predict u, residuals

. * weighted matrix using long run variance

. local inst = "d.income DL(1/2).(hours unemp)"

. qui lrcov `inst´, nocenter wvar(u) constant kernel(bartlett) bwidth(11)

. matrix w = r(Omega)

. * two-step GMM estimator

. qui matrix accum xz = d.hours d.unemp d.income `inst´

. matrix xz = xz[1..3, 4...] \ xz["_cons", 4...]

. matrix accum yz = d.ipman `inst´
(obs=440)

. matrix yz = yz[1, 2...]

. matrix b = invsym(xz*invsym(w)*xz´)*(xz*invsym(w)*yz´)

. matrix V = 440*invsym(xz*invsym(w)*xz´)

. matlist b´

D. D. D.
hours unemp income _cons

D.ipman .5323454 -1.933122 -.0445388 .1229558
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. matlist V

D. D. D.
hours unemp income _cons

D.hours .0189107
D.unemp .0066483 .1128266

D.income .0010752 -.0003729 .0027054
_cons -.0025717 -.0001957 -.0003734 .0009218

The same results can be obtained using the ivregress command.1

. qui ivregress gmm d.ipman d.income (d.hours d.unemp = DL(1/2).(hours unemp)),
> vce(unadjusted) wmatrix(hac bartlett 10)

. matlist e(b)

(output omitted )

. matlist e(V)

(output omitted )

Note that in the Bartlett (Parzen, Parzen–Riesz, etc.) kernels, k(1) = 0 and
ceil(bT ) − 1 autocovariances enter the estimator with nonzero weights where ceil(x)
denotes the largest integer that is smaller than or equal to x. So the truncation param-
eter 10 in ivregress is equivalent to bwidth(11) in lrcov.

4 hacreg: HAC standard errors in linear regression

We provide the hacreg command to implement the HAC-type standard errors. hacreg
has several improvements over the official Stata newey command. hacreg can auto-
matically determine the optimal lag based on information criteria. Moreover, hacreg
allows more-flexible treatment with LRCOV, such as prewhitening the data and more
kernel functions.

4.1 Syntax

hacreg depvar indepvars
[
if
] [

in
] [

, noconstant level(#) lrcov options
]

depvar may contain time-series operators. indepvars may contain factor variables and
time-series operators. by is allowed.

1. As pointed out by StataCorp (2009), many software packages that implement GMM estimation
use the heteroskedasticity-consistent weighting matrix to obtain the optimal two-step estimates
but do not use a heteroskedasticity-consistent variance, even though they may label the standard
errors as being robust. To replicate results obtained from other packages, you may have to use the
vce(unadjusted) option.
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4.2 Options

noconstant suppresses the constant in the regression equation.

level(#) sets the confidence level; default is level(95).

lrcov options specifies the options to compute LRCOV, which include kernel(string),
vlag(#), vic(string), bwidth(#), bmeth(string), blag(#), and btrunc. All of
these options are specified in the same way as for the lrcov command described in
section 3.2.

4.3 Saved results

hacreg saves the following in e():

Scalars
e(N) number of observations e(df m) model degrees of freedom
e(r2) R-squared e(ll) log likelihood
e(r2 a) adjusted R-squared e(ll 0) log likelihood, constant-only
e(rank) rank of e(V) model
e(rss) residual sum of squares e(mss) residual sum of squares
e(rmse) root of mean squared error e(F) model F statistic
e(df r) residual degrees of freedom

Macros
e(cmd) hacreg e(vcetype) type of covariance
e(cmdline) command as typed e(title) title of regression
e(depvar) name of dependent variable e(properties) b V
e(predict) program to implement predict

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

4.4 Example: Dynamic impact of cold weather on orange juice price

Stock and Watson (2006) discussed the effect of cold weather on the price change of
orange juice using the HAC standard error. The model was specified as

dlnpojt = β0 +
18∑

l=1

βlFDDt−l + ut

where dlnpoj is the price change computed as differencing the log series. FDD is the
number of freezing degree days. The βl reflects the dynamic multiplier at lag l. The
accumulated dynamic multiplier at lag l can be estimated by the model

dlnpojt = β0 +

17∑

l=1

βl∆FDDt−l + β18FDDt−18 + ut
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The data are downloadable from Stock and Watson’s (2006) website.2 To replicate
their results listed in table 13-1, we choose the same truncation lag in the Bartlett kernel.
Note that the truncation parameterm in Stock and Watson (2006) is equivalent tom+1
in hacreg.

