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Abstract. Despite their frequent use in applied work, nonparametric approaches
to efficiency analysis—namely, data envelopment analysis and free disposal hull—
have bad reputations among econometricians. This is mainly because data en-
velopment analysis and free disposal hull represent deterministic approaches that
are highly sensitive to outliers and measurement errors. However, so-called partial
frontier approaches have recently been developed, namely, order-m and order-
a. These approaches generalize free disposal hull by allowing for superefficient
observations to be located beyond the estimated production-possibility frontier.
Although these methods are also purely nonparametric, the sensitivity to outliers
is substantially reduced by partial frontier approaches enveloping just a subsample
of observations. In this article, I introduce the new Stata commands orderm and
orderalpha, which implement order-m, order-«, and free disposal hull efficiency
analysis in Stata. The commands allow for several options, such as statistical
inference based on subsampling bootstrapping.

Keywords: st0270, orderalpha, orderm, nonparametric, efficiency, partial frontier,
free disposal hull, outlier-robust, decision-making unit

1 Introduction

Countless empirical analyses address the efficiency of production units, which in the
relevant literature are frequently referred to as decision-making units (DMUs). There
are two major methodical approaches to efficiency measurement: parametric and non-
parametric approaches. Among the former, the most common are stochastic frontier
models (Aigner, Lovell, and Schmidt 1977), which augment a classical regression model
with a nonpositive error term, capturing inefficiency in production. Stochastic frontier
analysis is implemented in Stata by the frontier command.

In contrast, nonparametric approaches—data envelopment analysis (DEA), intro-
duced by Charnes, Cooper, and Rhodes (1978); and the free disposal hull (FDH), in-
troduced by Deprins, Simar, and Tulkens (1984)—are not embedded in a regression
framework familiar to econometricians. Rather, they are based on nonparametrically
enveloping a given sample of data with a piecewise linear hull. While DEA assumes
a convex technology and employs linear programming for enveloping the data, FDH is
based on the principle of weak dominance and departs from the convexity assumption
inherent in DEA. That is, FDH envelops the data with a nonconvex staircase-hull (see
Cooper, Seiford, and Tone [2007] for a comprehensive discussion of DEA and FDH). DEA

(© 2012 StataCorp LP st0270




462 Partial frontier efficiency analysis

has recently been made available to Stata users through the ado-file dea, written by
Yong-Bae Ji and Choonjoo Lee (Ji and Lee 2010).

The pros and cons of parametric and nonparametric approaches have been intensely
debated. The parametric approaches have been criticized for relying on restrictive
assumptions concerning the functional form and the distribution of random errors, for
relying on input quantities as explanatory (which in all likelihood are endogenous), and
for accommodating only single-output technologies.! The nonparametric approaches
have been criticized by econometricians for being deterministic approaches, lacking a
well-defined data-generating process, and, more relevant, for being extremely vulnerable
to outliers and measurement error.

The final objection to nonparametric efficiency measurement has recently been ad-
dressed by so-called partial frontier approaches, in particular, order-m (Cazals, Florens,
and Simar 2002) and order-a (Aragon, Daouia, and Thomas-Agnan 2005) efficiency.
These approaches generalize FDH by allowing for superefficient observations to be lo-
cated beyond the estimated production-possibility frontier.? Hence, the estimated fron-
tier will not entirely be shaped by few abnormal observations, which might represent
artifacts of measurement error. This renders partial frontier approaches less vulnerable
to outliers than DEA or FDH. This article contributes to nonparametric efficiency analy-
sis by introducing the new Stata commands orderm and orderalpha, which implement
order-m and order-c, respectively.

The following section sets out the framework of partial frontier efficiency analysis.
The syntax of orderalpha and orderm is described in section 3. Section 4 illustrates the
application of orderalpha and orderm with a simple example. Section 5 summarizes
and concludes the article.

