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AN ADAPTIVE CONTROL APPROACH
TO AGRICULTURAL POLICY*
J. W. FREEBAIRN and G. C. RAUSSER

Australian National University and University of
California, Davis

At is postulated that some issues of economic policy in general, and of

. Australian agricultural pelicy in particular, may be analysed in the
framework of an adaptive control model. Policy making is characterized
as a rational, sequential decision-making process under conditions of
imperfect knowledge in which forthcoming information may be used
to learn about the uncertain ferms as decision periods pass. Emphasis is
given to the linear-quadratic confrol problem. The paper provides a
review of the formulation of a policy problem in the framework of an
adaptive control model and of derived policy strategies. An illustrative
example is reported.

Introduction

An adaptive control model analysis of economic policy formalizes
the process of policy making as a multiperiod optimization problem
under conditions of imperfect knowledge. In particular, the model
recognizes uncertainty about the effects of alternative policy actions.
As the process proceeds through decision periods additional information
becomes available. The new information is used in each decision period
to specify the policy action for that period and to learn more about the
effects of alternative policy actions. Further, the adaptive control model
recognizes that current period decisions can actively influence the
information generated for learning. This paper reviews some recent
literature embracing the applicability of adaptive control theory for the
analysis of policy making and suggests how the models could be applied
to the analysis of some problems of Australian agricultural policy.

The paper is structured as follows. The next section discusses the
underlying structure and the results of an adaptive control model
analysis of a policy problem. A specific class of control problems is
considered in a formal way in the subsequent section. These problems
are characterized by a quadratic objective function and linear con-
straints with probabilistic (as opposed to single valued or perfect)
knowledge about the values of the parameters and some of the variables
of the constraint functions. This model is employed in the analysis of
an illustrative version of Australian wheat supply and price policy. A
final section provides a summary and some concluding comments.

Economic Policy in an Adaptive Control Framework

The policy problem is formulated as one of choosing ‘desirable’ values
for a set of policy or instrument variables. In the context of an adaptive
control model the ‘desirable’ values are obtained from the solution of a
formal optimization problem.! This section discusses: (1) the repre-

* Giannini Foundation Research Paper No. 384.
1 This framework of policy analysis stems from the early work by Tinbergen

[11].
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sentation of a policy problem in the framework of an optimization
problem, (2) the nature of the derived policy actions, and (3) the
representation of Australian wheat stabilization policy in the framework
of an adaptive control model.

Policy Problem

The formulation of a policy choice problem as an optimization
problem involves four related components, namely, the policy variables,
the objective function, the constraints describing physical evolution of
the economic system over time, and the process of information collection
and learning over time.

Specification of the policy variables enumerates those variables which
may be manipulated by the policy maker(s) and also the procedures
and points in time at which these variables may be revised in the light
of forthcoming information. The form and extent of potential inter-
vention in the economic system is made explicit.

The objective function of the model ranks the desirability of different
economic states which are directly or indirectly influenced by alternative
settings of the policy variables. Several argument variables may be
required to describe performance of the economic state. Termed per-
formance variables, these would be variables which are thought by the
policy maker(s) to have significant welfare connotations for different
members of society and would include policy variables and endogenous
variables influenced by the policy variables. Given the diversity of
preferences of different sectors of society it would seem reasonable to
use a set of objective functions rather than a unique function in the
analysis, In particular, the functions would span a range of trade-offs
between various arguments of the function to reflect the relative intensity
of preferences of different sectors of society.?

The constraint functions describe the policy possibility set. A set
of initial conditions define the present state of the economic system.
Evolution of the system over time is described by state transformation
functions relating future period states to policy variables, other exo-
genous variables and current state variables. These functions provide
an important dynamic component to the policy problem and provide
a link by which current decisions influence the future as well as the
current period performance of the system. The state transformation
functions are based on a mathematical model of the main causal re-
lationships describing behaviour of the system.

The model allows for uncertainty about the effects of alternative
policy actions via imperfect knowledge about some of the parameters
and variables of the state transformation functions. It is assumed that
policy makers have probabilistic information about these uncertain
terms, and further, that forthcoming information may be used to update
these probability distribution functions.