. use stockwatson, clear

. generate lnpoj=ln(poj)

. generate dlnpoj=D.lnpoj*100
(1 missing value generated)

. hacreg dlnpoj L(0/18).fdd if tin(1950m1,2000m12), kernel(bartlett) bwidth(8)

Source SS df MS Number of obs = 612
F(19, 592) = 2.257877

Model 2014.484439 19 106.0255 Prob > F = 0.0018
Residual 13662.10622 592 23.0779 R-square = .1285027

Adjusted R2 = .1005324
Total 15676.59066 611 25.65726785 Standard error = 4.803944

HAC
dlnpoj Coef. Std. Err. t P>|t| [95% Conf. Interval]

fdd
--. .5037985 .1395634 3.61 0.000 .2296989 .7778981
L1. .1699179 .0889433 1.91 0.057 -.004765 .3446008
L2. .0670143 .0606926 1.10 0.270 -.0521847 .1862133
L3. .0710866 .0448936 1.58 0.114 -.0170836 .1592567
L4. .0247764 .031656 0.78 0.434 -.0373953 .0869482
L5. .0319348 .0307631 1.04 0.300 -.0284833 .0923528
L6. .0325602 .0476017 0.68 0.494 -.0609285 .1260489
L7. .0149134 .0157426 0.95 0.344 -.0160048 .0458316
L8. -.0421964 .0348847 -1.21 0.227 -.1107094 .0263165
L9. -.0102996 .0514516 -0.20 0.841 -.1113495 .0907503

L10. -.1163004 .0706558 -1.65 0.100 -.2550669 .0224662
L11. -.0662832 .0530143 -1.25 0.212 -.1704023 .0378359
L12. -.1422677 .0774238 -1.84 0.067 -.2943265 .0097911
L13. -.0815754 .0429925 -1.90 0.058 -.1660117 .002861
L14. -.0563725 .0352999 -1.60 0.111 -.1257008 .0129557
L15. -.0318753 .0280183 -1.14 0.256 -.0869027 .023152
L16. -.0067771 .0557013 -0.12 0.903 -.1161733 .102619
L17. .0013941 .018445 0.08 0.940 -.0348315 .0376197
L18. .0018238 .0169734 0.11 0.914 -.0315117 .0351592

_cons -.3402371 .2736588 -1.24 0.214 -.8776974 .1972231

The accumulated multiplier for different bandwidth and monthly indicators can be
estimated as follows:

. qui hacreg dlnpoj DL(0/17).fdd L18.fdd if tin(1950m1,2000m12),
> kernel(bartlett) bwidth(8)

. estimates store est2

. qui hacreg dlnpoj DL(0/17).fdd L18.fdd if tin(1950m1,2000m12),
> kernel(bartlett) bwidth(15)

. estimates store est3

2. http://wps.aw.com/aw stock ie 2/50/13016/3332229.cw/index.html
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. generate month=month(dofm(mdate))

. qui hacreg dlnpoj DL(0/17).fdd L18.fdd i.month if tin(1950m1,2000m12),
> kernel(bartlett) bwidth(8)

. estimates store est4

We view all the results by typing

. estimates table est2 est3 est4, b(%6.2f) se(%6.2f) style(oneline)

(output omitted )

Of course, the same results can be obtained with the Stata newey command. For
example, to fit the last model with monthly dummy variables, type

. newey dlnpoj DL(0/17).fdd L18.fdd i.month if tin(1950m1,2000m12), lag(7)

(output omitted )

If you want to obtain the White heteroskedastic robust standard errors, specify
kernel(none) in the hacreg command. In the output table, hacreg also reports the
variance analysis table based on OLS for reference.