2 The concept of partial frontier analysis

Consider a sample of N DMUs. A set of inputs to production (z;1,...,z;x) and a set
of outputs from production (y;1,...,y:r) is observed for each bMU, ¢ = 1,..., N. The
prime objective of efficiency measurement is to calculate an efficiency score ¢; for each
DMU. Typically, two variants are considered: 1) input-oriented efficiency 0", the fac-
tor by which input consumption of DMU ¢ can proportionally be reduced while leaving
outputs unchanged; and 2) output-oriented efficiency 6", the factor by which output
generation can be proportionally increased while leaving input consumption unchanged.
These concepts differ in terms of the direction in which the distance of an observed data
point from the efficiency frontier is measured. While input-oriented efficiency measures
the relative radial distance in input direction, output-oriented efficiency measures the

1. The latter two objections do not apply if a cost frontier rather than a production frontier is
estimated.

2. For partial frontier approaches, superefficiency has predominantly been discussed in the context of
dealing with outliers and measurement error. Yet with respect to DEA, for which superefficiency can
be achieved by excluding a DMU from its own reference set, several other uses of superefficiency
have been proposed, such as overcoming truncation problems and ranking efficient DMUs (see
Lovell and Rouse [2003]).
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relative radial distance in output direction.? For full frontier models for which all DMUs
are enveloped by the production-possibility frontier, 8;"" € (0, 1] and 65" € [1, 00) ap-
ply. That is, efficient DMUs are characterized by efficiency scores taking the value of 1,
while downward (input-oriented) and upward (output-oriented) deviations from unity
indicate inefficiency. In contrast, partial frontier approaches allow scores to exceed
(input-oriented) or to fall short of (output-oriented) the value of 1. To avoid redun-
dancies, in the following, we will focus on input-oriented efficiency. Yet, all arguments
below analogously apply to output-oriented efficiency.

2.1 The free disposal hull

Because partial frontier approaches generalize FDH, a short preliminary discussion of
the latter is required. Here (input-oriented) efficiency is estimated by comparing each
DMU, ¢ =1,..., N, with all other DMUs, j = 1,..., N, in the data that produce at least
as much of any output as DMU ¢. The set of peer DMUs in the sample that satisfy the
condition y;; > i; VI is denoted as B;. Among the peer DMUSs, the one that exhibits

minimum input consumption serves as a reference to i, and @f DH i calculated as relative
input use:*
. Ty
é\f PH — min { max (—2 (1)
jEB; | k=1,...K \ Tp;

DMUs that exhibit minimum input consumption among all their peers serve as their
own reference. For these DMUs, which span the estimated production-possibility fron-
tier, @; DH takes the value of 1. Unfortunately, even a single DMU in the data that ex-
hibits abnormally little—possibly misreported—input consumption renders inefficient
all other DMUs to which it is a peer. Thus FDH is highly sensitive to outliers and

measurement error.

2.2 Order-m efficiency

Order-m generalizes FDH by adding a layer of randomness to the computation of effi-
ciency scores. Rather than benchmarking a DMU by the best-performing peer in the
sample at hand, order-m is based on the idea of benchmarking the DMU by expected
best performance in a sample of m peers. In computational terms, order-m efficiency
follows a four-step procedure (Daraio and Simar 2007, 72):

3. One may consider other directions, too, yet these are the most common. Note that the estimated
production-possibility frontier is the same for input-oriented and output-oriented efficiency in full
frontier models (DEA and FDH). Nevertheless, DMUs that are located at the FDH frontier—but
not at one of its corners—are FDH efficient only in terms of either output-oriented or input-
oriented efficiency (compare to the discussion about “slack values” in the context of DEA). For
partial frontier models, the fitted frontier depends on direction.

4. Equation (1) focuses on calculating é\f DH from a given sample of data. This analogously ap-
plies to (2) and (3). For a more theory-oriented coverage of FDH, order-m, and order-a, see
Daraio and Simar (2007), pages 34, 68, and 72, respectively.
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1. From B;, a sample of m peer DMUs is randomly drawn with replacement.

ot

me

2. Pseudo-FDH efficiency is calculated using this artificial reference sample.

3. Steps 1 and 2 are repeated D times.
4. Order-m efficiency is calculated as the average of pseudo-FDH scores:

D

1

Ot =5 2 O™ (2)
d=1

Because of random resampling, in each replication d, DMU ¢ may or may not be
available as its own peer. For this reason, (input-oriented) order-m efficiency scores
may exceed the value of 1. Consequently, order-m allows for superefficient DMUs located
beyond the estimated production-possibility frontier. This is the key difference to FDH,
where a DMU is always available as its own peer, which rules out that relative input
consumption exceeds unity. Calculating order-m efficiency requires choosing values for
two parameters, D and m. While the choice of D is a pure matter of accuracy, where
improving accuracy comes at the expense of prolonged computing time, the choice of m
is critical. The smaller one makes the value for m, the larger is the share of superefficient
DMUs. For m — oo, order-m coincides with FDH; for m = N, superefficient DMUs may
still occur. Unlike FDH and order-«, there is no reference DMU for order-m that can
serve as a unique® benchmark for DMU i. One may, nevertheless, determine a pseudo-

reference DMU 7" as

.pref .
Ji = argmin
JEB;

