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A NOTE ON OPTIMAL RULES FOR
STOCHASTIC EFFICIENCY ANALYSIS

ROSS G. DRYNAN*
University of Queensland, St. Lucia, Qld 4067

The concepts of stochastic efficiency have been formalised only in the
past 20 years. The literature expanded rapidly throughout the 1970s
(see, for example, Whitmore and Findlay 1978), with a significant input
from agricultural economists (for example, Anderson 1974). Subse-
quent theoretical developments have been relatively few. Publications
on stochastic efficiency in the agricultural economics literature have
continued to appear, principally applications papers in the American
Journal of Agricultural Economics (for example, Lee, Brown and
Lovejoy 1985) and the regional US journals (for example, Lemieux,
Richardson and Nixon 1982; Rister, Skees and Black 1984).

This note has been prompted by the recent paper by Buccola and
Subaei (1984) in this Journal, and aims to draw attention to some long
established, but little used, results from the stochastic efficiency
literature.' These results on mixed, or k-way, dominance (Drynan 1977,
Fishburn 1978; Meyer 1979) stem from Fishburn’s (1974) work on
convex stochastic dominance. In essence, the results generalise standard
stochastic dominance rules. More significantly, they mean that
application of the standard rules to a set of prospects may not be
sufficient to identify all prospects that are inefficient. In addition to
drawing attention to these older results, the paper reports k-way results
for a wider class of utility functions than previously considered. Means
of implementation are outlined.

The paper is organised as follows. In the next section relevant
concepts are defined. Then follow the major mixed dominance results
and means of implementation by linear programming. Results for the
wider class of utility functions are then presented. The paper is
concluded with a discussion of the significance of both the particular
mixed dominance results and stochastic efficiency more generally.
Some readers may find it helpful to read this final section before reading
the main results section.

Preliminaries

Assume that a choice is to be made between » feasible prospects, a;,
i=1,2,..., n each with uncertain outcome and monetary consequence
w, wela, b}. Assume each prospect can be described in terms of its
density function on monetary consequences, Fo{(w). Additionally,
define for each prospect the cumulative functions:

* The material in this paper, with the exception of the penultimate section, is drawn
from the author’s Ph.D. thesjs at the University of New England. The assistance of Jock
Anderson, supervisor, is gratefully acknowledged.

1 One of the few publications in the agricultural economics literature to note these
results is Anderson, Dillon and Hardaker {1977).
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n E-,xw):f Fou@ dz,  j=1,2,3
a

For j=1, the cumulative function for prospect / is the distribution
function of monetary consequences for that prospect.

Assume that choice between prospects is based on a von
Neumann-Morgenstern utility function for monetary consequences,
u(w), with u’(w)>0, wela,b]. The preferred prospect 1s that for which
expected utility is a maximum, where the expected utility of the ith
prospect is defined by:

(2) EU,-=fbu(w) Foi(w) dw

Assume that u(w) is known only to the extent that #(w)gU, where the
class of utility functions U is a subset of the set of von
Neumann-Morgenstern utility functions. Then, if for each member of
U, a prospect other than a; is preferred to a;, the prospect a;is said to be
dominated. Dominance can occur in several ways. In the special case
where prospect a; is preferred to a; by all members of U, then the
prospect a; is said to be pairwise dominated by a;, to be one-way
dominated, or to be dominated in the pure sense. When a union of k
prospects exists such that some member of the union, perhaps different
for all u(w), is always preferred to prospect g; by all members of U, then
prospect a; is k-way dominated, or dominated in the mixed sense.

The subset of prospects formed of all prospects which are preferred to
all other prospects by at least one member of U is called the efficient set.
The efficient set consists only of prospects which are not dominated.
Those prospects not in the efficient set comprise the dominated set. The
objective of efficiency analysis is to divide the set of prospects into the
efficient set and the dominated set.

Any rule used to decide some form of dominance is optimal if it is
necessary and sufficient for the given form of dominance, valid if it
is sufficient, and invalid otherwise.? Only an optimal rule will identify
the efficient set.

Efficiency Analysis

In this section, necessary and sufficient conditions for a prospect to be
dominated are determined for various classes of utility functions. Three
classes are of particular interest. They are:

Ur={u(w): u?w) and u’(w) exist and are continuous with #’(w)>0 for
wela,b)

k]

2 Most stochastic efficiency analyses have relied on pure dominance rules. When valid,
such rules are too strong for the concept of dominance defined above and as used in these
same analyses. A prospect which is inefficient because, for every utility function, there is
another prospect, not always the same, which is preferred to it, will not be detected. The
mixed dominance rules defined in later sections are optimal. One common pair-wise
efficiency rule which is invalid when applied to the class of risk averse utility functions is
the *E-V’ rule. It may indicate that an efficient prospect is inefficient, and that an
inefficient prospect is efficient (Porter 1973).
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Ur=1{u(w): w(w), ' (w), and u”(w) exist and are continuous with
W (w)>0, u”(w)<O0 for wela,b]}; and

Us={u(w): u(w), u'(w), u”(w), and u”’(w) exist and are continuous
with ' (w)>0, u”(w) <0, u”’(w)>0 for all we[a,b]!.

