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Abstract. The package bspline, downloadable from Statistical Software Compo-
nents, now has three commands. The first, bspline, generates a basis of Schoen-
berg B-splines. The second, frencurv, generates a basis of reference splines whose
parameters in the regression model are simply values of the spline at reference
points on the X axis. The recent addition, flexcurv, is an easy-to-use version of
frencurv that generates reference splines with automatically generated, sensibly
spaced knots. frencurv and flexcurv now have the additional option of generat-
ing an incomplete basis of reference splines, with the reference spline for a baseline
reference point omitted or set to 0. This incomplete basis can be completed by
adding the standard unit vector to the design matrix and can then be used to esti-
mate differences between values of the spline at the remaining reference points and
the value of the spline at the baseline reference point. Reference splines therefore
model continuous factor variables as indicator variables (or “dummies”) model
discrete factor variables. The method can be extended in a similar way to de-
fine factor-product bases, allowing the user to estimate factor-combination means,
subset-specific effects, or even factor interactions involving multiple continuous or
discrete factors.

Keywords: sg151 2, bspline, flexcurv, frencurv, polynomial, spline, B-spline, in-
terpolation, linear, quadratic, cubic, multivariate, factor, interaction

1 Introduction

Splines are frequently used to model nonlinear predictive relationships between an X
variable and a Y variable, especially when the fundamental mechanisms are unknown
but the effect of X on Y is still thought to be important. For a natural number k,
a kth-degree spline is defined using a sequence of positions (or knots) on the X axis
and has these features: 1) in any interval between two consecutive knots, the spline is
equal to a polynomial of degree k; and 2) the first k − 1 derivatives of the spline are
continuous at each knot. Therefore, a spline of degree 0 is a step function with steps at
the knots, a spline of degree 1 is a continuous function linearly interpolated between the
knots, and splines of degree k > 1 are interpolated between the knots as polynomials
of degree k. Many Stata packages exist for implementing spline models—notably, the
official Stata command mkspline (see [R] mkspline) for linear and restricted cubic
splines; the splinegen package developed by Patrick Royston and Gareth Ambler for

c© 2012 StataCorp LP sg151 2



480 Sensible parameters for univariate and multivariate splines

step, linear, and restricted cubic splines (Royston and Sauerbrei 2007); and the xblc
package for graphing and tabulating linear splines, and unrestricted and restricted cubic
splines (Orsini and Greenland 2011).

A frequent problem with spline models is interpreting the parameters. Usually, spline
models are fit to the data using a basis of spline vectors whose linear combinations form
a space of splines of the specified degree. The spline vectors are typically included in
the design matrix for a linear or generalized linear model, with or without other vectors
representing the effect on Y of covariates or factors other than X. The parameters cor-
responding to the vectors of the spline basis are then the coordinates of the fitted spline
in these vectors and can be estimated in the usual way, with confidence limits. However,
these coordinates are frequently not easy to explain to nonmathematical colleagues.

The bspline package, downloadable from Statistical Software Components (SSC),
was designed to make this explanation easier. The original version was described in
Newson (2000) and contained two commands. The bspline command generates a
basis of unrestricted Schoenberg B-splines, whose parameters are not easy to interpret.
The frencurv command generates a basis of reference splines, which span the same
unrestricted spline space and whose corresponding parameters are values of the spline
at reference points on the X axis or possibly are differences or ratios between these
reference values (also known as “effects”). The method of frencurv was originally
developed, pre-Stata, to model the time series of hospital asthma admissions, which are
highly seasonal. An application appears in Newson et al. (1997).

The bspline package has since been upgraded, notably, with the addition of a third
command, flexcurv, which is designed as a user-friendly front-end for frencurv. The
package also has a manual (bspline.pdf) that is downloadable with the package as an
auxiliary file and that documents the methods and formulas.

In this article, I describe the methods of the bspline package in greater detail,
including the added improvements and the extension to multivariate splines with inter-
actions. Section 2 illustrates the advantages of splines, with graphics generated using
flexcurv. Section 3 gives the syntax of the package. Section 4 details the methods and
formulas. (The casual reader may skip the highly technical sections 3 and 4, at least at
first reading.) Finally, section 5 gives some practical examples using flexcurv.

2 Reasons for using splines

Splines are used to define a nonlinear regression model for an outcome Y with respect
to a continuous predictor X when the underlying mechanism is not known. We will
illustrate the advantages of splines in auto.dta, shipped with official Stata, whose
observations correspond to car models. The Y variable will be mpg (mileage in miles
per U.S. gallon of fuel), and the X variable will be weight (weight in U.S. pounds).
The do-files used to create the figures in this section (demo1.do and demo2.do) are
distributed as part of the online material for this article.
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I will start by demonstrating linear splines. Figure 1 shows linear splines with 2, 3,
4, and 5 knots, evenly spaced from 1,500 to 5,100 pounds (inclusive). The spline with
2 knots (at 1,500 and 5,100 pounds) is a straight line over that domain. The spline
with 3 knots (at 1,500, 3,300, and 5,100 pounds) is equal to a different straight line
in each interval between consecutive knots and is continuous (but not differentiable)
at the knots. The splines with 4 knots (at 1,500, 2,700, 3,900, and 5,100 pounds)
and with 5 knots (at 1,500, 2,400, 3,300, 4,200, and 5,100 pounds) have the same
features and are allowed to be progressively less linear as the number of knots increases.
However, they are still undifferentiable at the knots, and this may seem “unnatural” to
nonmathematical colleagues.
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Figure 1. Linear splines for mpg with respect to weight with different numbers of knots

As a solution to this problem, we can vary the degree of the splines. Figure 2 illus-
trates splines of degree 0 (constant), 1 (linear), 2 (quadratic), and 3 (cubic) for mileage
with respect to weight. The splines of degree 1, 2, and 3 each have five parameters,
equal to their values at the reference points 1,500, 2,400, 3,300, 4,200, and 5,100 pounds.
The constant spline (degree 0) only has four parameters, equal to its values at the first
four of the reference points. The spline of degree 0 is simply a step function and is
not even continuous (only right-continuous) at its knots. The spline of degree 1 is the
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linear spline in the lower right subgraph of figure 1 and, again, is continuous—but not
differentiable—at its knots. However, the splines of degree 2 and 3 are differentiable
throughout the domain, including at their knots, which cannot easily be located.
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Figure 2. Splines of degree 0, 1, 2, and 3 for mpg with respect to weight