Lkj HOM
max N ami
k=1,...,.K \ Tk;

2.3 Order-a efficiency

Order-a also generalizes FDH but in a different way. Rather than using minimum input
consumption among the available peers as a benchmark, order-« uses the (100 — a)th

percentile:
nOA _ Lkj
ot = oo Lo (52)) )

When a = 100, order-a coincides with FDH. When a < 100, some DMUs may be
classified as superefficient and not be enveloped by the estimated production-possibility
frontier. Just like m for order-m efficiency, a can be regarded as a tuning parameter that
determines the number of superefficient DMUs. Because calculating order-a efficiency
scores does not involve a resampling procedure, @A can be computed much faster than
69

me

5. For ties in the data, uniqueness may be violated for FDH and order-a.
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2.4 Graphical illustration

Figures 1 and 2 provide a graphical illustration of the nonparametric frontier approaches
discussed above. Figure 1 shows the generated® input use for 40 artificial DMUSs, which
are characterized by a two-inputs, single-output technology. The output level is uniform
across all DMUs. Hence, the production-possibility frontier represents an isoquant. For
36 DMUs, the data are generated using a Cobb—Douglas technology with random excess
use of inputs. The true Cobb—Douglas isoquant is displayed together with the artificial
observations. For four DMUs, input consumption is inconsistent with this technology,
exhibiting values that, according to the true frontier, are impossibly small. These DMUs
represent outliers or, alternatively, observations that suffer from severe measurement
error.

Po 0
." (]
L]
L[] 50
s
L J .. e
. 7
(] o 7
~ o 7
5 QQ//'/
o A*rle® L[]
c s
* e ’. ° o (]
< o
1 228 (] Y
//
7z a L]
s
// ‘
// ‘
'
°//
1o
T
input 1

° regular DMUs @ irregular DMUs (outliers)
true frontier

Figure 1. Scatterplot of input use and true production-possibility frontier (isoquant).
Source: The author’s own calculations based on artificial data.

In addition, figure 1 graphically illustrates the concept of input-oriented efficiency.
Consider DMU A, for instance. Here the true efficiency score 6" can graphically be
expressed as the ratio of two distances, W/ﬂ, where O denotes the origin. Hypo-
thetical efficient input consumption is related to its actually observed counterpart. Yet
because the true frontier is typically unknown, an estimate is required.

Figure 2 displays the frontiers estimated by DEA, FDH, order-«, and order-m. The
points at the estimated frontiers are constructed as observed input consumption scaled
by the relevant estimated efficiency score. For DEA and FDH, the irregular DMUs span
the estimated frontiers, rendering the rest of the DMUs highly inefficient. In fact, the
regular observations do not at all affect the frontiers estimated by DEA and FDH. In
contrast, order-a (o« = 95) and order-m (m = 12) allow the abnormal DMUs to be

6. The Stata do-file used for generating the data and the figures is available upon request.
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located outside the estimated production-possibility frontiers. To achieve this, order-«
and order-m use the information on the regular DMUs for estimating the frontier, which
in turn are compared with a more appropriate benchmark.

input 2

&

input 1
DEA order—a (95) true frontier
FDH order-m (12)

Figure 2. Nonparametrically estimated production-possibility frontiers (isoquants).
Source: The author’s own calculations based on artificial data.

2.5 Statistical inference

Bootstrapping allows for determining standard errors for efficiency scores obtained from
nonparametric efficiency analysis. However, because of the boundary estimation nature
of (full) frontier analysis, the naive bootstrap does not yield as consistent an approx-
imation of the desired sampling distribution. But subsampling bootstrapping, which
is based on bootstrap samples smaller than NV, is consistent for boundary estimation
(Daraio and Simar 2007, 57). Standard errors provided by orderalpha and orderm are
calculated using this method.” For relatively small values for o and m, the boundary na-
ture of the estimation procedure vanishes, and one may use the naive bootstrap instead.
Because calculating order-m efficiency scores already involves a resampling procedure,
bootstrapping orderm results in nested resampling, which—unless the sample is very
small—requires an enormous amount of computing time.

