
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, WZB, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com


Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

1-year subscription $ 79 1-year subscription $115

2-year subscription $155 2-year subscription $225

3-year subscription $225 3-year subscription $329

3-year subscription (electronic only) $210 3-year subscription (electronic only) $210

1-year student subscription $ 48 1-year student subscription $ 79

1-year university library subscription $ 99 1-year university library subscription $135

2-year university library subscription $195 2-year university library subscription $265

3-year university library subscription $289 3-year university library subscription $395

1-year institutional subscription $225 1-year institutional subscription $259

2-year institutional subscription $445 2-year institutional subscription $510

3-year institutional subscription $650 3-year institutional subscription $750

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2012 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata, , Stata

Press, Mata, , and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html


The Stata Journal (2012)
12, Number 3, pp. 375–392

Apportionment methods

Ulrich Kohler
Wissenschaftszentrum Berlin

Berlin, Germany
kohler@wzb.eu

Janina Zeh
Universität Leipzig
Leipzig, Germany

janina.zeh@wiso.uni-hamburg.de

Abstract. Apportionment methods are used to translate a set of positive natu-
ral numbers into a set of smaller natural numbers while keeping the proportions
between the numbers very similar. The methods are used to allocate seats in a
chamber proportionally to the number of votes for a party in an election or pro-
portionally to regional populations. In this article, we describe six apportionment
methods and the user-written egen function apport(), which implements these
methods.

Keywords: st0265, apport(), egen, apportionment method, elections, Hamilton’s
method, Jefferson’s method, Webster’s method, Hill’s method, Dean’s method,
Adams’s method

1 Introduction

Democracies throughout the world face the problem of apportionment: the allocation
of seats in a parliament such that each state or province receives seats in proportion
to its population, or each party wins seats according to the number of votes it receives
(Balinski and Young 1982, 1). Although the principle of proportionality seems fairly
simple, difficulties arise because proportions can have fractions, whereas seats cannot.

The problem of apportionment has vexed mathematicians and politicians for hun-
dreds of years. Many solutions for this problem, referred to here as “apportionment
methods”, have been formulated over the years. In this article, we present six appor-
tionment methods, as well as the new egen function apport(), which implements them
for Stata.

The apportionment methods are Jefferson’s method, Hamilton’s method, Webster’s
method, Hill’s method, Dean’s method, and Adams’s method. These methods are
some of the most frequently used apportionment methods, although readers might know
them by different names. The Jefferson method is also known as the greatest divisor
method, the d’Hondt method, and the Hagenbach-Bischoff method. The Hamilton
method is elsewhere called the Hare–Niemeyer method, the method of largest remainder,
or Vinton’s method. Other names for Webster’s method are the method of Saint-
Laguë/Schaepers and the method of major fraction. Hill’s method is also known as
Huntington’s method and the method of equal proportions. Dean’s method is otherwise
known as the harmonic mean method, and Adams’s method is sometimes called the
method of smallest divisors (Malkevitch 2002a).

c© 2012 StataCorp LP st0265



376 Apportionment methods

We first introduce these apportionment methods in a formal way. We then describe
the new egen function apport() and conclude with examples for using that function.

2 Apportionment methods and fairness

The problem of apportionment comes in two forms. The first is expressed, for example,
in Article I, Section 2 of the U.S. Constitution, which sets forth that each state is
to be represented in the U.S. House of Representatives proportionally to the number
of persons living in each state. The second form is common in countries having a
proportional electoral system. Here seats in a parliament are allocated to political
parties in proportion to the votes they receive in an election. Both forms share, however,
the same idea of fairness: the distribution of seats in a parliament is considered fair if
the distribution of seats is proportional to the election results or to the distribution of
the population.

An algebraic way to define this overarching idea of fairness can be expressed using
the so-called ideal share (see Schwingenschlögl and Pukelsheim [2006, 190]) πi with

πi =
vi

V
× S

where S is the size of the parliament, vi is the number of valid votes for party i (or the
population of state i), and V is the total number of valid votes cast in the election (or
a country’s total population). The value πi represents the number of seats that a party
(or a state) ideally should get to maintain a “fair” distribution of seats.