So from figure 1, we see that we can improve on a linear model by fitting separate
linear models to intervals between knots, with the lines joined (or spliced) at the knots to
form a spline. And then we see from figure 2 that we can improve further by upgrading to
a quadratic or cubic spline to eliminate the visible joints that upset nonmathematical
colleagues. These features make splines a good model family with which to model
nonlinear predictive associations if the user has no specific mechanism in mind.
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3 The bspline package

3.1 Syntax

bspline
[
newvarlist

] [
if
] [

in
]
, xvar(varname)

[
power(#) knots(numlist)

noexknot generate(prefix) type(type) labfmt(format) labprefix(string)
]

frencurv
[
newvarlist

] [
if
] [

in
]
, xvar(varname)

[
power(#) refpts(numlist)

noexref omit(#) base(#) knots(numlist) noexknot generate(prefix)

type(type) labfmt(format) labprefix(string)
]

flexcurv
[
newvarlist

] [
if
] [

in
]
, xvar(varname)

[
power(#) refpts(numlist)

omit(#) base(#) include(numlist) krule(regular | interpolate)
generate(prefix) type(type) labfmt(format) labprefix(string)

]
3.2 Description

The bspline package contains three commands: bspline, frencurv, and flexcurv.
bspline generates a basis of B-splines in the X variate based on a list of knots for
use in the design matrix of a regression model. frencurv generates a basis of reference
splines for use in the design matrix of a regression model, with the property that the
parameters fit will be values of the spline at a list of reference points. flexcurv is an
easy-to-use version of frencurv that generates reference splines with regularly spaced
knots or with knots interpolated between the reference points. frencurv and flexcurv
have the additional option of generating an incomplete basis of reference splines, which
can be completed by the addition of the standard constant variable used in regression
models. The splines are either given the names in the newvarlist (if present) or (more
usually) generated as a list of numbered variables, prefixed by the generate() option.

3.3 Options for use with bspline and frencurv

xvar(varname) specifies the X variable on which the splines are to be based. xvar()
is required.

power(#) (a nonnegative integer) specifies the power (or degree) of the splines. Exam-
ples are 0 for constant, 1 for linear, 2 for quadratic, 3 for cubic, 4 for quartic, or 5
for quintic. The default is power(0).

knots(numlist) specifies a list of at least 2 knots on which the splines are to be based.
If knots() is not specified, then bspline will initialize the list to the minimum and
maximum of the xvar() variable, and frencurv will create a list of knots equal
to the reference points (in the case of odd-degree splines such as linear, cubic, or
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quintic) or midpoints between reference points (in the case of even-degree splines
such as constant, quadratic, or quartic). flexcurv does not have the knots()
option, because it automatically generates a list of knots containing the required
number of knots “sensibly” spaced on the xvar() scale.

noexknot specifies that the original knot list not be extended. If noexknot is not
specified, then the knot list is extended on the left and right by a number of extra
knots on each side specified by power(), spaced by the distance between the first
and last two original knots, respectively. flexcurv does not have the noexknot
option, because it specifies the knots automatically.

generate(prefix) specifies a prefix for the names of the generated splines, which (if
there is no newvarlist) will be named prefix1, . . . , prefixN, where N is the number
of splines.

type(type) specifies the storage type of the splines generated (float or double). If
type is specified as anything else (or if type() is not specified), then type is set to
float.

labfmt(format) specifies the format used in the variable labels for the generated splines.
If labfmt() is not specified, then the format is set to the format of the xvar()
variable.

labprefix(string) specifies the prefix used in the variable labels for the generated
splines. If labprefix() is not specified, then the prefix is set to "Spline at " for
flexcurv and frencurv and to "B-spline on " for bspline.

3.4 Options for use with frencurv

refpts(numlist) specifies a list of at least two reference points, with the property
that if the splines are used in a regression model, then the estimated parameters
will be values of the spline at those points. If refpts() is not specified, then the
list is initialized to two points equal to the minimum and maximum of the xvar()
variable. If the omit() option is specified with flexcurv or frencurv, and the spline
corresponding to the omitted reference point is replaced with a standard constant
term in the regression model, then the estimated parameters will be relative values
of the spline (differences or ratios) compared with the value of the spline at the
omitted reference point.

noexref specifies that the original reference list not be extended. If noexref is not
specified, then the reference list is extended on the left and right by a number of
extra reference points on each side equal to int(power/2), where power is the value
of the power() option, spaced by the distance between the first and last two original
reference points, respectively. If noexref and noexknot are both specified, then the
number of knots must equal the number of reference points plus power+1. flexcurv
does not have the noexref option, because it automatically chooses the knots and
does not extend the reference points.
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omit(#) specifies a reference point that must be present in the refpts() list (after
any extension requested by frencurv) and whose corresponding reference spline
will be omitted from the set of generated splines. If the user specifies omit(), then
the set of generated splines will not be a complete basis of the set of splines with
the specified power and knots, but can be completed by the addition of a constant
variable equal to 1 in all observations. If the user then uses the generated splines
as predictor variables for a regression command such as regress or glm, then the
noconstant option should usually not be used. And if the omitted reference point
is in the completeness region of the basis, then the intercept parameter cons will
be the value of the spline at the omitted reference point, and the model parameters
corresponding to the generated splines will be differences between the values of
the spline at the corresponding reference points and the value of the spline at the
omitted reference point. (For the definition of the completeness region of a spline, see
section 4.1.) If omit() is not specified, then the generated splines form a complete
basis of the set of splines with the specified power and knots. If the user then
uses the generated splines as predictor variables for a regression command, such as
regress or glm, then the noconstant option should be used, and the fitted model
parameters corresponding to the generated splines will be the values of the spline at
the corresponding reference points.

base(#) is an alternative to omit() for use in Stata 11 or higher. It specifies a reference
point that must be present in the refpts() list (after any extension requested by
frencurv) and whose corresponding reference spline will be set to 0. If the user
specifies base(), then the set of generated splines will not be a complete basis of
the set of splines with the specified power and knots, but can be completed by the
addition of a constant variable equal to 1 in all observations. The generated splines
can then be used in the design matrix by a Stata 11 (or higher) estimation command.