2.6 Partial frontier—based outlier detection

Partial frontier analysis can be used for detecting potential outliers in data meant for
subsequent nonparametric efficiency analysis by DEA or FDH (see Daraio and Simar

7. As suggested by Daraio and Simar (2007), the size of the bootstrap samples is determined as
int(N?), with 0.5 <t < 1.
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[2007, 79]). The suggested approach rests on 1) carrying out a series of partial frontier
analyses for different values of « or m; 2) plotting the share of superefficient DMUs
against « or m; and 3) identifying discontinuities in the resulting curve. Such discon-
tinuities point at those DMUs being outliers that are classified as superefficient for the
corresponding values of a and m. This procedure may also be used for determining
appropriate choices for a and m. The forthcoming® Stata command oaoutlier imple-
ments order-a-based outlier detection. Discussing oaoutlier in detail goes beyond the
scope of this article.

3 The orderalpha and orderm commands

orderalpha and orderm require Stata 11.1 or higher. weights and prefix commands
such as bootstrap, by, and svy are not allowed. The number of DMUs is limited to the
value of matsize. For orderm, the maximum allowed number of DMUs may further be
reduced if bootstrapping is requested or a large value is specified for m.

3.1 Syntax for orderalpha

The syntax for the orderalpha command is

orderalpha warlist! = varlist2 [zf] [m] [, dmu (varname) ort(input |output)
@ha(#) bootstrap reps(#) tune(#) level(#) table(full|scores)

dots(1|2) invert generate(newvarlist) replace nogenerate]

where varlist1 specifies inputs to production and varlist2 specifies outputs from produc-
tion. Both lists of variables must be mutually exclusive. At least one input variable
and one output variable are required. Any variable in varlist! and varlist2 needs to be
numeric and strictly positive. DMUs with missing or nonpositive values in any input
variable or output variable are dropped.

3.2 Options for orderalpha

dmu (varname) specifies an identifier for the considered DMUSs. wvarname must uniquely
identify DMUs. It may be either a numeric or a string variable. If no identifier
is specified, the observation number _n is used. To make estimation results easily
accessible and result tables informative, one should choose an informative variable
name such as the real names of the DMUs.

ort (input | output) specifies whether input or output efficiency is computed. The
default is ort(input). For the former, inefficiency is defined in terms of possible
proportional reduction in input consumption. For the latter, inefficiency is defined

8. A beta version of oaoutlier is available at
http://www.stata.com/meeting/germanyl1/abstracts.html.
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in terms of possible proportional increase in output generation. For ort (input),
efficiency scores are smaller than 1 for inefficient DMUSs; for ort (output), efficiency
scores are greater than 1 for inefficient DMUs unless the invert option is specified.
Efficient DMUs in either case are indicated by efficiency scores taking the value 1.
Superefficient DMUs located beyond the estimated production-possibility frontier
exhibit input-oriented efficiency greater than 1 and output-oriented efficiency smaller
than unity.

alpha(#) specifies the #th percentile as benchmark. The default is alpha(100), that
is, FDH. Specified values smaller than unity are still interpreted in terms of per-
centiles, not quantiles. Values outside (0, 100] are not allowed.

bootstrap invokes bootstrapping using 100 replications. If neither bootstrap nor
reps () is specified, orderalpha does not compute standard errors for the estimated
efficiency scores. The bootstrap will fail in determining nonzero standard errors for a
DMU for which no (or only few) peers are available in the sample apart from the DMU
itself. For large samples, bootstrapping generates a huge N x N variance—covariance
matrix and requires substantial computing time, which quadratically increases in N.

reps(#) is equivalent to option bootstrap, except it allows for choosing the number
of bootstrap replications.

tune (#) determines the size of the bootstrap samples as int(N7#). Values within
the [0.5,1] interval are allowed. Subsampling is applied to account for the naive
bootstrap being inconsistent in a boundary estimation framework. The boundary
nature of the estimation problem vanishes as alpha() departs from 100. For val-
ues of alpha() substantially smaller than 100, one may apply the naive bootstrap,
tune(1). For FDH, the specified value should be smaller than unity. The default is
tune ({1 + exp(50 — «/2)}/{2 + exp(50 — «/2)}). This is equal to 2/3 for FDH.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is 1level (95) or as set by set level.