The problem of apportionment is that the ideal share is normally not an integer.
Because fractional seats are not possible, the condition that the seats for each party
are always equal to πi cannot be met for parliaments of a fixed size.1 A political
decision must be made with respect to what kinds of deviations from the ideal share
are acceptable. The following concepts of fairness predominate in these considerations:

Quota condition. According to the quota condition, an apportionment method is
considered fair if the difference between the ideal share and the realized number
of seats remains within narrow bounds. A formal definition of the quota condition
is that each party should get at least the rounded-down number of the ideal share
and at most the rounded-up number of the ideal share; that is,

�πi� ≤ si ≤ �πi�
with si being the number of seats allocated to party i, and �πi� and �πi� denoting
the floor and ceiling of the ideal share, respectively.

Consistency condition. An apportionment method is considered consistent if addi-
tional votes for party C cannot lead to party A losing seats to party B. Apportion-

1. In what follows, we use the terms “parties”, “votes”, and “total votes cast” for i, v, and V ,
respectively. However, all statements made are equally true for states, state populations, and the
total population.
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ment methods that fulfill the consistency condition prevent paradoxes regarded as
unfair. Specifically, consistent apportionment methods guarantee that

• no party loses seats if the parliament grows in size (house monotony); and
that

• no party loses seats if it wins additional votes, and vice versa (vote monotony,
population monotony).

Majority condition. The majority condition states that if a party obtains the abso-
lute majority of the votes, then it should also get an absolute majority of seats.
There is often a distinction between a weak majority condition and a strict major-
ity condition. The weak majority condition is fulfilled if a party with at least 50%
of the votes gets at least 50% of the seats; the strict majority condition is fulfilled
if a party with more than 50% of the votes gets at least 50% of the seats. Similarly
to the majority condition, the minority condition states that if a party does not
reach the absolute majority of votes, it should not get the absolute majority of
seats.

Global optimization. More recently, so-called global optimization approaches have
been proposed for fairness evaluation. These approaches search for apportionment
methods that minimize the sum of a given fairness measure over all the parties
(Malkevitch 2002b). One example of such an attempt is to assess the fairness of
an apportionment method according to the success value of votes, which is

ei =
si/S

vi/V
=
si/S

πi

If all parties received the ideal share πi, the success value would become 1 for all
parties. It is therefore possible to define the sum of squared differences between 1
and the success value,

ESS =
∑

vi (ei − 1)2 (1)

and to consider as fair those apportionment methods that minimize the error sum
of squares (ESS) (Pukelsheim 2003). However, assessing the fairness of an appor-
tionment method by means of ESS is just one example of a global optimization
method. Another approach is based on a comparison of the so-called “representa-
tive weight of one seat” with the ideal representative weight.2 The representative
weight of one seat is wi = vi/si, the number of voters for party i that is repre-
sented by one seat for that party. If each party had received the ideal share, the
representative weight would have been wi = vi/{(vi×S)/V } = V/S for all parties.
It can be said that the fairness of an apportionment increases as wi approximates
V/S. This view of fairness has been promoted in several decisions made by the
German federal constitutional court, which are based on pairwise comparisons of

2. The term “representative weight of one seat” is our translation of the German term Vertretungs-
gewicht eines Mandats, used by Pukelsheim (2000).
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representative weights of parties (for details, see Pukelsheim [2000]). A global op-
timization criterion that directly follows from this is the sum of squared differences
between the representative weight and the ideal representative weight:

WSS =
∑

si

(
wi − V

S

)2

Other global optimization criteria can likewise be developed.