The following necessary and sufficient conditions for dominance of
one prospect by another for these classes are well known (see, for
example, Anderson 1974 and references therein). For the class of utility
functions U,, r=1, 2, 3, prospect a; is dominated by prospect a;, if, and
only if, F\(w) stochastically dominates F ;(w) in the rth degree, where
stochastic dominance relationships between distributions are defined as
follows. The distribution function £, ;(w) stochastically dominates the
distribution function F ;(w) by rth degree stochastic dominance if, and
only if, (a) F,:(w)<F.{(w) for all weg[a,b] with strict inequality for at
least one value of w; and (b) F>i(b)<F>,(b).

The stochastic dominance orderlng rules are optimal for one-way
dominance for the appropriate utility classes. By applying optimal
one-way ordering rules to all pairs of the basic prospects, all prospects
which are dominated by another prospect can be identified and
discarded, leaving a reduced set. This set has often been referred to
mistakenly as the efficient set. That this procedure, based on pair-wise
comparisons of prospects using an optimal one-way ordering rule, does
not necessarily yield the efficient set can be shown by example.

Consider the class of utility functions containing only two utility
functions u,(w) and u2(w). Suppose there are three prospects, ai, az, and
as. Further suppose that the ordering of the prospects in terms of
ui(w) expected utility is EU(a1)> EU(a2)> EU(as); and for ua(w),
EU(as)> EU(a2)> EU(a)). The efficient set then consists of a; and as,
and prospect a: is dominated. However, from a pair-wise comparisons
analysis, a2 1s not dominated by any other prospect, and the reduced set
from a pair-wise comparisons analysis contains all three prospects.

To identify the efficient set, it is necessary to compare potentially
dominated prospects with all the remaining prospects simultaneously.
Theorem 1 provides a sufficient condition for dominance of a prospect
for any class of von Neumann-Morgenstern utility functions.

Theorem 1
For any class of von Neumann-Morgenstern utility function, U, and a
set of prospects a;,, i=1, 2, ..., n, prospect g;1s dommated if there exists

an n-vector, A, 1,=0, i=1,2, ..., n, 4,=0, ): A:=1, such that the

i=1
n
random strategy prospect, X A;F,; formed by choosing a; with
i=1

probability A;, dominates prospect a;.
n

Proof: Consider the prospect X A:Fi. The expected utility of this
i=1

prospect is:

3) EU(iﬁlxiFl) Y LEU(a)

i=1
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n
If this prospect dominates a; then X A;EU(a)>EU(a) for all

i=1
u(w)eU, and hence for each u(w), at least one EU(a)>EU(a)), i#].
Hence, a; is dominated.

It is important to appreciate that the random strategy prospect does
not correspond to a sum or linear combination of random variables as
one encounters in portfolio construction or whole-farm planning.
Instead, the random strategy prospect has a distribution formed as the
sum or linear combination of other distributions. As Theorem 1 says,
the prospect is formed in a probabilistic fashion by randomly drawing
one of the » actual prospects which are available for choice.

Theorem 2 establishes that the condition is necessary for some classes
of utility functions.

Theorem 2

For a class of von Neumann-Morgenstern utility functions, U, such
that any positive linear combination of members of U also lies in U, and
asetof prospects a;, i=1, 2, . . ., n, prospect a;is dominated if, and only

n
if, there exists an n-vector A, 4,=0, i=1, ..., n, =0, X A4=1,

=1
hn
such that the random strategy prospect, X A;F1; formed by choosing
i=1

a; with probability A;, dominates a;.

Proof: Sufficiency follows from Theorem 1. For the best proof of
necessity, see Fishburn (1978).

Many interesting classes of utility functions will satisfy the
requirements for Theorem 2. The theorem holds, for example, for U\,
U», Us. 1t also holds for the class of quadratic utility functions, and for
the risk aversion constrained classes considered by Meyer (1977a),
namely, classes such that each member utility function has a local risk
aversion function that never lies above an upper bound function ry(w)
and never lies below a lower bound function rz(w).