table(full |scores) invokes the display of a results table. For table(scores), es-
timated efficiency scores are displayed as if they were regression coefficients. For
table(full), efficiency ranks and reference DMUs are also displayed. Displayed re-
sults are sorted by the values of varname. orderalpha may generate a huge table
because N scores are computed. For this reason, suppressing table display is the
default. table(full) is not allowed for N > 2994 and cannot be redisplayed by
typing orderalpha without arguments.

dots(1]2) invokes a display of replication dots and loop dots. For dots(1), one dot
character is displayed for each bootstrap replication. For dots(2), one dot character
is also displayed for each DMU being analyzed. Type 2 dots are not displayed during
bootstrap replications.
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invert enables output-oriented efficiency to be reported analogously to input-oriented
efficiency by taking the reciprocal: with invert specified, inefficient DMUs exhibit
efficiency scores smaller than 1, regardless of how ort () is specified. invert has no
effect on input-oriented efficiency.

generate (newvarlist) specifies the names of new variables containing estimation re-
sults. newwvarlist may consist of up to three names. newvar! denotes estimated
efficiency scores, newvar2 denotes efficiency ranks, and newvar3 denotes the refer-
ence DMU. If—Dbecause of ties in the data—more than one reference DMU is iden-
tified for some DMUSs, further variables newvar3_2, newvar3.3, ... are created. If
generate() is not specified or fewer than three names are assigned, the default
names are _oa_ort_alpha, _oarank ort_alpha, and _oaref ort_alpha. For FDH,
the default names are _fdh_ort, fdhrank ort, and _fdhref _ort.

replace specifies that existing variables named newvarl, newvar2, or newvar3 be re-
placed.

nogenerate specifies that results not be saved to new variables.

3.3 Saved results for orderalpha

orderalpha saves the following in e():

Scalars
e(N) number of observations e(super) share of superefficient DMUs
e(alpha) value of alpha() e(mean_e) mean estimated efficiency
e(inputs) number of inputs e(med_e) median estimated efficiency
e(outputs) number of outputs e(level) confidence level
e(efficient) share of efficient DMUs
Macros
e(cmd) orderalpha e(table) scores, full, or no
e(cmdline) command as typed e(invert) either inverted or notinverted
e(depvar) name of dependent variable (not saved for ort (input))
e(title) Order-alpha efficiency e(ort) either input or output
analysis e(outputlist) warlist2 (list of outputs)
e(dmuid) varname (name of DMU e(inputlist) warlist! (list of inputs)
identifier) e(properties) b V
e(model) either Order-alpha or FDH
e(saved) names of new variables
(not for option nogenerate)
Matrices
e(b) coefficient vector e(reference) matrix of reference DMUs
e(ranks) vector of efficiency ranks (not if varname is string)
Functions

e(sample) marks estimation sample
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Further results are saved in e () if the option bootstrap or reps() is specified:

Scalars
e(N_reps) number of bootstrap e(tune) value of tuning parameter
replications e(N_bs) size of bootstrap samples
Macros
e(vce) bootstrap e(vcetype) Bootstrap
Matrices
e(V) variance—covariance matrix e(reps) number of nonmissing results
of the estimators e(b_bs) bootstrap estimates
e(bias) estimated biases

3.4 Syntax for orderm

The syntax for the orderm command is

orderm warlist1 = wvarlist2 [zf} [zn] [, dmu (varname) ort (input|output)
m(#) draws(#) bootstrap reps(#) tune(#) level(#)
table(fulll|scores) dots(1]2) invert @erate(newvarlist) replace

nogenerate]

The syntax for orderm differs from the syntax for orderalpha only by the options m()
and draws(), which replace the option alpha(). Most of the options behave in the
same way as they do in orderalpha; the options that behave differently are noted in
the next section.

3.5 Special options for orderm

m(#) specifies the size of the artificial reference sample. The default is m(ceil(N%/3)).
Noninteger and nonpositive values are not allowed. Most applications choose values
substantially smaller than N. Note: Even for m(N), orderm does not yield results
for FDH efficiency analysis. This requires m() to approach infinity. Yet rather than
choosing a very large value for m(), one can carry out FDH efficiency analysis more
efficiently by using orderalpha.