An important component of the problem concerns the collection of
new information as the process proceeds and the way in which this
information is used to learn about the uncertain components of the
constraint functions. The former involves enumeration of the new
information collected, and the latter embraces mathematical formulae

2 For a more detailed discussion of these points see Rausser and Freebairn (8].
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based, for example, on Bayes’ Rule for incorporating the additional
information in an updated probability distribution function.

Summarizing, the policy problem is formulated as finding values for
the policy variables to maximize the objective function subject to the
current state of the system and probabilistic knowledge about its
behaviour, and subject to the state transformation and probabilistic
knowledge transformation functions. The derived adaptive policy
strategies provide rational policy actions given the assumptions em-
bodied in the optimization problem. Doubtful assumptions, e.g. con-
cerning the objective function, may be parametized to assess effects on,
and the sensitivity of, policy strategies.

Policy Strategies

At least two characteristics of adaptive policy strategies are worthy
of ¢omment, namely, their feedback form and the dual nature of
adaptive control.

The adaptive control strategies specify levels of the policy variables
for each decision period as functions of information that would be
available at the beginning of the period. That is, the policy action in
each period is conditional on the state of the system at the beginning
of the period and on the updated probability distribution for the
uncertain terms of the problem. In this way adaptive policy strategies
involve a process of sequential revision of policy actions in an ordered
manner as new information becomes available.

One of the principal features of adaptive policy strategies is their
dual nature. They embrace dimensions of control, of learning and of
design of experiments, and in general the three need to be considered
concurrently. The control dimension arises from direct effects of different
levels of the policy variables in the objective function and from
indirect effects on current and future levels of endogenous variables
in the objective function. The learning dimension arises from the
feedback form of the policy strategies and in particular from the
process of using new information to update the probability distribution
function for the uncertain terms of the policy problem. Directly and
indirectly alternative policy actions influence the sample information
generated by the economic system and this is the design of experiments
dimension.

The dual nature of adaptive policy strategies has important implica-
tions for policy which would not be observed if the elements of
uncertainty and sequential information accumulation were ignored. The
inherent benefits of more information derive from a more precise
perception of the effects of alternative policy actions which in turn
raises the expected efficiency of future decisions. The information
content of current policy actions may be enhanced by decisions which
are not optimal in a short term control only context. For example,
more can be learnt about the parameters of a supply function if
observations are forced over a wide price-quantity surface than if
a constant price is maintained, but the latter may result in a higher
realization of the objective function in the short-term.® In this situation

31In a concrete context Dreze [5, p. 15] notes . . . a monopolist may wish to
depart from the price which maximizes expected profit simply to learn more about
his demand function’.
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the adaptive policy strategy may sacrifice current control efficiency in
order to achieve greater future control efficiency via a more precise
probability distribution function for the uncertain terms.

An Example

To illustrate the formulation of an Australian agricultural policy
problem in an adaptive control framework, Australian wheat stabiliza-
tion policy might be analysed in the following manner.*

The policy variables, variables that could be manipulated by the
Australian and State governments, would include wheat delivery quotas,
home consumption price, export guarantee price and level of guaranteed
exports. Further, suppose these policy variables may be revised at the
beginning of each (wheat) year. Alternative policy actions would
consist of different combinations of levels of the policy variables.

Alternative policy actions would be evaluated in terms of performance
variables considered to have welfare connotations for identifiable groups
influential in the formulation of wheat stabilization policy. These groups
include the Wheat Growers’ Federation, the Treasury and Cabinet
members. The preferences of these groups may be considered in terms
of price received by the producer, stability of price over time, consumer
price, Treasury outlay, and so forth. These variables become the argu-
ment variables of a set of objective functions. Different functions in
the set would have parameters reflecting different relative weights
between the argument variables. For example, a producer oriented
function would place relatively more weight on higher producer price
and less weight on lower Treasury outlay than would a Treasury
oriented function.

Constraint functions delineating the policy possibility set would de-
scribe the endogenous variables of the objective function set as functions
of the policy variables, other exogenous variables (e.g. seasonal con-
ditions and the world wheat price) and lagged variables describing the
current state of the wheat sector (e.g. carryover stocks and past prices).
The constraint functions would be based on wheat supply and demand
functions and on identities specifying producer receipts, Treasury outlays
and other performance variables. In reality, policy makers would have
imperfect knowledge about some of the parameters and variables of the
constraint functions.