5 cointreg: Cointegration regression based on LRCOV

The study of cointegrating relationships has been a particularly active area of econo-
metric research. Consider the time-series vector process (yt,x

′
t)

′ with cointegrating
relationships

yt = x′
tβ + d′

1tγ1 + u1t

xt = Γ1d1t + Γ2d2t + εt

∆εt = u2t

where d1t and d2t are deterministic trend regressors. d1t enters into both the cointegra-
tion equation and the regressors equations. d2t only enters into the regressors equations.
u1t is the cointegrating equation error. u2t are regressors innovations.

Assume the innovations ut = (u1t,u
′
2t)

′ are strictly stationary and ergodic with
zero means, contemporaneous covariance matrix Σ, one-sided LRCOV matrix Λ, and
nonsingular LRCOV matrix Ω.

Σ = E(utut
′) =

[
σ11 σ12

σ21 Σ22

]

Λ =
∑∞

j=0
E(utut−j

′) =

[
λ11 λ12

λ21 Λ22

]

Ω =
∑∞

j=−∞
E(utut−j

′) =

[
ω11 ω12

ω21 Ω22

]
(5)

If the series are cointegrated, then the OLS estimator is consistent, converging at a
faster rate than standard. But when there exists long-run correlation between u1t and
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u2t (ω12), or cross-correlation between the cointegration equation error and the regres-
sor innovations (λ12), then the OLS estimators have an asymptotic distribution that
is generally non-Gaussian, asymptotically biased, asymmetric, and involves nonscalar
nuisance parameters. So the conventional testing procedures are not valid. Three fully
efficient estimation methods—FMOLS (Phillips and Hansen 1990), CCR (Park 1992),
and DOLS (Saikkonen 1992; Stock and Watson 1993)—are proposed to get fully effi-
cient estimation.

5.1 FMOLS, DOLS, and CCR cointegration regression

Phillips and Hansen (1990) proposed the FMOLS estimator and Park (1992) proposed
the CCR estimator, both of which use a semiparametric correction to eliminate the
problems stated above. The estimators are asymptotically unbiased and have fully
efficient normal asymptotics, allowing for standard Wald tests using asymptotic chi-
squared statistical inference. Let ω̂12, Ω̂22, λ̂12, and Λ̂22 be the corresponding parts
of the LRCOV of ût = (û1t, û

′
2t)

′
according to (5). The FMOLS and CCR estimators can

be obtained by transforming the regressors and regressand and then applying the OLS

procedure. FMOLS estimation only transforms the regressand

y+t = yt − ω̂12Ω̂
−1

22 û2t

where û1t is the residual of the cointegration equation estimated by OLS, and û2t are the
differenced residuals of regressor equations or the residuals of the differenced regressor
equations.

The FMOLS estimators and their covariance are given by

θ̂ =

[
β̂

γ̂1

]
=

[
T∑

t=1

ztz
′
t

][
T∑

t=1

zty
+
t − T

(
λ̂
+′

12

0

)]

Var
(
θ̂
)
= ω̂1,2

[
T∑

t=1

ztz
′
t

]
, ω̂1,2 = ω̂11 − ω̂12Ω̂

−1

22 ω̂21

where λ̂
+

12 = λ̂12 − ω̂12Ω̂
−1

22 Λ̂22 are called bias-correction terms. zt = (x′t, d
′
1t)

′. ω̂1,2 is
the estimate of the LRCOV of u1t conditional on u2t.

The CCR estimation transforms both the regressand and the regressors

y+t = yt −
{
Σ̂

−1
Λ̂2β̃ +

(
0

Ω̂
−1

22 ω̂21

)}′

ût

x+
t = xt −

(
Σ̂

−1
Λ̂2

)′
ût

where Λ̂2 = (Λ̂12, Λ̂
′
22)

′. β̃ is some consistent estimator of β, such as the OLS estimator.
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The DOLS estimators are obtained by adding the lead and lag of ∆xt to soak up the
long-run correlation between u1t and u2t.

yt = x′
tβ + d′

1tγ1 +
r∑

j=−q

∆x′
t+jδ + v1t (6)

The OLS estimators of the above equation have the same asymptotic distribution
as do FMOLS and CCR. The covariance of these estimators can be computed with the
HAC method or by rescaling the ordinary covariance matrix with the regression variance
replaced by the LRCOV of v̂1t.