draws (#) specifies the number of resampling replications. The default is draws (200),
as suggested by Daraio and Simar (2007). Yet depending on the data, making es-
timated efficiency scores converge may require values that substantially exceed the
default. Noninteger and nonpositive values are not allowed.
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bootstrap invokes bootstrapping using 50 replications. Unless standard errors are defi-
nitely required, users are strongly advised not to request bootstrapping for large (and
even moderately sized) samples. Because of nested resampling, computing time re-
quired by bootstrapping may become excessive. One may also consider orderalpha
as an alternative. If neither bootstrap nor reps() is specified, orderm does not
compute standard errors for the estimated efficiency scores. The bootstrap will fail
in determining nonzero standard errors for a DMU for which no peers are available
in the sample apart from the DMU itself.

tune(#) determines the size of the bootstrap samples as int(N#). Values within
the [0.5,1] interval are allowed. Subsampling is applied to account for the naive
bootstrap being inconsistent in a boundary estimation framework. The bound-
ary nature of the estimation problem vanishes as m() departs from infinity. For
small values of m(), one may apply the naive bootstrap, tune(1). The default is
tune ({2 + exp(—m/N)}/3), which is equal to 2/3 for FDH.

generate (newvarlist) specifies the names of new variables containing estimation re-
sults. newwvarlist may consist of up to three names. newwvar! denotes estimated
efficiency scores, newvar2 denotes efficiency ranks, and newvar3 denotes the name of
the pseudo-reference DMU. If—because of ties in the data—more than one pseudo-
reference DMU is identified for some DMUS, further variables newvar3_2, newvar3_3,
. are created. If generate (newvarlist) is not specified or fewer than three names

are assigned, the default names are _om_ort_m, _omrank ort_m, and _omref _ort_m.

3.6 Saved results for orderm

Saved results for orderm are the same as they are for orderalpha except for the scalar
e(alpha) that is not saved to e() and the following:

Scalars
e(m) value of m() e(draws) value of draws ()
Macros
e(cmd) orderm e(model) Order-m
e(title) Order-m efficiency analysis

4 Examples for orderalpha and orderm

4.1 Basic syntax and FDH

We will use Stata’s famous auto.dta example dataset for a simple example, only meant
to illustrate the Stata commands. For real-data applications of partial frontier ap-
proaches, see, for example, Pilyavsky and Staat (2008), Cunha Marques and De Witte
(2011), and Felder and Tauchmann (forthcoming).
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We consider a car’s repair record (rep78),” its headroom (headroom), and its trunk
space (trunk) as outputs from the car’s service production. Inputs are inverse mileage,
that is, gallons per mile (gpm), weight (weight), length (length), and displacement
(displacement).

Because a partial frontier analysis may involve resampling procedures, we first set the
seed of the random-number generator to guarantee replicability. Confining the analysis
to foreign cars, running the basic syntax of orderalpha yields some information on
model specifications and descriptive statistics for input-oriented FDH efficiency scores.

. sysuse auto
(1978 Automobile Data)

. generate gpm = 1/mpg
. set seed 987654321
. orderalpha weight length displacement gpm = rep78 headroom trunk if foreign

FDH input-oriented efficiency scores estimated (variable _fdh_input)

Number of dmus =21
Number of inputs =4
Number of outputs =3
Mean efficiency = .9344
Median efficiency = .9324
Share of efficient dmus = .381

No DMU-level results are displayed, although they are saved to the data. To request
a table of DMU-level results, we specify the options table(full) and reps(200), where
the latter requests bootstrapped standard errors. To make the results table informative,
we use the string variable make as an identifier by specifying dmu(make). The option
nogenerate prevents Stata from resaving results to the data.

9. Because rep78 is measured on an ordinal scale, it is ill-suited to enter in an efficiency analysis. But
because this example is only for illustrating the syntax, we will ignore this caveat.
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. orderalpha weight length displacement gpm
> dmu(make) reps(200) table(full) nogenerate

FDH input-oriented efficiency scores estimated (no variable saved)