Probabilistic information about the unknown terms of the constraint
functions could come from several sources. Econometric studies of the
demand for and supply of Australian wheat provide information on the
mean and variance-covariance terms of a probability distribution on
the parameters of the functions. With respect to future values of the
other exogenous variables, probabilistic estimates might be obtained,
for example, for the world wheat price and for seasonal conditions
from the Australian Wheat Board and the Bureau of Meteorology,
respectively.

The above probability distribution functions would be updated as

4 Little imagination is required to characterize a diversity of contemporary
Australian agricultural policy problems in the framework of an optimization
problem. Practically speaking, the most important limiting consideration is likely
to be the availability of an acceptable mathematical representation of behaviour
of the economic system under study.
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time proceeds. Additional sample observations would be used in re-
estimating the econometric model of wheat demand and suppy. The
Australian Wheat Board would use forthcoming market outlook infor-
mation to revise its estimates of future world wheat prices. These
learning activities become the information updating functions of an
adaptive control model.

The foregoing illustrates how Australian wheat stabilization policy
" might be formulated as a multiperiod optimization problem. Allowance
is made for uncertainty about the effects of alternative policy actions.
Forthcoming information may be used to learn about the uncertain
terms as decision periods pass. The adaptive policy strategy is obtained
by solving the optimization problem.

For each policy variable for each decision period a feedback function
is ohtained. Thus, for example, the policy variable wheat production
quota is expressed as a function of variables describing the current
state of the wheat economy, e.g. carryover stocks, and probabilistic
information reflecting knowledge about behaviour in the system, ¢.g. of
consumer demand, and probabilistic information about the other exo-
genous variables, e.g. world wheat price. At the beginning of each
decision period the adaptive policy strategy together with updated infor-
mation is used to compute the policy action for that period. For future
periods the strategy indicates how policy actions are to be revised in
the light of forthcoming information.

Linear-Quadratic Adaptive Control Problem

In an application context most of the literature on adaptive control
theory, e.g. engineering-oriented studies by Aoki [1], Athans [2], and
Bryson and Ho [3], and economic-oriented studies by Prescott [7], and
Rausser and Freebairn [9], has focused on the linear-quadratic problem.
This particular class of models requires assumptions which seem tolerable
for a number of potential applications. This section provides a formal
specification of the linear-quadratic problem and summarizes the avail-
able solution procedures and implied policy strategies.

Policy Problem

The linear-quadratic adaptive control model specification of a policy
issue is represented as: find the adaptive decision strategy

) uf (ye—, PG, t=1,2,...,T
to maximise

T .
2y J=E {tzl Dt 1(2klys + 2hiuy — yiKiys — ui Hy Ui — 2uiLiys)

_ + DTQfgryyr — yiFreye)
subject to

3) vt = Ayi—; + Bug + Cx¢ + et

(4)  Pt(A,B,C,x1,et) = PL(A, B, C) Ph1(x) P2 (xy) ... Phr (x7)
Ph1(e,) Pz (es) . . . Phz (en)

(5 Pt(-) = L (P1(*), 1, U, X4, S1),

and

(6) Yo = y(0) and P(-) = P(0)
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where y is an n-vector of endogenous (or state) variables, u is an m-vector
of policy variables, x is a p-vector of other (noncontrollable) exogenous
variables, and e is an n-vector of error terms. The particular objective
function J in (2) is assumed to be concave, and its parameters in k, h, f,
K, H, L, F and D are assumed known; E is the expectation operator. The
parameter matrices A, B and C of the constraint functions (3) are assumed
to be unknown. ® The function Pt(-) in (4) denotes the probability distribu-
tion function, or its set of sufficient statistics, conceived at the beginning of
p%riod t for the unknown terms, A, B, C, xt (= {x¢, X¢-y, . . . , Xr}) and
et (= {e, et—y, . . ., ex}). The function I(-) of (5) denotes an information
updating function where additional sample observations, yt, Ui, Xt, and
other new information bearing on xt, denoted as s;, is combined with
Pt=1(-), to derive the updated probability distribution function Pt(:).
The vector y(0) denotes the initial state of the system and P(0) denotes
the initial probability distribution function. Before proceeding, a few
comments on the underlying assumptions of the problem seem appropriate.