3.5 Options for use with flexcurv only

Note that flexcurv uses all the options available to frencurv except for knots(),
noexknot, and noexref.

include(numlist) specifies a list of additional numbers to be included within the bound-
aries of the completeness region of the spline basis, as well as the available values of
the xvar() variable and the refpts() values (if provided). This allows the user to
specify a nondefault infimum or supremum for the completeness region of the spline
basis. If include() is not provided, then the completeness region will extend from
the minimum to the maximum of the values available either in the xvar() variable
or in the refpts() list.

krule(regular | interpolate) specifies a rule for generating knots based on the ref-
erence points, which may be regular (the default) or interpolate. If regular is
specified, then the knots are spaced regularly over the completeness region of the
spline. If interpolate is specified, then the knots are interpolated between the
reference points in a way that produces the same knots as krule(regular) if the
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reference points are regularly spaced. Whichever krule() option is specified, any
extra knots to the left of the completeness region are regularly spaced with a spacing
equal to that between the first two knots of the completeness region, and any extra
knots to the right of the completeness region are regularly spaced with a spacing
equal to that between the last two knots of the completeness region. Therefore,
krule(regular) specifies that all knots be regularly spaced whether or not the ref-
erence points are regularly spaced, whereas krule(interpolate) specifies that the
knots be interpolated between the reference points in a way that will cause reference
splines to be definable, even if the reference points are not regularly spaced.

3.6 Saved results

bspline, frencurv, and flexcurv save the following results in r():

Scalars
r(xsup) upper bound of completeness region
r(xinf) lower bound of completeness region
r(nincomp) number of X values out of completeness region
r(nknot) number of knots
r(nspline) number of splines
r(power) power (or degree) of splines

Macros
r(knots) final list of knots
r(splist) varlist of generated splines
r(labfmt) format used in spline variable labels
r(labprefix) prefix used in spline variable labels
r(type) storage type of splines (float or double)
r(xvar) X variable specified by xvar() option

Matrices
r(knotv) row vector of knots

frencurv and flexcurv save all the above results in r() and also save the following:

Scalars
r(omit) omitted reference point specified by omit()
r(base) base reference point specified by base()

Macros
r(refpts) final list of reference points

Matrices
r(refv) row vector of reference points

The result r(nincomp) is the number of values of the xvar() variable outside the
completeness region of the space of splines defined by the reference splines or B-splines.
The number lists r(knots) and r(refpts) are the final lists after any left and right
extensions carried out by bspline, frencurv, or flexcurv; the vectors r(knotv) and
r(refv) contain the same values in double precision (mainly for programmers). The
scalars r(xinf) and r(xsup) are knots, such that the completeness region is r(xinf) ≤
x ≤ r(xsup) for positive-degree splines and r(xinf) ≤ x < r(xsup) for zero-degree
splines.

In addition, bspline, frencurv, and flexcurv save variable characteristics for the
output spline basis variables. The characteristic varname[xvar] is set by bspline,
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frencurv, and flexcurv to be equal to the input X variable name set by xvar(). The
characteristics varname[xinf] and varname[xsup] are set by bspline to be equal
to the infimum and supremum, respectively, of the interval of X values for which
the B-spline is nonzero. The characteristic varname[xvalue] is set by frencurv and
flexcurv to be equal to the reference point on the X axis corresponding to the reference
spline.

4 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the bspline package. Less mathematically minded readers may skip
or skim through this section and progress to the examples.

4.1 B-splines

By definition, a kth-degree spline is defined with reference to a set of q knots s1 < s2 <
· · · < sq, dividing the X axis into half-open intervals of the form [si, si+1). In each
of those intervals, the regression is a kth-degree polynomial in X (usually a different
one in each interval), but the polynomials in any two contiguous intervals have the
same jth derivatives at the knot separating the two intervals for j from 0 to k − 1. By
convention, the 0th derivative is the function itself, so a spline of degree 0 is simply a
right-continuous step function, and a first-degree spline is a simple linear interpolation
of values between the knots.

Splines can be defined using plus functions. For a power k and a knot s, the kth-
power plus function at s is defined as

Pk(x; s) =
{

(x− s)k, x ≥ s
0, x < s

In Stata, we can calculate the plus functions of power 1 corresponding to a sequence of
knots by using mkspline (see [R] mkspline) with the marginal option.

The plus functions are a basis for the space of splines: for any kth-degree spline S(·),
with knots s1 < s2 < · · · < sq, there exists a q-vector α such that for any x,

S(x) =
q∑

j=1

αjPk(x; sj) (1)

Based on (1), we might try to fit a spline model by creating a design matrix of plus
functions and estimating the αj . However, the high degree of correlation between the
plus functions may cause wide confidence intervals. Moreover, it is not easy to explain
to nonmathematical colleagues the parameters that these wide confidence intervals are
intended to estimate.
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B-splines are an alternative basis of the splines with a given set of knots, invented
to solve the first of these problems. Ziegler (1969) defines the B-spline for a set of k+2
knots s1 < s2 < · · · < sk+2 as

B(x; s1, . . . , sk+2) = (k + 1)
k+2∑
j=1

⎧⎨⎩ ∏
1≤h≤k+2,h�=j

(sh − sj)

⎫⎬⎭
−1

Pk(x; sj) (2)

The B-spline (2) is positive for x in the half-open interval [s1, sk+2) and is 0 for other x.
If the sj are part of an extended set of knots extending forward to +∞ and backward
to −∞, then the set of B-splines based on sets of k+ 2 consecutive knots forms a basis
of the set of all kth-degree splines defined on the full set of knots.

For the purposes of bspline, I have taken the liberty of redefining B-splines by
scaling the B(x; s1, . . . , sk+2) of (2) by a factor equal to the mean distance between two
consecutive knots to arrive at the scale-invariant B-spline

A(x; s1, . . . , sk+2) =
sk+2 − s1
k + 1

B(x; s1, . . . , sk+2){ ∑k+1
j=1

∏k+2
h=1 φjh(x), if s1 ≤ x < sk+2

0, otherwise
(3)

where the functions φjh(·) are defined by

φjh(x) =

⎧⎨⎩
1, if h = j
(sk+2 − s1)/(sh − sj), if h = j + 1
P1(x; sj)/(sh − sj), otherwise

The scaled B-spline (3) has the advantage that it is dimensionless, being a sum of
products of the dimensionless quantities φjh(x). That is to say, it is unaffected by
the scale of units of the X axis and therefore has the same values, whether x is time
in millennia or time in nanoseconds. By contrast, the original Ziegler B-spline (2) is
expressed in units of x−1. Therefore, if the scaled B-spline (3) appears in a design
matrix, then its regression coefficient is expressed in units of the Y variate; in contrast,
if the Ziegler B-spline (2) appears in a design matrix, then its regression coefficient is
expressed in Y units multiplied by X units and will be difficult to interpret—even for
a mathematician.