A scientific answer to the question of which apportionment method is the fairest
could be provided if one method beat the others on any of the above criteria. Unfortu-
nately, this cannot be the case. In a very important contribution, Balinski and Young
(1982) proved that apportionment methods fulfill either the consistency condition or the
quota condition, but never both. Moreover, no single apportionment method optimizes
all the global optimization criteria proposed thus far. The decision to use a particular
method therefore depends on the policy aims. Different countries have made different
decisions and quite often without the knowledge that we have today. Presumably, the
historical reality was that the decisions were driven not only by issues of fairness but
also by presumptions about the relative advantages for the political actors at the time
of the decisions. Finally, algebraically equivalent apportionment methods have been de-
veloped independently from one another in different countries. All of this helps explain
the existence of the many different solutions for the same problem and the variations
therein.

In what follows, we introduce one quota method and five different divisor methods.
The major difference between these two families is that the quota method fulfills the
quota condition, whereas all divisor methods are consistent. The formulas we give
are used in the implementation of the apport() function described below. We have
primarily developed them following Balinski and Young (1982, 96–102), with additional
helpful hints found in Malkevitch (2002a) and on the fine German-language website
Wahlrecht.de, maintained by Wilko Zicht, Martin Fehndrich, and Matthias Cantow.3

We wrote the formulas in a notation that simplifies the implementation in Stata.

2.1 Hamilton’s method

The Hamilton method was introduced by the treasury secretary Alexander Hamilton in
1791. That year, it was approved by Congress as the method to be used for the first
American election, but subsequently was vetoed by President Washington—in the very
first exercise of the veto power by a president of the United States.4 The method was
used for the House of Representatives between 1852 and 1911, when it was replaced by
Webster’s method. It is still used in Russia, Ukraine, Namibia, and Hong Kong. Until
recently, it was used in Germany.

3. See http://www.wahlrecht.de/verfahren/index.html.
4. See Balinski and Young (1982, chap. 3) for a comprehensive description of the controversy over the

apportionment method for the U.S. Congress.
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The Hamilton method distributes the seats in two steps. First, the integer value of
the ideal share is directly allocated to each party as its number of seats:

sHam, Init
i =

⌊vi

V
× S

⌋
= �πi�

Second, the remaining seats are allocated to the parties in the order of their remainder ri:

ri = |πi − �πi�|

If several parties have the same decimal parts, either the seats get raffled (Germany) or
they are allocated in sequence of the πi strength of the party (Russia). By default, the
apport() function does the latter, but this can be changed with the raffle option.

2.2 Divisor methods

The aim of divisor methods is to divide the number of votes by a common number D
and to allocate to each party the rounded number of this fraction. Divisor methods
differ in the rule used for rounding, and the main task is to find a value for D such that
the sum of the allocated seats is equal to the size of the parliament. A formal way to
describe the general idea of divisor methods is

sDiv
i =

⌈vi

D
− τ

⌉
and

∑
sDiv

i = S for some D (2)

Note how �vi/D − τ� is used to express rounding of the values for vi/D. For standard
rounding, τ = 0.5, but in the general case, τ can be any breakpoint value between 0
and 1. The various divisor methods described below are defined by setting a value for τ .

Once τ is fixed, the task is to find a value for D such that
∑
si = S. There is

generally an interval of possible values for D that all produce the same seat allocation.

Finding the value for D involves some trial and error, but the general procedure is as
follows. Choose as a starting value the ideal representative weight (or average district
size),

DInit =
V

S

and use this value to produce an initial allocation of seats using the first rule of (2). If
this initial allocation of seats already sums up to S, we keep this allocation. If∑⌈ vi

DInit
− τ

⌉
< S

we choose another value for D somewhat below DInit. Otherwise, we choose a value
slightly above DInit. There is a technique to ascertain how slight “slightly” should be;
it is described below, under the heading Finding the modified district size.
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Before presenting the various divisor methods one by one, we should point out the
similarity between divisor methods and the Hamilton method. As shown above, the
initial step of the Hamilton method allocates the integer part of the ideal share πi to
the parties. Because⌈ vi

DInit
− τ

⌉
=

⌈
vi

V
S

− τ

⌉
=
⌈vi

V
× S − τ

⌉
= �πi − τ�

this resembles the initial allocation for a divisor method with τ = 1 (the Jefferson
method).