Even though the actual form of the objective function may not be
quadratic, such a form might provide a reasonable approximation. Appeal
could be made to a Taylor series expansion in which the linear and
quadratic terms are retained. The function allows greater levels of an
argument variable to increase (or decrease) social welfare at an
increasing rate either dependent on or independent of the levels of
other variables. For cases where a performance variable has a target
path, a quadratic function can be specified to penalize deviations from
this path with the penalties growing at an increasing rate.

Similarly, the assumption of linear equality constraints may be justified
as a local approximation. Further, it is a common assumption in applied
econometric studies. Since a difference equation of order r can be
transformed into r difference equations of order one, the assumption
of a set of first order difference equations is not restrictive.

For the purposes of this paper the probability distribution function PY(+)
is considered in terms only of its mean and variance-covariance statistics
for the case where the constraints are based on an estimated econometric
model. The latter supplies the respective statistics for the parameters A, B
and C and for the error variables et. Note that an assumption of serial
independence between the error terms js assumed. Forecasts of future
values of the other exogenous variables x are assumed to be independent
of the estimates of the econometric model.

With respect to the parameters in the matrices A, B and C, the learning
function I¢(-) involves updating the econometric model estimates with the
additional sample observations yi, x; and u. Potential updating procedures
include Kalman filters, the application of a Bayesian regression estimator
with an informative prior, and re-estimation by least squares using the
augmented sample. In all cases the learning function will be a complex
nonlinear function in P{(-) and the additional sample observations. 8

The adaptive control model specified in (2) through (6) admits a
number of special models reported in the literature. The deterministic

5 This specification ignores uncertainty about the general form of the constraint
functions, e.g. of appropriate included variables and of the mathematical form of
the functions.

8 For further details see, for example, Aoki [1], Bryson and Ho [3] or Zellner

3],
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problem follows if e, is a null vector, and x., A, B and C are known.
Holt [6], Theil [10] and others consider the case in which e; and X
are stochastic and A, B and C are known. Stochastic control problems
discussed by Turnovsky [12], Chow [4] and others arise if P*(-) = P(0)
for all t.

Derivation of Adaptive Policy Strategies

At least conceptually the adaptive policy strategies ut(+) in (1) may be
obtained by dynamic programming or by the discrete maximum principle.
Unfortunately, except for very simple problems it is impracticable to derive
these strategies. The sources of intractability arise from the highly nonlinear
form of the information learning functions (5), and from the ‘“‘curse of
dimensionality””.” Given the present state of knowledge, it is necessary to
consider policy strategies which approximate the adaptive policy strategies.

Some Approximate Policy Strategies

Two approximate and hence suboptimal solutions to the optimiza-
tion problem (1) through (6), namely the stochastic policy strategy
and the sequential stochastic policy strategy, are discussed in this
section.® At the expense of further simplification of the policy problem
these strategies are easily solved with the aid of a computer.

. The stochastic policy strategy, denoted as ui(yt-1, PO, t = 1,2,..., T,
IS obtained by finding the sequence of policy variables to maximise (2)
Subject to (3), (4) and (6) with P¥(-) = P(0) for all t. The latter means that
the information updating function (5) of the adaptive control problem is
bypassed. Now, the simplified optimization problem is the familiar
linear-quadratic stochastic control problem. Operationally, ui(-) is
obtained by the backwards solution of a set of recursive equations. Details
of the procedure may be found in Aoki [1] or Chow [4]. The stochastic
policy strategies are in linear feedback form, VizZ.,

(7 ui(yi-1, P(0)) = GP(0)yt-1 + &(P(0))

where the mXn matrix G, and the m-vector g are based on the known
parameters of the objective function (1) and the mean and variance-
covariance terms of the probability distribution function P(0) in (6).

The stochastic policy action taken each decision period is computed
using the new information on the current state of the system as measured
by ye—1. No provision is made for the use of forthcoming information
to Tearn about the parameters A, B and C of the constraint functions.
The sequential stochastic decision strategy incorporates learning about
the A, B and C parameters.