The FMOLS and CCR estimators need both the two-sided and the one-sided LRCOV

of ût, and the DOLS estimators need only the two-sided LRCOV of v̂1t.

5.2 Syntax

cointreg depvar indepvars
[
if
] [

in
] [

, est(method) noconstant eqtrend(#)

eqdet(varlist) xtrend(#) xdet(varlist) diff stage(#) nodivn dlead(#)

dlag(#) dic(string) dmaxorder(#) dvar(varlist) dvce(string) level(#)

lrcov options
]

depvar may contain time-series operators. indepvars may contain time-series opera-
tor and factor variables.

5.3 Options

est(method) specifies the estimation method, which can be fmols, dols, or ccr. The
default is est(fmols).

noconstant suppresses the constant in the cointegration equation. If this option is
specified, eqtrend() will set to −1 automatically; that is, there is no deterministic
term in the cointegration equation.

eqtrend(#) specifies the trend order in the cointegration equation. eqtrend(0) de-
notes the constant term, eqtrend(1) denotes the linear trend, and eqtrend(2)

denotes the quadratic trend. The default is eqtrend(0). A negative value means
that there are no deterministic terms. The specification implies all trends up to
the specified order, so eqtrend(2) means the trend terms include a constant and a
linear trend term along with the quadratic term.

eqdet(varlist) specifies the additional deterministic terms in the cointegration equation.

xtrend(#) specifies the trend order in the independent variables. This option is used
only for FMOLS and CCR regression. xtrend(0), xtrend(1), and xtrend(2) are
allowed and have the same meaning as eqtrend(). This trend order should be
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greater than or equal to the order in the eqtrend() option; if that requirement is
not met, the program will force the two options to be equal.

xdet(varlist) specifies the additional deterministic terms in the independent variables.
This option is used for FMOLS and CCR regression.

diff obtains û2t by regressing the differenced equation. The default is regressing the
equation first and then differencing the residuals.

stage(#) is used for FMOLS or CCR regression. This option specifies the number to
repeat the estimation process, each time using new residuals to compute the LRCOV.
The default is stage(1), which performs FMOLS (or CCR) estimation once. For
example, stage(2) indicates that cointreg use the FMOLS (or CCR) residual û1t to
recompute LRCOV and estimate the cointegration equation again.

nodivn specifies that the program not divide the LRCOV by n in the intermediate steps.
Thus this option omits the adjustment of degrees of freedom.

dlead(#) sets the lead order in DOLS. The default is dlead(1).

dlag(#) sets the lag order in DOLS. The default is dlag(1). If the number is negative,
for example, dlag(-1), cointreg will estimate the static ordinary least-squares
regression.

dic(string) sets the information criterion used to select optimal lead and lag length in
DOLS. string can be aic, bic, or hq. If dic() is specified, cointreg will omit the
dlead() and dlag() options and automatically select the optimal lead (lag).

dmaxorder(#) sets the maximum length to select optimal lead and lag length in DOLS.
The default is set to int[min{(T −K)/3, 12} × (T/100)1/4].

dvar(varlist) specifies the variables of Xt whose differenced variables ∆Xt are added
in (6). cointreg automatically adds the lead and lag terms of all independent
variables. This option gives the user the freedom to add his or her own variables in
the cointegration equation.

dvce(string) sets the type of covariance matrix in DOLS regression. string can be
rescaled, hac, or ols. The default is dvce(rescaled).

level(#) sets the confidence level; default is level(95).

lrcov options specifies the options to compute LRCOV, which include kernel(string),
vlag(#), vic(string), bwidth(#), bmeth(string), blag(#), and btrunc. All of
these options are specified in the same way as for the lrcov command described in
section 3.2.
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5.4 Saved results

cointreg saves the following in e():

Scalars
e(N) number of observations e(r2) R-squared
e(r2 a) adjusted R-squared e(rmse) standard error
e(lrse) long-run standard error e(rss) residual sum of squares
e(tss) total sum of squares e(eqtrend) trend term in equation
e(xtrend) trend term in regressor e(bwidth) band width
e(vlag) lag in VAR prewhitening e(dlead) lead length in DOLS
e(dlag) lag length in DOLS