Jefferson’s method

The Jefferson method is defined by τ = 1, which means using the integer value of
vi/D for the allocation of seats. The method was developed by the future president
Thomas Jefferson and enforced for the allocation of seats in the House of Representatives
after President George Washington’s veto of the Hamilton method. It remained the
apportionment method until 1842 and is still used in countries such as Japan, Slovenia,
the Netherlands, and Israel.

Like any divisor method, the Jefferson method violates the quota condition. The
violation of the quota condition is such that it favors big parties or states (Marshall,
Olkin, and Pukelsheim 2002; Schuster et al. 2003).

Webster’s method

Webster’s method is defined by τ = 0.5, which means using the standard rounding
of vi/D for the allocation of seats. The method was developed by leading American
statesman Daniel Webster in 1832 and used as an apportionment method for the House
of Representatives between 1842 and 1852 and between 1911 and 1941. Other countries
using Webster’s method are Bosnia, Norway, and (since 2009) Germany.

The Webster method also violates the quota condition. However, it favors big
parties less than the Jefferson method does (Marshall, Olkin, and Pukelsheim 2002;
Schuster et al. 2003) and minimizes ESS as defined by (1) above (Pukelsheim 2000).

Hill’s method

Hill’s method is defined by using the geometric mean of the floor and ceiling of vi/D
as the threshold value for rounding. The geometric mean of two arbitrary numbers x1

and x2 is defined as
√
x1 × x2. If x1 and x2 are neighboring integer values, the breaking

point τ is the fractional remainder of the geometric between two integers. In our case,
it can be obtained by subtracting the floor of vi/D from the geometric mean of the floor
and ceiling of vi/D:

τi =
√⌊vi

D

⌋
×
⌈vi

D

⌉
−
⌊vi

D

⌋
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Trying out this formulation with some arbitrary values helps to understand the logic.
If vi/D is below 1, the breaking point becomes 0,

. display sqrt(floor(0.5) * ceil(0.5)) - floor(0.5)
0

and if vi/D becomes larger, the breaking point approximates 0.5 when vi/D becomes
large:

. display sqrt(floor(1.5) * ceil(1.5)) - floor(1.5)

.41421356

. display sqrt(floor(42.5) * ceil(42.5)) - floor(42.5)

.49705872

Hence, unlike the divisor methods discussed so far, τ is not constant for all parties.
The characteristic that τi becomes 0 for small numbers of vi/D guarantees that all
parties with at least one vote receive a seat. This characteristic makes the method
particularly attractive for the apportionment problem of the House of Representatives,
where each state must receive at least one seat. Consequently, the method, which was
proposed in 1911 by the former director of the U.S. Census Bureau, Joseph A. Hill, has
been used for the seat apportionment of the U.S. Congress since 1941.

Hill’s method also violates the quota condition. It favors big parties less than both
the Jefferson method and the Webster method do (Marshall, Olkin, and Pukelsheim
2002; Schuster et al. 2003), primarily because of its characteristic of giving seats to
parties that otherwise would not receive one.

Dean’s method

Dean’s method is defined by using the harmonic mean as a threshold value for rounding
vi/D. The harmonic mean of two arbitrary numbers x1 and x2 is 2x1x2/(x1 + x2), so
that the breaking point τ of Dean’s method is defined as

τi =
2 × ⌊

vi

D

⌋× ⌈
vi

D

⌉⌊
vi

D

⌋
+
⌈

vi

D

⌉ −
⌊vi

D

⌋

Like Hill’s method, τ is not constant for all parties. It is again 0 for vi/D = 0 and
exponentially approximates 0.5 with vi/D, although at a smaller rate.

The American mathematician James Dean proposed this method in 1832 as a method
for allocating seats for the House of Representatives. However, it has never been used for
this task or for allocating seats anywhere else, perhaps in part because Dean’s method
favors small parties more than the other methods discussed so far do (Marshall et al.
2002; Schuster et al. 2003).
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Adams’s method

Adams’s method is defined by τ = 0, which means using the ceiling value of vi/D for
the allocation of seats. The apportionment method was suggested in 1822 by former
President John Quincy Adams but was never used.