The sequential stochastic policy strategy, denoted as u$® (yi—1, Pt71(*)),
t=1,2,..., T, is obtained by artificially separating the control and
learning aspects of the policy problem. Each decision period a new
stochastic optimization problem is solved using the updated probability
distribution function P¥(-); recall that for the stochastic policy strategy
it was assumed that Pt(-) = P(0) for all t. To illustrate, after following the

7 For details see Aoki [1], Prescott [7] or Rausser and Freebairn[9].

8 Other approximate policy strategies are discussed in Aoki [1], Zellner [13] and
Rausser and Freebairn [9]. They include linearization of the information learning
functions and certainty equivalent policy strategy.
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first period stochastic policy action, uf(y(0), P(0)), the new information is
used to compute P(+) according to the information learning function (5).
Using PY(+) a new stochastic optimization problem is solved to obtain
uf® (ye-1. P1(-)) = ul(ys—1, PI()), t = 2, 3, ..., T. The second period
policy action, u3® (y,, P3(+)), is implemented, and the sequential process is
repeated.

Compared with the adaptive policy strategy the sequential stochastic
policy strategy recognises the control and learning dimensions but ignores
the experimental dimension. In deriving ui®(-) it is assumed that forth-
coming sample observations will not be used to learn about the unknown
A, B and C parameters, however this assumption is revised each decision
period. That is, the sequential stochastic policy strategy only allows for the
passive accumulation of information and ignores the influence of current
policy actions on the information generated. It follows that the degree of
suboptimality of the approximation will be related to the importance of the
design of experiments dimension in the adaptive policy strategy.

The importance of the design of experiments dimension is re-
flected by two considerations, namely, the extent of imperfect
knowledge and the extent to which alternative policy actions
facilitate learning. The former is measured by the magnitude of
the terms of the variance-covariance matrix P*(-) (assuming un-
biased estimates) and the latter is measured by reductions in these
terms. The rate of learning is enhanced by policy actions which
generate a wide dispersion of values for the explanatory variables of
the constraint function. In a Monte Carlo study Prescott [7] found
experimentation to be of little importance for cases where the ratio of
the mean parameter estimate to its standard error exceeded one in
absolute value. Further experiments would be desirable before regarding
Prescott’s results as generally applicable. Conservatively, it seems rea-
sonable to conclude that for those applications based on econometric
models with well-defined parameter estimates, that 1s, with parameter
estimates significantly different from zero at the five per cent and
higher levels, the sequential stochastic policy stratcgy will be a close
approximation to the adaptive policy strategy.

Some Additional Results

The expected loss of alternative policy actions relative to the stochastic
policy action and the expected value of additional information resulting in
more efficient (i.e. lower variance) estimates of the unknown terms of the
constraint functions can be analysed for the stochastic policy strategy, see,
for example, Rausser and Freebairn [9]. With respect to the former, the
expected first period loss of a policy action u relative to the stochastic
policy action ui(y(0), P(0)) is given by (ui() — u,) N(ui(-) — v,) with N
a positive definite matrix. Characterization of the value of additional
information, i.e. of more efficient estimates of the A, B and C parameters,
of a model specification with smaller error term variances and more efficient
forecasts of the other exogenous variables, provides a basis, together with
the costs of these activities, for assessing the payoff of further refinements
to the policy analysis.

An Example
This section provides an adaptive control model analysis of a sim-
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plified version of one aspect of Australian wheat industry policy.?
Suppose the Australian government proposes to influence wheat produc-
tion with the objective of attaining a desired stock of wheat and it has
available one policy variable, the per tonne payment to producers, which
may be revised each year, say, February of each year.

It is assumed that the policy objectives can be evaluated in terms of
two variables, the stock of wheat available for the new marketing year,
say at January 31, denoted as q (million tonnes), and the level of
the producer price, denoted as u; (dollars per tonne). For trade and
storage reasons a desired wheat stock, g*, is preferred. At current price
levels increases in the producer wheat price raise social welfare but
at a decreasing rate to reflect producers’ pressure for increased returns
modified by considerations of Treasury costs and domestic food prices.
At least as a local approximation, the foregoing preferences can be
repiesented in the framework of a quadratic objective function in the
following manner

T
(8) J = I (ayu — apui — Ba(qe — a2
X
= X (2hus — u; Huy + 2K’y — ytKy) + Q

where y, = [q: : '] is the state vector partitioned according to whether
the state variables have a nonzero effect on the objective function or
not,® u, and q; are as defined above, and the parameters h = 0504,
H == Clo, kl —_— ﬂlq*, kg _— 0, I<11 — B], and K12 :K21 - K22 _ 0 Te-
main to be determined.