To apply the theorem to g, for any of these classes, it is necessary to
search for a constrained convex combination of the prospects which
one-way dominates a;, Making use of the existing theorems giving
necessary and sufficient conditions for one-way dominance, the
following theorem can be established.

Theorem 3

~ For the class of utility functions Uy, r= 1, 2, 3, and a set of prospects a;,
i=1,2,..., n, prospect a; is dominated if, and only if, there exists an

n-vector A, 4,=0, i=1, 2, ..., n, 4;=0, X A;=1, such that the

i=1
n
distribution function X A;F;i(w) stochastically dominates the dis-
i=1
tribution Fyj(w) in the rth degree.

Proof: Proof follows from Theorem 2 and the one-way dominance
results.
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Theorem 3 can be seen as a specialisation of the convex stochastic
dominance results obtained by Fishburn (1974). He considers two sets
of n prospects {a} and {b}} with distribution functions Fy ;(w) and G1(w),
i=1,2,..., n respectively, and establishes the following result (among
others).

For U, r=1, 2, if, and only if, there exists an n-vector A, 1,20,

n n
> A;=1, such that the distribution function X A;F:(w) stoch-
i=1 =1

R
astically dominates the distribution function X A,G1w) in the rth
=1

=
degree, then for each utility function in U,, there will be an / such that a;
is preferred to bi. By setting alt G1:(w), i= 1,2, . . ., n,equal, the necessary
and sufficient conditions for dominance of one prospect by others are
obtained.

By applying Theorem 3 successively to the prospects, all dominated
prospects will be identified, and the efficient set obtained for the
particular class of utility functions.

Implementing Dominance Analysis for U, Classes

At the practical level, the optimal one-way dominance ordering rules
have often been abandoned in favour of less theoretically attractive, but
more casily implemented, rules such as the E-V criterion, the mean
lower partial variance rule (Bawa 1975), the mean lower partial average
negative deviation rule (Tauer 1983), or the mean-Gini rule examined
by Buccola and Subaei (1984). A k-way dominance analysis 1s even
more difficult to implement without resorting to some pragmatic
approximation. For Theorem 3 cases, the search for suitable A; values
can be performed efficiently by linear programming.

For an rth degree one-way stochastic dominance analysis of

n
¥ A;Fi(w) and F1j(w), the two distributions must be compared for all
i=1

sz[a, b]. This comparison can be effected, arbitrarily well, by comparing
the two rth cumulative functions at a set of m points, wy, s=1,2,.. ., m,
in [a,b]. Consider the following linear programming problem.

m
(4) Max Z Csds
Ai‘ ds s=1

subject to:

n
(5) Z AfFr!j(M)§)+d5=Fr’j(Ws) 5= l, 2, .o oes m
i=1

) gllsz,g(b)st,j(b)

7 E A=1
i=1

8) 4;=0

9y A:=0, d=0
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The activities ds, s=1, 2, .. ., m, are slack or disposal activities with
arbitrary positive coefficients ¢;, s=1, 2, . . ., m. The first m constraints
require that the rth cumulative function of the random strategy prospect
be no greater than that of the prospect a; at the m points at which
comparisons are made, since each d; is required to be non-negative. The
next constraint requires that the random strategy prospect have at least
as large a mean as prospect ;. The remaining constraints restrict the A;
values to form a convex combination, with no contribution from
prospect a,.

The solution of this problem by the simplex method can be divided
into two phases (Hadley 1962): (a) locating a feasible solution; and (b)
locating that feasible solution which maximises the objective function.
If no feasible solution exists, /', j(w) is not stochastically dominated in

n
the rth degree by any allowable distribution X A, F 1.:(w), and hence,
=]

=
prospect g; is not dominated. If a feasible solution exists with one or
more of the ds, s=1, 2, ..., m, positive then a; is dominated. Once a
feasible solution with one d;>0 is found, further optimisation can be
abandoned.

When analysing a set of prospects to determine the efficient set, some
modifications can be made to the linear programming formulation to
improve computational efficiency. First, variable A; and the constraint
A4;=0, can be omitted. Second, any prospect which is found to be
dominated can be discarded and not used in subsequent analysis of
dominance of other prospects. Third, performing a one-way dominance
analysis of all prospects initially may help to reduce the size of the set of
prospects to be considered.

Finally, since U,+ is a subset of U,, the efficient set for U, is a subset
of that for U,. Hence, if an efficiency analysis has been performed for U,
one for U,+) need only consider the prospects in the efficient set for
U.

In summary, the proposed algorithm to locate the efficient set for U, is
as follows.

[1] Compute the F, (w) functions, i=1, 2, . . ., n, using some form of
integration.

[2] Perform the appropriate one-way dominance analysis on the
feasible prospects, producing a reduced set of prospects.