Like all divisor methods, the Adams method violates the quota condition. Of all
the methods discussed, it mostly favors small parties or states (Marshall et al. 2002;
Schuster et al. 2003), which again may be one reason why it is so rarely used.

Finding the modified district size

As mentioned above, all divisor methods use the average district size DInit = V/S for
the initial allocation of seats. If this initial allocation of seats does not sum up to S,
one must find the modified district size DMod for which∑⌈ vi

DMod
− τ

⌉
= S

for a given τ . The remainder of this subsection shows how DMod can be calculated from
the results of the initial step.

Let sDiv,Init
i be the number of seats allocated using DInit, and Δ =

∑
sDiv,Init

i − S
be the difference between the number of seats allocated and the number of seats to
be allocated. If Δ �= 0, obtain a modified number of seats for each party by either
increasing or decreasing the initial number of seats by 1:

s∗i =

{
sDiv,Init

i − 1 if Δ > 0
sDiv,Init

i + 1 if Δ < 0

We now use this modified number of seats to obtain a modified breakup value τ∗i ac-
cording to the rounding rule of the respective apportionment method:

τ∗i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 Jefferson
0.5 Webster√
s∗i × (s∗i + 1) − s∗i Hill

2×s∗
i ×(s∗

i +1)
s∗

i +(s∗
i +1) − s∗i Dean

0 Adams

The modified seat numbers s∗i and the modified breakup values τ∗i are then used to
obtain i suggestions for D:

D∗
i =

vi

s∗i + τ∗i

We sort these suggestions by size and pick a value either slightly above the smallest one
or slightly below the largest one; formally,

DMod =

{
D∗

|Δ| + δ if Δ > 0
D∗

K−|Δ|+1 − δ if Δ < 0
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with K being the number of parties or states in the respective apportionment problem
and δ being a floating-point number close to 0.5 In other words, DMod becomes a value
just above (or below) the Δ smallest (or largest) value of D∗.

The technique works well as long as the initial allocation of seats does not differ from
the optimal allocation by more than one seat for any party. This is usually the case for
the Webster, Hill, and Dean methods, but often is not the case for the Jefferson and
Adams methods. A modification is to also obtain all values s∗d

i = si ± d, d = 1, . . . ,Δ
and the corresponding values of D∗d. DMod is then the Δ smallest or Δ largest value
of all the values D∗d

i . The egen function apport() uses this modification for all divisor
methods.

2.3 Variations of apportionment methods

Besides the choice of the apportionment method, election laws throughout the world
prescribe a number of variations for the application of the method. Two interrelated
variations have been implemented in the apport() function.

Barring clauses. These clauses define a threshold for participation in the allocation
of seats. In Germany and Latvia, for example, only parties with more than 5%
of the valid votes participate in the allocation of seats. In Israel, this threshold
is 2%, and in Turkey, it is 10% (Nohlen et al. 2000, 355ff).

Exceptions. Countries with barring clauses sometimes allow exceptions from it. For
example, parties of ethnic minorities are sometimes exempted from the barring
clause. Another example is the German Grundmandate rule. German election law
gives each voter two votes: the first vote is for a candidate in a constituency, while
the second vote is for a party list. The composition of parties in the parliament is
decided (almost) exclusively by the distribution of the second votes, but parties
that win the most first votes in at least three constituencies are exempted from
the barring clause.

3 The egen function apport()

3.1 Syntax

egen
[
type

]
newvar = apport(varname)

[
if
] [

in
] [

, method(keyword)

size(# | varname) threshold(# | varname) exception(exp) raffle
]

by is allowed; see [U] 11.1.10 Prefix commands.

5. The apport() function uses the value of epsfloat().



384 Apportionment methods

3.2 Description

The egen function apport(varname) creates a new variable holding the number of seats
on the basis of the absolute number of valid votes in varname.