Two objective functions and hence two sets of parameters for (8) are
specified to reflect different weights attached to importance of the
argument variables u; and g, in social preferences. Specifically, the
parameters reflect the following assumptions: a desired wheat stock
of g* = 13 (million tonnes); a quasi-maximum wheat price of
u* — 150 (dollars per tonne)—a price beyond the likely observable
level and so ensuring that for observable prices, higher prices are
preferred—and two trade-off ratios between the argument variables u,
and q; such that a million tonne divergence from the desired wheat stock
causes about a half or about the same social loss as a twenty dollar
drop in the producer price (from its quasi-maximum level).'* The
former trade-off reflects relatively stronger preferences for a higher
producer price. The two sets of parameters arc:

Objective Function A (strong preference for high price)
(8a) h =75 H=005k = 65, K;y = 05, and:

Objective Function B (weak preference for high price)
(8b) h = 375, H = 0-025, k; = 65, Kyy = 0°5.

9 Given the simplifying assumptions and the hypothetical data employed, the
example is illustrative only.

10 Subsequently yv: = [qt @ ol

11 The estimated parameters are reached in the following way. Given that
J — 2az — bz2 = a2/b — b(z — z*)2 with z* ==a/b being the level of z at
which J takes a maximum and the marginal condition dJ/dz = —2b(z — z*),
then b = —(dW/dz)/(2(z — z*)) and a = bz*, where z denotes q or u. For
function A, dJ/du = dJ/dg = 1, q* = 13, q = 12, u* = 150 and u = 130.
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For the purposes of the policy analysis an inventory identity and a
wheat supply function describe the important aspects of behaviour in the
wheat sector and they form the basis of the state transformation func-
tions. The inventory identity links the end of year wheat stock, qs, to
the beginning of year wheat stock, q.—,, production, o, and sales, Sty
(%) Qe = Qe—1 + O — S
where all terms are in million tonnes. Wheat production, oy, is specified
as a function of the prices of wheat and wool, u, and p,, respectively,
an index of seasonal conditions, r., lagged production, o,_,, and an
error term, ¢, viz

(10 Ot = ¢ -+ iUt + PPt + Palt + Py 00—y + €

where the ¢’s are unknown parameters. After substituting (10) for o,
in (9), the state variables q; and o, may be specified in reduced form
as functions of lagged endogenous or state variables, a policy variable,
other exogenous variables and error terms, viz,

(11) [Qt] [1 0 954] [Qt— 1:, [‘f’ 1]
= + th
Ot 0 4, Ot—y 3

[‘f’o by &3 —1‘0] 1-07] [et]
+ +
o P2 ¥3 0 Pt €t

Ty

L st ]

where all terms are as defined above. Equivalently, (11) may be re-
stated as the following set of state transformation functions
(11a) Yt = AY¥i_1 + Bu; + Cx, + e,

In the state transformation functions (11a), the parameters A, B and
C and the variables in x, and e, are unknown. For an artificially genera-
ted sample of twelve observations ordinary least squares was applied
to estimate the mean and variance-covariance terms of a probability
distribution function for the ¢’s and ¢ of (10)™2. The mean estimates
together with the standard errors obtained are reported in (12) below.

(12)  o¢=2-40t + -0527u; — -0337p; + -2389r, + -67920; 4
(4-244) (-0332) (-0387) (-2496) (-3098)

Ee = -6702

The sample estimates in conjunction with the definitions of the elements
of the parameter matrices of (11) are used to derive the mean and
variance-covariance terms of the probability distribution function for
the A, B and C parameters and for the e, variables, e.g., Ea ;; = 1.0,
Eay, == 0-6792, Var a;; = 0 and Var a;, =— (0-3098)2, where E and
Var denote expected value and variance, respectively. The mean estimate

12 Specifically, the data were generated as follows. The true form of the supply
function was specified as or = —1:5 4 0-045u, — 0-02p: -+ 0-25r, +
0-850:1 4-¢:. The explanatory variables were generated from a normal distribu-
tion function with the parameters u, ~ N(100, 400), p. ~ N(150, 2500),
re ~ N(5, 4) and ¢ ~ N(O, 1).