Macros
e(cmd) cointreg e(est) estimation method
e(cmdline) command as typed e(vic) information criterion in VAR
e(kernel) kernel type e(bmeth) bandwidth selection method
e(depvar) name of dependent variable e(properties) b V
e(dic) lag type in DOLS e(vcetype) variance type in DOLS

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

5.5 Examples

Next we will illustrate the FMOLS, CCR, and DOLS cointegration estimation methods
using several classical examples.

FMOLS example: The consumption function in the U.S.

We use the example in Hansen (1992) to illustrate FMOLS estimation. The data contain
seasonally adjusted aggregate quarterly U.S. consumption (tc) and total disposable
income (di) in real per capita units, for the period 1953:2–1984:4. The data can be
downloaded from Hansen’s homepage.3

A constant and a time trend are included in the equation:

tct = β0 + β1t+ β2dit + ut

We adopt the quadratic spectral kernel and the Andrews automatic bandwidth se-
lection method. The following commands estimate the above equation. To replicate the
results of Hansen (1992), the nodivn option must be specified.

3. http://www.ssc.wisc.edu/˜bhansen/
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. use campbell, clear

. cointreg tc di, est(fmols) vlag(1) kernel(qs) bmeth(andrews) eqtrend(1) nodivn

Cointegration regression (FMOLS):

VAR lag(user) = 1 Number of obs = 126
Kernel = qs R2 = .9947833
Bandwidth(andrews) = 0.8877 Adjusted R2 = .9946985

S.e. = 51.41235
Long run S.e. = 108.0174

tc Coef. Std. Err. z P>|z| [95% Conf. Interval]

di .9818777 .0882267 11.13 0.000 .8089565 1.154799
linear -1.022808 1.829954 -0.56 0.576 -4.609453 2.563836
_cons -112.1549 194.2193 -0.58 0.564 -492.8177 268.508

The linear in the output table denotes the linear trend in the regression equation.

CCR example: The consumption of nondurable goods

We use the example of Ogaki (1993). The model is specified as

ndurt = β0 + β1pricet + β2durt + ut

where ndurt is real consumption of nondurable goods per capital, durt is real consump-
tion of durable goods per capital, and pricet is the relative price index of nondurable
and durable goods. The data can be downloaded from Ogaki’s homepage.4

We use the quadratic spectral kernel and the Andrews automatic bandwidth selection
method. The three-stage CCR regression is estimated by the following commands:

. use ccr

. cointreg ndur price dur, est(ccr) vlag(1) kernel(qs) bmeth(andrews) stage(3)

Cointegration regression (CCR):

VAR lag(user) = 1 Number of obs = 168
Kernel = qs R2 = .4551902
Bandwidth(andrews) = 0.5839 Adjusted R2 = .4485864

S.e. = .1514857
Long run S.e. = .0866897

ndur Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .5682032 .1385131 4.10 0.000 .2967225 .839684
dur .5092836 .0448642 11.35 0.000 .4213515 .5972158

_cons 4.590851 .326225 14.07 0.000 3.951462 5.23024

4. http://www.econ.ohio-state.edu/ogaki/
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DOLS example: The demand for money in the United States

The money demand equation typically estimated in the literature is specified as

mt − pt = µ+ θyyt + θrrt + ut

where mt is the log of money stock in period t, pt is the log of price level, yt is log
income, rt is nominal interest rate, and ut is the error term. θy is income elasticity and
θr is the interest semielasticity of money demand. Hayashi (2000) cited this example in
his textbook; the data are downloadable from his homepage.5

All the variables are I(1), and we skip the unit-root testing and directly fit the model
using the DOLS method. We fit the model using the full sample and two subsamples
with two leads and two lags, in accordance with Stock and Watson (1993). The LRCOV

is computed using prewhitening with the AR(2) model. The following commands repeat
the results of table 10.2 in Hayashi (2000), which consist of static ordinary least-squares
and DOLS estimations.