Given n data points, a Y variate, an X covariate, and a set of q+ k+ 1 consecutive
knots sh < · · · < sh+q < · · · < sh+q+k, we can regress the Y variate with respect to a
kth-degree spline in X by defining a design matrix V, with one row for each of the n
data points and one column for each of the first q knots, such that

Vij = A(Xi; sh+j−1, . . . , sh+j+k) (4)

We can then regress the Y variate with respect to the design matrix V and compute
a vector β of regression coefficients, such that Vβ is the fitted spline. The parameter
βj measures the contribution to the fitted spline of the B-spline originating at the knot
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sh+j−1 and terminating at the knot sh+j+k. There will be no stability problems such
as we are likely to have with the original plus-function basis because each B-spline is
bounded and localized in its effect.

It is important to define enough knots. If the sequence of knots {sj} extends to +∞
on the right and −∞ on the left, then the kth-degree B-splines A(·; sh+j−1, . . . , sh+j+k)
on sets of k+2 consecutive knots are a basis for the full space of kth-degree splines on the
full set of knots. If S(·) is one of these splines and [sj , sj+1) is an interval between con-
secutive knots, then the values of S(x) in the interval are affected by the k+1 B-splines
originating at the knots sj−k, . . . , sj and terminating at the knots sj+1, . . . , sj+k+1. It
follows that if we start by specifying a sequence of knots s0 < · · · < sm and we want to
fit a spline for values of x in the interval [s0, sm), then we must also use k extra knots
s−k < · · · < s−1 to the left of s0 and k extra knots sm+1 < · · · < sm+k to the right of
sm to define the m+k consecutive B-splines affecting S(x) for x in the interval [s0, sm).
These m+ k B-splines originate at the knots s−k, . . . , sm−1 and terminate at the knots
s1, . . . , sm+k, respectively. Any spline S(·) in the full space of kth-degree splines defined
using the full set of knots is equal to a linear combination of these m + k B-splines in
the interval [s0, sm] (in the case of positive-degree splines, which are continuous) or
[s0, sm) (in the case of zero-degree splines, which are only right-continuous). We will
refer to this interval as the completeness region for splines that are linear combinations
of these m + k B-splines. These linear combinations are 0 for x < s−k and x ≥ sm+k

and “incomplete” in the outer regions (s−k, s0) and (sm, sm+k) in which the spline is
“returning to 0”.

By default, bspline and frencurv assume that the knots() option specified by
the user is only intended to span the completeness region and that the specified knots
correspond to s0, . . . , sm. (flexcurv has no knots() option, because it defines its
own “sensibly spaced” knots, which are then input to frencurv.) By default, bspline
and frencurv generate k extra knots on the left, with spacing equal to the difference
between the first two knots, and k extra knots on the right, with spacing equal to the
difference between the last two knots. If the user specifies the option noexknot, then
bspline assumes that the user has specified the full set of knots, corresponding to s−k,
. . . , sm+k, and so does not generate any new knots.

4.2 Reference splines

If we have calculated the n× q matrix V of B-splines as in (4), and we also have a set
of q reference X values r1 < r2 < · · · < rq, then we might prefer to reparameterize the
spline by its values at the rj . To do this, we first calculate a q × q square matrix W,
defined such that

Wij = A(ri; sh+j−1, . . . , sh+j+k) (5)

the value of the jth B-spline at the ith reference point. If β is the column vector of
regression coefficients with respect to the B-splines in V, and γ is the column vector of
values of the spline at the reference points, then it follows that

γ = Wβ
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If W is invertible, then the vector of values of the fitted spline at the data points is

Vβ = VW−1Wβ = VW−1γ = Zγ (6)

where Z = VW−1 is a transformed design matrix whose columns contain values of a
set of reference splines for the estimation of the reference-point spline values γ.

Note that the argument of (6) will still apply whether V and Z are matrices of
discrete column vectors or matrices of continuous functions on the real line. In addition,
the argument still applies if V is a spline basis other than a B-spline basis, for example, a
restricted “natural” spline basis of the kind discussed by Royston and Sauerbrei (2007).

The choice of reference points and knots is open to the user and constrained mainly
by the requirement that the matrix W is invertible. This implies that each of the q B-
splines must be positive for at least one of the q reference values and that each reference
value must have at least one positive B-spline value. With the aim of satisfying this
requirement, frencurv and flexcurv both start with a list of reference points and (at
least by default) choose the knots accordingly.

4.3 Knot choice by frencurv

In the default method used by frencurv (if the user provides no knots() option), we try
to create a one-to-one correspondence between the reference points and the B-splines,
with the feature that each reference point is in the middle of the nonzero range of its
corresponding B-spline. This is done by ensuring that each reference point is equal
to the central knot of its B-spline in the case of odd-degree splines (such as linear,
cubic, or quintic splines) and in between the two central knots of its B-spline in the
case of even-degree splines (such as step, quadratic, or quartic splines). This choice
means that for a spline of degree k, there will be int(k/2) reference points outside the
spline’s completeness region on the left and another int(k/2) reference points outside
the spline’s completeness region on the right, where int(·) is the truncation (or “integer-
part”) function. The parameters corresponding to these “extra” reference points will
not be easy to explain to nonmathematicians: they describe the behavior of the spline
as it returns to 0 outside its completeness region. However, for a quadratic or cubic
spline, there is only one such external reference Y value at each end of the completeness
region.

By default, frencurv starts with the reference points originally provided and chooses
knots “appropriately”. For an odd-degree spline, the knots are initialized to the original
reference points themselves. For an even-degree spline, the knots are initialized to mid-
points corresponding to the original reference points as follows. If the original reference
points are r1 < · · · < rm, then the original knots s0 < · · · < sm are initialized to

sj =

⎧⎨⎩
r1 − (r2 − r1)/2, if j = 0
(rj + rj+1)/2, if 1 ≤ j ≤ m− 1
rm + (rm − rm−1)/2, if j = m

frencurv assumes by default that the reference points initially provided are all in the
completeness region and adds int(k/2) extra reference points to the left, spaced by
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the difference between the first two original reference points, and adds int(k/2) extra
reference points to the right, spaced by the difference between the last two original
reference points, where k is specified by the power() option. If noexref is specified,
then the original refpts() list is assumed to be the complete list of reference points,
and it is the user’s responsibility to choose sensible ones. In either case, the original
knots are extended on the left and right as described above unless noexknot is specified.

4.4 Knot choice by flexcurv

flexcurv uses an alternative method to define knots from reference points that guar-
antees that the reference points, the values of the X variable specified by xvar(), and
(optionally) a list of other X values specified by the include() option will be in the
completeness region of the generated spline basis. It also guarantees that the knots will
be “sensibly” spaced, using a definition of sensibility specified by the krule() option.