= rep78 headroom trunk if foreign,

Number of dmus =21
Number of inputs =4
Number of outputs =3
Mean efficiency = .9344
Median efficiency = .9324
Share of efficient dmus = .381
dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU
Audi 5000 .8201058 .0869334 2.069334 20 VW Diesel
Audi Fox .9323671 .0933896 . 724201 11 VW Rabbit
BMW 320i .8757062 .2033932 .6111012 18 VW Diesel
Datsun 200 .9058824 .0280815 3.351586 14  Mazda GLC
Datsun 210 1 .2981914 0 1 Datsun 210
Datsun 510 .9058824 .0624617 1.506806 14  Mazda GLC
Datsun 810 .8369565 .0403014 4.0456 19 Mazda GLC
Fiat Strada 1 . . 1 Fiat Strad
Honda Accord .9107143 .2199731 .4058938 13 VW Diesel
Honda Civic 1 .1142507 0 1 Honda Civi
Mazda GLC 1 . . 1 Mazda GLC
Renault Le Car 1 .1531418 0 1 Renault Le
Subaru .995122 .4936048 .0098825 9 VW Diesel
Toyota Celica .8908046 .1553441 .7029261 16 VW Diesel
Toyota Corolla .9393939 .3038749 .1994441 10 VW Diesel
Toyota Corona .8857143 .0943252 1.211614 17 VW Diesel
VW Dasher .92 .2036947 .3927448 12 VW Rabbit
VW Diesel 1 .6822315 0 1 VW Diesel
VW Rabbit 1 .1951341 0 1 VW Rabbit
VW Scirocco 1 . . 1 VW Scirocc
Volvo 260 .8031088 .0886606 2.220728 21 VW Diesel

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.
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Standard errors are missing for three DMUs. For these, besides the DMU itself, no
peers are available in the estimation sample. This makes the bootstrap fail in deter-
mining standard errors for these observations. If output-oriented efficiency is requested
instead, the option ort (output) must be specified.
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. orderalpha weight length displacement gpm = rep78 headroom trunk if foreign,
> dmu(make) ort(output) reps(200) table(full)

FDH output-oriented efficiency scores estimated (variable _fdh_output)

Number of dmus =21
Number of inputs =4
Number of outputs =3
Mean efficiency = 1.06
Median efficiency =1
Share of efficient dmus = .7143
dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU
Audi 5000 1 .1123844 0 1 Audi 5000
Audi Fox 1.2 .1473373 1.35743 16 VW Diesel
BMW 3201 1.2 .135962 1.471 16 VW Diesel
Datsun 200 1.25 .1104965 2.262514 21 Datsun 210
Datsun 210 1 . . 1 Datsun 210
Datsun 510 1.2 .1148945 1.740727 16 VW Diesel
Datsun 810 1.2 .0999874 2.000253 16 Honda Acco
Fiat Strada 1 .1710402 0 1 Fiat Strad
Honda Accord 1 .1079517 0 1 Honda Acco
Honda Civic 1 1 Honda Civi
Mazda GLC 1 1 Mazda GLC
Renault Le Car 1 1 Renault Le
Subaru 1 . . 1 Subaru
Toyota Celica 1 .1142397 0 1 Toyota Cel
Toyota Corolla 1 .1180334 0 1 Toyota Cor
Toyota Corona 1 .0752533 0 1 Subaru
VW Dasher 1.2 .1563238 1.279396 16 VW Diesel
VW Diesel 1 . . 1 VW Diesel
VW Rabbit 1 .1592883 0 1 VW Rabbit
VW Scirocco 1 .2130136 0 1 VW Scirocc
Volvo 260 1 .0897516 0 1 Audi 5000

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.

The above output indicates that the choice of input-oriented or output-oriented
approach clearly makes a difference.

4.2 Order-o

The examples above all apply FDH efficiency, because alpha() is left unspecified and
the default alpha(100) is used. To carry out a nondegenerated partial frontier order-
« analysis, we choose the 90th percentile as the benchmark by specifying alpha(90).
Moreover, we assign our own names to the new generated variables.
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. orderalpha weight length displacement gpm = rep78 headroom trunk if foreign,
> dmu(make) alpha(90) reps(200) table(full) generate(escore erank eref) replace

Order-alpha(90) input-oriented efficiency scores estimated (variable escore)