E
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of the vector of exogenous variables was arbitrarily specified as E x; =
[1, 150, 5, 12] for all t. Collectively these statistics comprise the proba-
bility distribution function P° (-),

(13) P(A, B, C, et, x1)-

Summarizing so far, relations (8), (11) and (13) plus an initial
state condition yo = y(0) represent the wheat policy problem as a
linear-quadratic stochastic optimization problem.

The derived stochastic policy strategy,

ui(yt—1, PU()) = Gt (PUC)ye-1+ & (P°C)),

for the two objective functions (8a) and (8b) is reported in Table
1. Because of the special assumptions of stationarity of Ex. for all t
the parameters of the policy strategy are time invariant in this example.
The.more interesting aspect of these strategies concerns the parameters of
the G-vector. The greater the level of the present stock of wheat, qt—;, and
the greater the level of last year’s wheat production, ot-4, the lower would
be the recommended producer wheat price for the coming season. Sen-
sitivity of the recommended producer price to future levels of the state
variables is less for objective function A which reflects a relatively stronger
preference for high wheat prices. The respective first period stochastic
policy actions for a current situation characterised by wheat stocks of
fifteen million tonnes and last year’s production of twelve million tonnes
are shown in Table 1.

To illustrate the learning dimension of an adaptive policy strategy,
assume five years additional information becomes avaliable. The new
sample observations can be incorporated in an augmented sample for
re-estimating the unknown parameters of the wheat supply function (10).
The updated. estimated function obtained is , '

(14) o¢ = 1-918 + -0510us — -0330p; + -2713r; + 70740,

(4-107) (-0138) . (-0194) (-0998) (-1263)

E et = 7934 _
Comparing the estimates of (12) and (14), inclusion of the -additional
sample observations in the estimates has improved the efficiency -of the

parameter estimates markedly. The updated estimates, together with
additional information about the other exogenous variables, e.g. suppose

TABLE 1

Stochastic Policy Strategy and First Period Policy Action for Two
Objective Functions

| ‘ Parameters”
Policy Action
Objective G-vector with respect to: for yy(()) 1_—_
Function® | g-scalar [15, 12]
i = (producer
o l qe -1 1 O¢ -1 wheat price)
Function A |  —2.119 { —3.419 178.8 ‘ 105
FunctionB | —2871 | —4.302 1186.2 92

2 Parameters given in (8a) and (8b) respectively.
b Conditional on PO(-) in (13).
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Ex, = [1, 120, 5, 10], is collated to form the updated probability
distribution function P* (). A new stochastic optimization problem using
P*(-) rather than P°(') is solved to derive the sequential stochastic
policy strategy

Ui (ye-1, PA)) = GPY-)yr-y + g PH()).
The parameters of this strategy are reported in Table 2.

TABLE 2
Sequential Stochastic Policy Strategy for Two Objective Functions
I Parameters® _
Objective Function® G-vector with respect to: | g-scalar
S N N
Function A —2.302 —3.668 ] 156.5
Function B ’ —3.190 | —4.685 |

* Parameters given in (8a) and (8b), respectively.
® Conditional on P#(-) described in text,

Conclusions

The paper explains how adaptive control methods can be applied to
the analysis of policy making in the agricultural sector. Policy making
is characterized as a multiperiod optimization problem in an uncertain
world. A process of sequential decision making permits the use of
forthcoming sample and other information to learn about the uncertain
elements as decision periods pass. Adaptive policy strategies recognize
the effects of alternative policy actions in terms of contro , learning and
design of experiments dimensions. To a large degree an adaptive control
model assists in formalizing many of the assumptions which are implicit
in a real world policy making situation.

Much of the literature has focused on the linear-quadratic model,
partly because of the mathematical tractability of this class of optimiza-
tion problems and partly because the required assumptions appear
reasonable approximations for many potential applications. Inexpensive
computer routines are available for deriving the stochastic and sequential
stochastic policy strategies.

The adaptive policy strategy indicates policy actions for the current
period and how policy actions for future periods should be revised in
the light of changing circumstances and new knowledge about behaviour
of the system. Parametric analyses using different objective functions,
different economic model specifications and different forecasts of other
exogenous variables could provide useful insights into the effects of
alternative policy actions.
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