Suppose that the user provides q reference points r1, . . . , rq in the refpts() option.
flexcurv first calculates the numbers xinf and xsup as the minimum and maximum,
respectively, of all values present in the xvar() variable, the refpts() list, or the
include() list. The numbers xinf and xsup will be the infimum and the supremum,
respectively, of the completeness region of the spline basis. The number of intervals
between adjacent knots in and bordering the completeness region is then m = q − k.
The original knots in and bordering the completeness region are s0, . . . , sm.

If the user specifies krule(regular) (the default), then these sj are spaced regularly
and defined by the simple formula

sj =
j

m
xsup +

m− j

m
xinf

If the user specifies krule(interpolate), then these sj are interpolated between the
reference points using a more complicated formula. If the spline power k is 0, we define
s0 = xinf , sm = xsup, and sj = rj+1 for other j. Otherwise, we first define, for each j
from 0 to m,

σ(j) = 1 + j(q − 1)/m, π(j) = int {σ(j)} , ρ(j) = σ(j) − π(j)

We then define the sj as

sj =

⎧⎨⎩
xinf , j = 0
xsup, j = m
{1 − ρ(j)} rπ(j) + ρ(j) rπ(j)+1, otherwise

(7)

This formula ensures that the knots sj are interpolated between the reference points in a
way that will be regularly spaced if the reference points themselves are regularly spaced
from r1 = xinf to rq = xsup. However, if the reference points are not regularly spaced,
then the user can specify krule(interpolate) to ensure that the reference splines will
still be definable, which may not be the case if the user specifies krule(regular) with
irregularly spaced reference points.
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flexcurv then calls frencurv to generate the reference splines, with the reference
points r1, . . . , rq as the refpts() option, with the knots s0, . . . , sm as the knots()
option, with the noexref option, but without the noexknot option. This implies that
whichever krule() option is specified, any extra knots to the left of the completeness
region will be regularly spaced by the distance between the first two internal knots,
and any extra knots to the right of the completeness region will be regularly spaced by
the distance between the last two internal knots. krule(regular) specifies that the
knots inside and outside the completeness region are regularly spaced; thus any pair of
adjacent knots inside or outside the completeness region is separated by (xsup−xinf)/m
x-axis units. Both krule() options result in the generation of a basis of q reference
splines corresponding to the respective reference points, with a completeness region
xinf ≤ x ≤ xsup (for positive-degree splines) or xinf ≤ x < xsup (for zero-degree splines).
In the case of zero-degree splines, the user must specify xsup in the include() option as a
number strictly greater than any reference points and xvar() values: xsup is outside the
completeness region for a zero-degree spline, which is a right-continuous step function
with discontinuities at its knots, which include xsup.

4.5 The omit() and base() options

From the definition of a reference spline basis as a basis of its corresponding spline
space, it follows that each reference spline is equal to 1 at its own reference point and
equal to 0 at all other reference points. In more formal language, if we consider the
matrix Z of reference splines in (6) and suppose that for some reference point rh and
some i from 1 to n, Xi = rh, then it follows that for each jth column of Z,

Zij =
{

1, j = h
0, j �= h

(8)

(This follows because column h of Z is in the spline space spanned by Z, with the hth
coordinate 1 and all other coordinates 0; because the sum of columns h and j is in
the same spline space, with the hth and jth coordinates 1 and all other coordinates 0;
and because both of these splines are 1 where Xi = rh. Graphic examples of reference
splines of degrees 0 to 3 that illustrate this property are given in Newson [2011].)

Because the unit function is itself a spline (of any degree), it follows that its coor-
dinates in the reference splines must all be 1, implying that a basis of reference splines
must sum to 1, at least in the completeness region of their spline space.

A consequence of these properties is that if we start with a basis of reference splines,
exclude a reference spline corresponding to a base reference point rb, and include the
unit function, then the resulting set of splines is an alternative basis of the same spline
space. Any spline S(·) in that spline space will have coordinates in this alternative
basis. The coordinate of S(·) in the unit function will be equal to S(rb), whereas the
coordinate of S(·) in any of the surviving reference splines corresponding to another
reference point rj will be equal to S(rj) − S(rb).
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It follows that we can replace a baseline column b of Z with a unit vector to derive an
alternative design matrix Z[b]. This alternative design matrix can be defined formally
as

Z[b]
ij =

{
1, j = b
Zij , otherwise (9)

If this design matrix is used by an estimation command, then the parameter corre-
sponding to the unit vector will be the intercept parameter cons, equal to the value
of the spline at the base reference point rb; the other parameters will be differences
between the value of the spline at the reference point rh and the value of the spline at
the base reference point rb, for h �= b. Therefore, reference splines play the same role for
continuous “X factors” that indicator (or “dummy”) variables play for discrete factors.
(These indicator variables are generated by the xi: prefix in Stata 10 and, in virtual
form, by factor varlists in Stata 11 or higher. They are really reference splines of degree
0, with integer reference points and knots.)

To perform the substitution (9), flexcurv and frencurv have an option omit() for
users of Stata 10, which causes the base reference spline to be dropped, and an option
base() for users of Stata 11 or higher, which causes the base reference spline to be set
to 0. In either case, the reference splines can be included in the design matrix of an
estimation command. In this case, we do not use the noconstant option, because we
want to add the unit vector to the design matrix.

4.6 Multivariate splines and interactions

Reference splines are a generalization to continuous factors of indicator functions for
discrete factors. This generalization extends to multifactor models, whose parameters
frequently include conditional means for combinations of discrete factor levels or even
“interactions”, defined informally as “differences between differences”. (More formally,
interactions are defined recursively; thus an interaction of order 0 is a difference, and
an interaction of order k + 1 is a difference between interactions of order k.)

Multifactor models frequently use product bases, derived from two or more input
bases of indicator functions and then included in a design matrix. The product bases
are created by a matrix operator, which we will call the factor-product operator. Given
an n× q matrix F and an n× p matrix G, this operator

⊗
is defined as

F
⊗

G =
q⊕

j=1

(F∗j:*G) (10)
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where
⊕

is the multifold version of the horizontal matrix concatenation operator rep-
resented by the comma operator in Mata (see [M-2] op join), :* is the elementwise
product operator represented by :* in Mata (see [M-2] op colon), and F∗j represents
the jth column of F. The factor-product operator

⊗
corresponds to the * operator in

xi: interaction varlists or to the # operator in factor varlists in Stata 11 or higher. It
can also be implemented for a pair of Stata input variable lists by using the prodvars
package, downloadable from SSC, which generates the output matrix as a list of new
variables.