. use sw93
(Source: Stock and Watson(1993))

. qui cointreg mp y r if tin(1903, 1987), est(dols) dlag(-1) kernel(none)

. qui estimates store SOLS

. qui cointreg mp y r, est(dols) dlead(2) dlag(2) vlag(2) kernel(none)

. qui estimates store DOLS

. estimates table SOLS DOLS, b(%6.3f) se(%6.3f) drop(_cons) style(oneline)

Variable SOLS DOLS

y 0.943 0.970
0.022 0.046

r -0.082 -0.101
0.006 0.013

legend: b/se

For the Chow break-point test at year 1946, Hayashi (2000) fit the model

mt − pt = µ+ γyyt + γrrt + δ0Dt + δyytDt + δrrtDt + ut

where Dt is a dummy variable whose value is 1 if t ≥ 1946 and 0 otherwise. We use
factor variables in Stata to fit the model, and we use the standard test command to
do the Chow test:

5. http://fhayashi.fc2web.com/datasets.htm
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. generate dum=year>=1946

. qui cointreg mp y r i.dum i.dum#c.(y r), est(dols) dlead(2) dlag(2) vlag(2)
> kernel(none)

. test 1.dum 1.dum#c.y 1.dum#c.r

( 1) 1.dum = 0
( 2) 1.dum#c.y = 0
( 3) 1.dum#c.r = 0

chi2( 3) = 19.12
Prob > chi2 = 0.0003

Note that only the differenced variables of (yt, rt) enter into the DOLS equation, so
we should have specified the dvar(y r) option. Hayashi (2000) listed the results in
table 10.4.

6 Conclusion and extension

In time-series econometrics, estimating the long-run variance matrix of a random vec-
tor process is essential for empirical research on estimation (for example, GMM and
cointegration regression) and testing (for example, HAC standard error, unit root, and
cointegration testing) problems. We propose the lrcov command to compute LRCOV;
lrcov includes many kernel functions and allows the user to prewhiten the data. Based
on lrcov, we provide two other commands, hacreg and cointreg. hacreg estimates
HAC standard errors. Compared with the official Stata newey command, hacreg is more
flexible in that it contains more kernel functions, automatically determines the lag order,
and prewhitens the data. cointreg estimates three cointegration regressions: FMOLS,
DOLS, and CCR, all of which need to compute the LRCOV. We use several examples to
illustrate these commands.

Many extensions can be made based on our work. More kernels and more bandwidth
selection methods can be allowed in LRCOV estimation. Some examples may include
further extensions on the lrcov command. Phillips, Sun, and Jin (2007) pursued the
approach of Kiefer and Vogelsang (2002a,b) and proposed a class of steep origin kernels,
which are constructed by exponentiating a mother kernel and can be used without
truncation. The steep origin kernels are asymptotically mean squared error equivalent,
so choice of mother kernel does not matter asymptotically. Jin, Phillips, and Sun (2006)
used steep origin kernels in cointegrated systems, and simulations indicated that robust
tests have improved size and power properties.

Hirukawa (2010) suggested a two-stage plug-in bandwidth selection approach that
estimates an unknown quantity in the optimal bandwidth for the HAC estimator (called
normalized curvature) using a general class of kernels, and derives the optimal band-
width that minimizes the asymptotic mean squared error of the estimator of normalized
curvature. It is shown that the optimal bandwidth for the kernel-smoothed normalized
curvature estimator should diverge at a slower rate than that of the HAC estimator
using the same kernel. Hirukawa (2011) revealed that the new bandwidth choice rule
contributes bias reduction in the estimators for cointegration regression models.
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LRCOV for more stochastic processes may be another important aspect for exten-
sion. Phillips and Kim (2007) derived an asymptotic expansion for the autocovariance
matrix of a vector of stationary long-memory processes and applied the theory to de-
liver formulas for the LRCOV matrices of multivariate time series with long memory.
Abadir, Distaso, and Giraitis (2009) extended the usual Bartlett-kernel HAC estimator
to deal with long memory and antipersistence, and derived asymptotic expansions for
this estimator and the memory and autocorrelation consistent estimator.
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