Number of dmus =21
Number of inputs =4
Number of outputs =3
Mean efficiency = .9421
Median efficiency = .939%4
Share of efficient dmus = .3333
Share of super-efficient dmus = .0476
dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU
Audi 5000 .8201058 .081434 2.209081 20 VW Diesel
Audi Fox .9565217 .0229673 1.893054 10 Mazda GLC
BMW 3201 .8757062 .0747637 1.66249 18 VW Diesel
Datsun 200 .9117647 .0140217 6.292751 13 VW Diesel
Datsun 210 1 .0933255 0 2 Datsun 210
Datsun 510 .9117647 .0308705 2.858237 13 VW Diesel
Datsun 810 .8423913 .0198544 7.938216 19 VW Diesel
Fiat Strada 1 . . 2 Fiat Strad
Honda Accord .9107143 .1729695 .5161934 15 VW Diesel
Honda Civic 1.12 .0597623 2.007952 1 VW Rabbit
Mazda GLC 1 . . 2 Mazda GLC
Renault Le Car 1 .0694423 0 2 Renault Le
Subaru .995122 .3621871 .0134683 9 VW Diesel
Toyota Celica .8908046 .1177655 .9272276 16 VW Diesel
Toyota Corolla .9393939 .1665016 .363997 11 VW Diesel
Toyota Corona .8857143 .0450777 2.535306 17 VW Diesel
VW Dasher .92 .0655968 1.219572 12 VW Rabbit
VW Diesel 1 .6390733 0 2 VW Diesel
VW Rabbit 1 .1328049 0 2 VW Rabbit
VW Scirocco 1 . . 2 VW Scirocc
Volvo 260 .8031088 .0801618 2.456172 21 VW Diesel

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.

Here only the Honda Civic is classified as superefficient, while Audi 5000 and
Volvo 260 perform worst. To determine whether the latter two are more or less equally
inefficient or whether a statistically significant efficiency differential exists, one can use
Stata’s test command in the same way as for performing tests on regression coefli-
cients. This also applies to testnl, lincom, and nlcom. If necessary, one must convert
the names of DMUs provided by the identifier to Stata names when used with test:

. test _b[Audi_5000]-_b[Volvo_260]=0
( 1) [make]Audi_5000 - [make]Volvo_260 = 0O

chi2( 1) =  0.24
Prob > chi2 = 0.6260
4.3 Order-m

Finally, we also run orderm on the data, choosing a reference sample of size 16 by speci-
fying m(16). To improve accuracy, we request a large number of resampling replications
with d(1000). Because orderm requires substantial computing time (about 20 seconds
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for the present example), we specify neither bootstrap nor reps(), and we abstain
from calculating standard errors. Instead, we specify dots(2) for our convenience.

. orderm weight length displacement gpm = rep78 headroom trunk if foreign,
> dmu(make) m(16) draws(1000) table(full) dots(2)

looping through data:

..................... 21
Order-m(16) input-oriented efficiency scores estimated (variable _om_input_16)
Number of dmus =21
Number of inputs =4
Number of outputs =3
Mean efficiency = .9386
Median efficiency = .9387
Share of efficient dmus = .2381
Share of super-efficient dmus = .1429
dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Pseudo Ref
Audi 5000 .8201058 . . 20 VW Diesel
Audi Fox .9387439 . . 11 VW Rabbit
BMW 3201 .8855254 . . 18 VW Diesel
Datsun 200 .9097788 . . 15 VW Diesel
Datsun 210 1.011718 . . 2 Datsun 210
Datsun 510 .9109988 . . 13 VW Diesel
Datsun 810 .8390924 . . 19  Mazda GLC
Fiat Strada 1 . . 4 Fiat Strad
Honda Accord .9108928 . . 14 VW Diesel
Honda Civic 1.03713 . . 1 Honda Civi
Mazda GLC 1 . . 4 Mazda GLC
Renault Le Car 1.00376 . . 3 Renault Le
Subaru .9953073 . . 9 VW Diesel
Toyota Celica .8916782 . . 16 VW Diesel
Toyota Corolla .9400606 . . 10 VW Diesel
Toyota Corona .88872 . . 17 VW Diesel
VW Dasher .9223844 . . 12 VW Rabbit
VW Diesel 1 . . 4 VW Diesel
VW Rabbit 1 . . 4 VW Rabbit
VW Scirocco 1 . . 4 VW Scirocc
Volvo 260 .8045222 . . 21 VW Diesel

Note: no bootstrapping; no standard errors computed

Results are similar to those obtained from order-a (90), yet order-m (16) yields a
larger share of superefficient DMUs.
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5 Summary and conclusions

In this article, I introduced the new commands orderalpha and orderm, which imple-
ment nonparametric order-«, order-m, and FDH efficiency analysis in Stata. In addition
to calculating point estimates, the commands accommodate subsampling bootstrap-
based inference. Implementing partial frontier analysis may open up further areas of
application to Stata: nonparametric efficiency analysis is frequently applied in many
fields such as managerial economics and health economics. In this, the article comple-
ments the contribution of Ji and Lee (2010), who have already introduced data envel-
opment analysis to Stata.
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