The factor-product operator is traditionally applied to matrices of factor-level iden-
tifier variables, but it may equally be applied in the same way to matrices of reference
splines. To see this, we will replace F in (10) with the matrices Z of (6) and Z[b] of
(9) and suppose that G is an arbitrary design submatrix of arbitrary covariates, which
may or may not include a unit vector.

We first consider the case F = Z and its factor-product Z
⊗

G. We imagine that
this factor-product matrix is applied to a column vector of parameters:

ζ =
q⊙

j=1

ζ(j)

where
⊙

is the multifold version of the vertical matrix concatenation operator repre-
sented by \ in Mata (see [M-2] op join) and each ζ(j) is a column vector of p parame-
ters corresponding to the columns of G. For a reference point rh, if the ith X value is
Xi = rh, then it follows from (8) that for each j,

(Z∗j:*G)ij =
{

Gij , j = h
0, j �= h

(11)

It follows that the column vector ζ(h) is a vector of parameters corresponding to the
covariates in G for a special model in force when the X variate is equal to the reference
point rh. Therefore, the full parameter vector ζ is a combined vector of parameters
for a composite model derived from q submodels, each corresponding to X values equal
to one of the q reference points. The composite model predicts interpolated values at
nonreference X values, and Z

⊗
G is its design matrix.

We now consider the case F = Z[b] and its factor-product Z[b]
⊗

G. We assume
that the corresponding parameter vector is ξ =

⊙q
j=1 ξ

(j), where each ξ(j) is a column
vector of p parameters. This time, one reference point rb is the base reference point,
and (9) implies that the corresponding submatrix Z∗b:*G is a copy of G. The other jth
submatrices conform to (11) for rows i, in which the X value Xi is equal to a reference
point rh. It follows that for any such row i, we have the identity{(

Z[b]
⊗

G
)
ξ
}

i
=

{ (
Gξ(b)

)
i
, h = b(

Gξ(b)
)
i
+
(
Gξ(h)

)
i
, h �= b

In other words, the parameters ξ(b) belong to a submodel with design matrix G for
rows i where Xi = rb. The parameters ξ(h), where h �= b, are differences between the
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parameters of a submodel with the design matrix G for rows i where Xi = rh and the
corresponding parameters of the submodel with the same design matrix G for rows i
where Xi = rb.

Because ζ and ξ are alternative parameterizations of the same supermodel, it follows
(at least if the factor-product columns are linearly independent) that for each j from 1
to q, the parameters conform to the relation

ξ(j) =
{
ζ(b), j = b
ζ(j) − ζ(b), j �= b

So if the ζ parameters are means, then the corresponding ξ parameters are differences.
And if the ζ parameters are differences, then the corresponding ξ parameters are “in-
teractions”.

We see that reference-spline bases (whether or not they are modified to include a
unit vector) can be combined nonadditively (or “interactively”) to form factor-product
bases in the same way that identifier variable bases can be combined. Note that the
matrix G may also contain reference splines in variables other than X, allowing the
possibility of nonadditive multivariate splines. Alternatively, reference splines may be
combined with other covariates in an additive (or “noninteractive”) way.

5 Examples

These examples demonstrate the easy-to-use flexcurv command and are distributed
in the file example1.do, which is part of the online material for this article. The
more comprehensive bspline and frencurv commands are tools for special occasions,
especially when the user has a reason for choosing a certain set of knots. Examples for
these commands appear in the online help and in the manual bspline.pdf, distributed
with the package as an ancillary file.

5.1 The cubic spline of figure 2

Let’s first look at the cubic spline illustrated in the lower right subgraph of figure 2.
After loading auto.dta, we generate the spline basis as follows:

. sysuse auto
(1978 Automobile Data)

. flexcurv, xvar(weight) power(3) refpts(1500(900)5100) generate(cs_)

. describe cs_*

storage display value
variable name type format label variable label

cs_1 float %8.4f Spline at 1,500
cs_2 float %8.4f Spline at 2,400
cs_3 float %8.4f Spline at 3,300
cs_4 float %8.4f Spline at 4,200
cs_5 float %8.4f Spline at 5,100
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We see that the five cubic reference splines cs 1 to cs 5 have variable labels that
inform the user of the reference point to which each reference spline corresponds. We
then fit the regression model as follows, using the noconstant option:

. regress mpg cs_*, noconstant noheader

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

cs_1 33.86387 3.733922 9.07 0.000 26.4149 41.31284
cs_2 24.6141 .7811342 31.51 0.000 23.05578 26.17242
cs_3 18.79659 .6841035 27.48 0.000 17.43184 20.16134
cs_4 15.47252 1.113113 13.90 0.000 13.25191 17.69312
cs_5 10.05772 5.322653 1.89 0.063 -.5606797 20.67613

The parameters corresponding to the reference splines are the values of the spline
at the corresponding reference points.

Alternatively, we could fit the same model with a different parameterization, with
an intercept equal to the mileage expected at the central reference point of 3,300 U.S.
pounds and with effects on mileage of weights equal to the other reference points. This
is done using the base() option to generate a slightly different spline basis and then
using regress without the noconstant option:

. flexcurv, xvar(weight) power(3) refpts(1500(900)5100) base(3300)
> generate(bcs_)

. describe bcs_*

storage display value
variable name type format label variable label

bcs_1 float %8.4f Spline at 1,500
bcs_2 float %8.4f Spline at 2,400
bcs_3 byte %8.4f Spline at 3,300
bcs_4 float %8.4f Spline at 4,200
bcs_5 float %8.4f Spline at 5,100

. regress mpg bcs_*, noheader
note: bcs_3 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bcs_1 15.06729 3.577033 4.21 0.000 7.931301 22.20327
bcs_2 5.817516 1.078029 5.40 0.000 3.666908 7.968124
bcs_3 0 (omitted)
bcs_4 -3.324069 1.438353 -2.31 0.024 -6.193505 -.4546328
bcs_5 -8.738858 5.192156 -1.68 0.097 -19.09693 1.61921
_cons 18.79659 .684103 27.48 0.000 17.43184 20.16134

The spline bcs 3 has storage type byte because it corresponds to the base reference
weight of 3,300 U.S. pounds. It has therefore been set to 0 and compressed. regress
then omits the corresponding parameter because of collinearity, leaving an intercept (a
mileage) and the effects of the other reference weights (mileage differences).
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5.2 Polynomials as splines

By the definition of a spline, a polynomial limited to a bounded interval is a special case
of a spline, with knots at the boundaries. And all polynomials fit to real-world data by
real-world scientists are restricted to bounded intervals.