3.3 Options

method(keyword) is used to select the apportionment method. The apportionment
methods described above can be specified using one of the following keywords:

Method Keyword and synonyms

Hamilton hamilton, hare-niemeyer, remainder, vinton
Jefferson jefferson, dhondt, hagenbach-bischoff, greatest
Webster webster, stlague, majorfraction
Hill hill, huntington, geometric
Dean dean, harmonic
Adams adam, smallest

The default is method(jefferson).

size(# | varname) is used to specify the number of seats to be allocated. Either use a
positive integer or use the name of a variable holding the number of seats to be allo-
cated. In the latter case, the variable should be constant within one apportionment
problem (that is, for one election). The default is size(100).

threshold(# | varname) is used to set the barring clause. Within the parentheses, put
the size for the barring clause as a percentage or specify the name of a variable
holding the value for the barring clause. The variable must be constant within one
apportionment problem (that is, for one election).

exception(exp) is used to specify exceptions from the barring clause. Within the
parentheses, specify an expression indicating the exempted observations (see help
exp).

raffle is only allowed for method(hamilton). It allows a seat to be raffled if several
parties have the largest remainder. By default, the seat goes to the party with
more voters. In practice, either decision rule is seldom necessary; however, in the
exceptional case, a message is displayed.
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3.4 Expected data structure

The apport() function requires as input apportionment problems in “long form”, that
is, the units of one apportionment problem should be the observations of the dataset.
If the dataset holds more than one apportionment problem, then these should be or-
ganized with one below the other. As a very minimum, the dataset should contain a
variable holding the absolute number of valid votes for a party or the population sizes
of regional subdivisions of a country. This required data structure is exemplified in two
supplementary datasets of this article.

The first dataset holds the results of the U.S. Censuses from 1790 to 1970 as re-
ported by Balinski and Young (1982, 158–176). The dataset reports for each year the
populations of the individual U.S. states and the size of the House of Representatives
at that time. The list of the first 18 observations illustrates that the observations of one
year form one apportionment problem.

. use uspop
(Balinsky (1982: 158-176))

. list in 1/18, sepby(year)

state pop year size

1. Virginia 630560 1790 105
2. Massachusetts 475327 1790 105
3. Pennsylvania 432879 1790 105
4. North Carolina 353523 1790 105
5. New York 331589 1790 105
6. Maryland 278514 1790 105
7. Connecticut 236841 1790 105
8. South Carolina 206236 1790 105
9. New Jersey 179570 1790 105
10. New Hampshire 141822 1790 105
11. Vermont 85533 1790 105
12. Georgia 70835 1790 105
13. Kentucky 68705 1790 105
14. Rhode Island 68446 1790 105
15. Delaware 55540 1790 105

16. Virginia 747362 1800 141
17. Pennsylvania 601863 1800 141
18. New York 577805 1800 141
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The second dataset holds the results of all German federal elections since 1949.
Similarly to the U.S. population data, this dataset reports for each election the absolute
number of valid votes for all parties that participated in an election and the size of the
German Bundestag at that time.6 The following list illustrates that the structure of
this election data differs from that of the U.S. population data only insofar as states
are replaced by parties and population sizes are replaced by absolute numbers of valid
votes.

. use electionsde

. list eldate party votes size if year(eldate)==1949, sepby(eldate)

eldate party votes size

1. 14 Aug 49 RWVP 21931 400
2. 14 Aug 49 EVD 26162 400
3. 14 Aug 49 SSW 75388 400
4. 14 Aug 49 RSF 216749 400
5. 14 Aug 49 DKP/DRP 429031 400
6. 14 Aug 49 WAV 681888 400
7. 14 Aug 49 Zentrum 727505 400
8. 14 Aug 49 DP 939934 400
9. 14 Aug 49 BP 986478 400
10. 14 Aug 49 Parteilose 1141647 400
11. 14 Aug 49 KPD 1361706 400
12. 14 Aug 49 FDP 2829920 400
13. 14 Aug 49 SPD 6934975 400
14. 14 Aug 49 CDU/CSU 7359084 400

The next section presents examples for applying the apport() function with the use
of these datasets.