It is well known that a degree-k polynomial can be specified by k+1 bivariate points
on the curve, each containing a reference point on the X axis and its corresponding
Y value. flexcurv can implement this specification method, with the possibility of
confidence intervals for the reference Y values. These reference Y values are easier
to explain to nonmathematical colleagues than the usual parameters for a polynomial
model.

In auto.dta, we might use flexcurv to regress mpg with respect to weight, using
a quadratic model, as follows:

. flexcurv, xvar(weight) power(2) refpts(2000 3000 4000) generate(qs_)

. describe qs_*

storage display value
variable name type format label variable label

qs_1 float %8.4f Spline at 2,000
qs_2 float %8.4f Spline at 3,000
qs_3 float %8.4f Spline at 4,000

. regress mpg qs_*, noconstant noheader

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

qs_1 28.16455 .7356117 38.29 0.000 26.69779 29.63132
qs_2 20.62851 .5388504 38.28 0.000 19.55407 21.70295
qs_3 15.74126 .6508289 24.19 0.000 14.44354 17.03897

We start by using flexcurv to generate a basis of three quadratic reference splines
in weight at reference points 2,000, 3,000, and 4,000 U.S. pounds and then describe
them. Again, each reference spline has a variable label in case the user forgets its
reference point. Then we use regress with the noconstant option to estimate the
values (in miles per gallon) of the quadratic polynomial at these reference points. These
parameters are easier to understand than the ones provided if we fit the same quadratic
model using the command regress mpg c.weight c.weight#c.weight, nohead (not
shown). The fitted and observed values, as well as the estimates and confidence limits
for the parameters, are plotted in figure 3, which was produced using the SSC packages
parmest and eclplot (Newson 2003).
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Figure 3. Quadratic regression of mpg with respect to weight

We can also fit the same model with a third parameterization, namely, the base level
of mpg for cars weighing 2,000 pounds and the effects on mpg of increasing the weight
to 3,000 and 4,000 pounds, respectively:

. flexcurv, xvar(weight) power(2) refpts(2000 3000 4000) base(2000)
> generate(bqs_)

. describe bqs_*

storage display value
variable name type format label variable label

bqs_1 byte %8.4f Spline at 2,000
bqs_2 float %8.4f Spline at 3,000
bqs_3 float %8.4f Spline at 4,000

. regress mpg bqs_*, noheader
note: bqs_1 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bqs_1 0 (omitted)
bqs_2 -7.536052 .8812637 -8.55 0.000 -9.293242 -5.778862
bqs_3 -12.4233 1.029623 -12.07 0.000 -14.47631 -10.37029
_cons 28.16456 .7356117 38.29 0.000 26.69779 29.63133

This time, the spline bqs 1 at 2,000 pounds has storage type byte because it repre-
sents the base() option. It has therefore been set to 0 and compressed. The regress
command is called without the noconstant option and outputs a parameter cons,
equal to the base mileage of 28.16 miles per gallon expected for 2,000-pound cars; an
omitted parameter for bqs 1 representing the zero-effect of this base mileage (with 0
confidence limits); and the two negative effects on mileage of increasing the weight to
3,000 and 4,000 pounds.
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Of course, we can add other terms to this model to represent the additive (or “non-
interactive”) effects of other covariates or factors, such as the binary variable foreign,
indicating non-U.S. origin:

. regress mpg foreign bqs_*, nohead
note: bqs_1 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign -2.2035 1.059246 -2.08 0.041 -4.316101 -.0908999
bqs_1 0 (omitted)
bqs_2 -8.617167 1.005957 -8.57 0.000 -10.62349 -6.610849
bqs_3 -14.05203 1.275017 -11.02 0.000 -16.59497 -11.50909
_cons 29.75756 1.050386 28.33 0.000 27.66263 31.85249

The parameter for foreign is negative and tells the familiar auto.dta story that
non-U.S. cars travel fewer miles per gallon (on average) than U.S. cars of the same
weight, although U.S. cars are usually heavier than non-U.S. cars.

5.3 Linear splines with unevenly spaced reference points

We might fit a linear spline to the same data, with the reference points unevenly spaced.
If splines are linear or reference points are unevenly spaced, then it is a good idea to
use the option krule(interpolate) for two reasons. First, if the spline is linear, then
(7) ensures that each reference point will also be a knot, with the possible exceptions
of the first and last reference points if the completeness region extends beyond these.
Second, if the reference points are unevenly spaced, then (7) ensures that the reference
splines will exist because the matrix W of (5) will have no 0 rows or columns, which it
might have (and therefore be singular) if we use the default krule(regular).
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We might fit a linear spline as follows:

. flexcurv, xvar(weight) power(1) krule(interpolate)
> refpts(1500 2000 2500 3000 4000 5000) generate(ls_)

. describe ls_*

storage display value
variable name type format label variable label

ls_1 float %8.4f Spline at 1,500
ls_2 float %8.4f Spline at 2,000
ls_3 float %8.4f Spline at 2,500
ls_4 float %8.4f Spline at 3,000
ls_5 float %8.4f Spline at 4,000
ls_6 float %8.4f Spline at 5,000

. regress mpg ls_*, noconstant noheader

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

ls_1 26.34741 4.410006 5.97 0.000 17.54738 35.14744
ls_2 30.16913 1.149293 26.25 0.000 27.87575 32.46251
ls_3 21.69784 1.32861 16.33 0.000 19.04664 24.34904
ls_4 20.9661 1.096847 19.11 0.000 18.77738 23.15483
ls_5 15.56144 1.071791 14.52 0.000 13.42271 17.70016
ls_6 12.45729 2.860836 4.35 0.000 6.748579 18.166

The fitted and observed values for this model and confidence intervals for the pa-
rameters are displayed in figure 4. The first and last reference points are below the
minimum and above the maximum car weight, respectively, so the reference points are
also the knots, and the fitted values are interpolated linearly between them.
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Figure 4. Linear spline regression of mpg with respect to weight



R. B. Newson 501

We might reparameterize the same model to measure differences between the spline
at each reference point and the spline at the base reference point, which we will set to
the “midrange” value of 3,000 pounds:

. flexcurv, xvar(weight) power(1) krule(interpolate)
> refpts(1500 2000 2500 3000 4000 5000) base(3000) generate(bls_)

. describe bls_*

storage display value
variable name type format label variable label

bls_1 float %8.4f Spline at 1,500
bls_2 float %8.4f Spline at 2,000
bls_3 float %8.4f Spline at 2,500
bls_4 byte %8.4f Spline at 3,000
bls_5 float %8.4f Spline at 4,000
bls_6 float %8.4f Spline at 5,000