4 Using egen apport()

4.1 Introductory example

We will now allocate seats for the House of Representatives in the year 1790 by using
the two methods discussed at that time. We will first use the Hamilton method and
then the Jefferson method (the default), choosing option size(105) because 105 was
the size of the House of Representatives in 1790.

6. This dataset was compiled from information printed in Statistisches Bundesamt (2005) and reported
on the Bundeswahlleiter website (http://www.bundeswahlleiter.de/de/). It is part of a larger
dataset of a research project on the potential influence of nonvoters on election outcomes; for
details, see Kohler (2011).
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. use uspop if year==1790
(Balinsky (1982: 158-176))

. egen ham = apport(pop), method(hamilton) size(105)
Seat goes to stronger party; consider option -raffle-

. egen jeff = apport(pop), size(105)

. list if ham != jeff

state pop year size ham jeff

1. Virginia 630560 1790 105 18 19
15. Delaware 55540 1790 105 2 1

The two methods differ in the number of seats allocated to Virginia and Delaware.
The Jefferson method allocates one more seat to Virginia than the Hamilton method
does, whereas Delaware gets one fewer seat. Hence, President Washington’s veto of the
Hamilton method not only hindered an “inconsistent” apportionment method but also
brought his home state one additional seat.

4.2 Solving more than one problem

The by prefix can be used for datasets with more than one apportionment problem.
We will use the by prefix to produce the data for all appendix tables presented by
Balinski and Young (1982), although we will present only the table for 1790 to save
space.

. use uspop, clear
(Balinsky (1982: 158-176))

. foreach m in adam dean hill webster jefferson hamilton {
2. by year: egen `m´ = apport(pop), method(`m´) size(size)
3. }

Seat goes to stronger party; consider option -raffle-

. list state adam-hamilton if year==1790, noobs sum sep(15)

state adam dean hill webster jeffer~n hamilton

Virginia 18 18 18 18 19 18
Massachusetts 14 14 14 14 14 14
Pennsylvania 12 12 12 13 13 13

North Carolina 10 10 10 10 10 10
New York 10 10 10 10 10 10
Maryland 8 8 8 8 8 8

Connecticut 7 7 7 7 7 7
South Carolina 6 6 6 6 6 6

New Jersey 5 5 5 5 5 5
New Hampshire 4 4 4 4 4 4

Vermont 3 3 3 2 2 2
Georgia 2 2 2 2 2 2
Kentucky 2 2 2 2 2 2

Rhode Island 2 2 2 2 2 2
Delaware 2 2 2 2 1 2

Sum 105 105 105 105 105 105



388 Apportionment methods

This time, we have specified a variable name with the size() option. The variable
holds the number of seats to be allocated for each census year. It must be constant within
each apportionment problem, though it may vary between them. An error message is
issued if this is not the case.

4.3 Securing at least one seat

The example in the previous subsection does not fully reproduce the appendix tables
of Balinski and Young (1982), because the U.S. Constitution gives at least one seat to
each state, a feature not guaranteed by some of the apportionment methods discussed
here. For example, the Jefferson method regularly does not allocate seats to all states:

. tabulate year if jefferson==0

Census Year Freq. Percent Cum.

1850 1 3.03 3.03
1860 3 9.09 12.12
1870 2 6.06 18.18
1880 1 3.03 21.21
1890 4 12.12 33.33
1900 3 9.09 42.42
1910 2 6.06 48.48
1920 3 9.09 57.58
1930 3 9.09 66.67
1940 3 9.09 75.76
1950 3 9.09 84.85
1960 3 9.09 93.94
1970 2 6.06 100.00

Total 33 100.00

Two techniques seem sensible for guaranteeing that each state receives at least one
seat. The first technique starts by giving one seat to all states that do not receive one
through a “plain” application of the method. It then subtracts the number of these
seats from the number of seats to be allocated. Finally, the apportionment method
is applied to the reduced House size by using all other states. An application of this
technique shows the differences between the initial and the modified solutions:

. by year, sort: egen null = sum(jefferson==0)

. generate resize = size - null

. by year: egen jeff1 = apport(pop) if jefferson, size(resize)
(33 missing values generated)

. replace jeff1 = 1 if !jefferson
(33 real changes made)
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. list state jefferson jeff1 if year == 1890 & jefferson != jeff1

state jeffer~n jeff1

277. Virginia 10 9
285. South Carolina 7 6
292. Maine 4 3
298. Vermont 2 1
303. Montana 0 1

304. Idaho 0 1
305. Wyoming 0 1
306. Nevada 0 1

This technique leads to the allocations presented by Balinski and Young (1982, 157–
177).

The second technique first allocates one seat to all states and then uses the appor-
tionment method for the consequently reduced House size. Applying this procedure
with the Jefferson method reproduces the results of Adams’s method:

. by year, sort: replace resize = size - _N
(689 real changes made)

. by year: egen jeff2 = apport(pop), size(resize)

. replace jeff2 = jeff2 + 1
(689 real changes made)

. assert jeff2 == adam

Applying the second procedure by using the other methods would give even more
seats to smaller states than would Adams’s method. In the United States, the problem of
allocations of zero seats emerged when Hamilton’s method and Webster’s method were
used (1852–1911 and 1911–1941, respectively); during these periods, the first procedure
was used to solve the problem. In 1942, the decision was made to use Hill’s method,
which by definition assigns one seat to each state.

4.4 Threshold and exceptions

We will now use the German election dataset to illustrate variations of apportionment
methods. In Germany, the barrier clause has always been 5%. To reproduce the distri-
bution of seats in the German Bundestag, we therefore specify threshold(5). Using
data for the elections of 1965, 1969, and 1972, we reproduce the distribution of seats as
reported by Statistisches Bundesamt (2005, 54) and stored as variable mandates in the
German election data.
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. use electionsde if inrange(year(eldate),1965,1972), clear

. by eldate, sort: egen seats = apport(votes), size(size) method(dhondt)
> threshold(5)
(19 missing values generated)

. list eldate party mandates seats if mandates != ., sepby(eldate) noobs

eldate party mandates seats

19 Sep 65 FDP 49 49
19 Sep 65 SPD 202 202
19 Sep 65 CDU/CSU 245 245

28 Sep 69 FDP 30 30
28 Sep 69 SPD 224 224
28 Sep 69 CDU/CSU 242 242

19 Nov 72 FDP 41 41
19 Nov 72 CDU/CSU 225 225
19 Nov 72 SPD 230 230

In Germany, the Jefferson method is known as the d’Hondt method; thus we used
method(dhondt) for method(jefferson).

One particularity of the German election system is that under certain conditions, a
party participates in the allocation of seats even if it has not passed the election threshold
if that party has won the majority of first votes in at least three constituencies. In 1994,
for example, the Party of Democratic Socialism won 4.39% of valid second votes, but
participated in the allocation of seats because it won four direct mandates. Exceptions
from the barrier clause are specified by using an expression that identifies the respective
observations. Here is an easy example of how to include the Party of Democratic
Socialism in the allocation of seats when using the 1994 election results:

. use electionsde if year(eldate) == 1994, clear

. egen seats = apport(votes), size(656) method(hamilton) threshold(5)
> exception(party=="PDS")
Seat goes to stronger party; consider option -raffle-
(16 missing values generated)

. list eldate party mandates seats if mandates != ., noobs

eldate party mandates seats

16 Oct 94 PDS 30 30
16 Oct 94 FDP 47 47
16 Oct 94 Gruene 49 49
16 Oct 94 SPD 252 248
16 Oct 94 CDU/CSU 294 282
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In this last example, we do not fully reproduce the real distribution of seats because
of a further particularity of the German electoral system by which the legal size of
parliament may be increased because of so-called overhang seats. Overhang seats arise
when the national proportion of votes for a party entitles the party to fewer seats than
the number of constituencies it has won.7 These overhang seats cannot be reproduced
with the apport() function.
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