. regress mpg bls_*, noheader
note: bls_4 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bls_1 5.381306 4.590998 1.17 0.245 -3.779888 14.5425
bls_2 9.203024 1.505075 6.11 0.000 6.199692 12.20636
bls_3 .7317385 1.968027 0.37 0.711 -3.195399 4.658876
bls_4 0 (omitted)
bls_5 -5.404668 1.872296 -2.89 0.005 -9.140777 -1.66856
bls_6 -8.508816 2.918556 -2.92 0.005 -14.3327 -2.684928
_cons 20.9661 1.096847 19.11 0.000 18.77738 23.15483

There are alternative parameterizations of linear splines that also produce sensible
parameters. The mkspline package of official Stata generates a basis of linear splines
whose corresponding parameters are either the local slopes in the intervals between knots
or the differences between pairs of these local slopes in consecutive intervals between
knots. See mkspline (see [R] mkspline) for the practical details of this method.

5.4 Multifactor cubic splines

We might also fit a multifactor model. If we add the binary factor variable odd—created
by typing generate odd=mod( n,2), and equal to 1 for odd-numbered cars and to 0
for even-numbered cars—then we might want to measure separate effects of car weight
on car mileage in odd-numbered and even-numbered cars by using a two-factor model,
with weight as a continuous factor and odd as a discrete factor. To do this, we use
factor-product bases, as we would if we had two discrete factors.

Two useful packages for this purpose are prodvars and fvprevar, both download-
able from SSC. The prodvars package inputs two varlists, which function as the columns
of F and G, respectively, in (10), and outputs the factor-product matrix in a generated
newvarlist, with names or labels or characteristics generated by user-specified rules. The
fvprevar package is an alternative version of the fvrevar command (see [R] fvrevar)
of official Stata and functions as an updated version of the xi: prefix (see [R] xi) of
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Stata 10. Like fvrevar, fvprevar inputs a factor varlist. However, unlike fvrevar, it
generates an output list of permanent variables instead of an output list of temporary
variables. These permanent output variables can then be input to prodvars with a list
of reference splines to generate a product-variable list of “interaction” reference splines.

In our case, we might start by using flexcurv to generate a list of cubic reference
splines a *, whose corresponding parameters might be differences in mileage between
cars with a nonbase reference weight and cars with a base reference weight of 1,760 U.S.
pounds:

. flexcurv, xvar(weight) power(3) refpts(1760(616)4840) base(1760)
> generate(a_) labprefix(weight==) labfmt(%9.0g)

. describe a_*

storage display value
variable name type format label variable label

a_1 byte %8.4f weight==1760
a_2 float %8.4f weight==2376
a_3 float %8.4f weight==2992
a_4 float %8.4f weight==3608
a_5 float %8.4f weight==4224
a_6 float %8.4f weight==4840

(Note the use of the labprefix() option to specify a nonstandard prefix for the
spline variable labels and of the labfmt() option to eliminate the commas from the
reference-point values in these labels.) We then use fvprevar to generate a list of
indicator (or “dummy”) variables indicating even-numbered and odd-numbered cars:

. fvprevar ibn.odd, generate(b_)

. describe b_*

storage display value
variable name type format label variable label

b_1 byte %9.0g 0bn.odd
b_2 byte %9.0g 1.odd

The generated output variables b *, specified by the generate() option, have vari-
able labels indicating the expanded factor varlist elements to which they correspond.
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We can now use prodvars to input the two lists of variables a * and b *, which
play the role of F and G, respectively, in (10), generating a list of output variables c *,
which contain the factor-product variables:

. prodvars a_*, rvarlist(b_*) generate(c_) lseparator(" & ")

. describe c_*

storage display value
variable name type format label variable label

c_1 byte %10.0g weight==1760 & 0bn.odd
c_2 byte %10.0g weight==1760 & 1.odd
c_3 double %10.0g weight==2376 & 0bn.odd
c_4 double %10.0g weight==2376 & 1.odd
c_5 double %10.0g weight==2992 & 0bn.odd
c_6 double %10.0g weight==2992 & 1.odd
c_7 double %10.0g weight==3608 & 0bn.odd
c_8 double %10.0g weight==3608 & 1.odd
c_9 double %10.0g weight==4224 & 0bn.odd
c_10 double %10.0g weight==4224 & 1.odd
c_11 double %10.0g weight==4840 & 0bn.odd
c_12 double %10.0g weight==4840 & 1.odd

We see that prodvars acts similarly to the # operator in factor varlists in Stata 11
and above or to the * operator used in xi: varlists. In a manner similar to xi:, we
have used the option lseparator(" & ") to separate semi-informative variable labels
for the output variables from the variable labels for the input variables.

We can now enter the variables b * and c * into an equal-variance regression model,
this time with the noconstant option, because the two intercept terms b * for even-
numbered and odd-numbered cars provide the intercept parameters:

. regress mpg b_* c_*, noconstant noheader
note: c_1 omitted because of collinearity
note: c_2 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

b_1 28.16762 2.45977 11.45 0.000 23.25061 33.08464
b_2 32.52757 2.930847 11.10 0.000 26.66888 38.38625
c_1 0 (omitted)
c_2 0 (omitted)
c_3 -3.003417 2.99441 -1.00 0.320 -8.989156 2.982323
c_4 -7.31852 3.681023 -1.99 0.051 -14.67678 .0397399
c_5 -6.786187 2.593622 -2.62 0.011 -11.97076 -1.60161
c_6 -13.3264 2.794913 -4.77 0.000 -18.91335 -7.739447
c_7 -11.25077 2.805387 -4.01 0.000 -16.85866 -5.642884
c_8 -14.66254 3.240914 -4.52 0.000 -21.14103 -8.184041
c_9 -15.833 4.438494 -3.57 0.001 -24.70542 -6.960573

c_10 -16.29373 3.214685 -5.07 0.000 -22.71979 -9.867662
c_11 -16.1599 4.192831 -3.85 0.000 -24.54125 -7.778546
c_12 -21.5878 6.441925 -3.35 0.001 -34.46502 -8.710573

The parameters c 1 and c 2 are the omitted zero-effects on mpg of the baseline
weight of 1,760 pounds, whereas the other c * parameters are the negative effects on
mpg of higher weights for even-numbered and odd-numbered cars listed primarily by
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ascending weight and secondarily by ascending oddness within each weight. Note that
we could have had ibn.odd instead of b * in the regress command, producing the
same estimates for the same parameters.
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