[3] Set j=1.

[4] For the reduced set, determine if the jth prospect is dominated by
attempting to solve the appropriate linear programming problem.
If a feasible solution with a positive objective function value is
found, discard prospect a; from the reduced set.

[5] If j=n, all prospects have been examined, and the current
reduced set is the efficient set for U,. Go to 7.

[6] Increment j. Go to 4.

[7] Ifananalysis for Us, s> risrequired, go to 2. Otherwise, terminate
the analysis.

Mixed Dominance for Risk Constrained Classes

As noted earlier, Theorem 2 holds for many classes of utility function.
But practical implementation of the k-way dominance concept depends
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on access to an easy means of detecting one-way dominance and to a
search procedure over alternative convex combinations of distributions
to find a dominating random strategy prospect. While Theorem 2 holds
for the risk constrained classes defined by Meyer (1977a), the one-way
optimal conditions for these classes are not available in closed form.
Useful mixed dominance results are not apparent. But in a subsequent
paper Meyer (1977b) considered those risk aversion constrained classes
which are constrained on only one side. For these classes, he showed
that the optimal pair-wise dominance rules are closely related to the rule
for Ua. Define second degree stochastic dominance with respect to a
function of one distribution by another as follows. The distribution
function F1:(w) stochastically dominates the distribution function
F l,j(W)f 3in the second degree with respect to function A(x) if, and
only if,

(10) f " Fu(w) h(w) dw— f "FLWhmdw=0  for all ye[a,b]

with strict inequality holding for at least one value of y. Meyer showed
that prospect a; is dominated by prospect a; if, and only if, Fi(w)
stochastically dominates the distribution function F1 {w) in the second
degree with respect to function /2(w).

This result generalises that for U: since the latter relates to the special
case h(w)= 1. The practical cost of the generality is negligible since the
only difference in the procedure for detecting one-way dominance is the
inciusion of the extra factor in the integrations. Moreover, the detection
of mixed dominance also parallels that for Us, except that one must now
search for a suitable linear combination of the integrated weighted
distribution functions. The result can be stated as follows.

Theorem 4

For the class of utility functions such that each member has a risk
aversion function no less than rz(w) and a set of prospects a;, 1 =1, 2.,
n, prospect a; is dominated if, and only if, there exists an n-vector A,

n
Ai=0, i=1,2, ..., n, ;=0, Z A;=1, such that the distribution

=1
n
function T A;Fi;(w)stochastically dominates the distribution F1 ;(w) in
=1

the secor;czl degree with respect to 2(w) where ri(w)=—h"(w)/h(w).*

Proof- Proof follows from Theorem 2 (which applies for this class of
utility functions) and from Meyer’s one-way dominance results.

Discussion

Stochastic efficiency analysis may be used in two situations. First, ifa
number of decision makers with differing utility functions confront the

3 Meyer’s (1977b) terminology is different. His ‘function’ is actually the integral of the
h(w) called the ‘function’ here. )

4 A similar theorem can be proved for utility classes with risk aversion constrained only
on the upper side. Meyer (1977)) gives the necessary one-way rules.
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same decision problem, efficiency analysis identifies which of the
prospects would not be selected by any of the decision makers. Second,
in the case where a particular decision maker faces a decision problem,
but the utility function is not known, at least not fully known, efficiency
analysis helps to identify which of the prospects might be selected and
which would definitely not be selected. In both cases, the more
information about the possible utility functions, the greater the
potential to identify inefficient prospects. In the limiting case of only
one known utility function, all optimal and non-optimal prospects are
identified.

From a theoretical perspective, efficiency analysis is appealing. One
attempts to draw the strongest possible conclusions given the
information that is available about the utility functions of the decision
makers. It is possible to derive general statements about behaviour, for
example, that decision makers with concave utility functions will prefer
the sure actuarial value of a gamble to the gamble. But from a practical
perspective, stochastic efhiciency analysis, at least as currently
conceived, would seem to have a more limited role. Do decision makers
ever confront identical decision problems? Are there not usually
differences in monetary and non-monetary payoffs and in beliefs about
events from one decision maker to another? To be more useful,
stochastic efficiency analysis will have to be extended to allow for
variation in these aspects of the decision problem. On the other hand,
this variation does not arise when the analysis relates to a particular
decision maker with a particular decision problem. In this case,
however, it would seem to be possible, if not ultimately necessary, to say
more about the utility function than implied by the U, classes
commonly used in stochastic efficiency analysis. Meyer's risk
constrained classes would seem more appropriate.

One of the practical difficulties with stochastic efficiency analyses has
been their frequent failure to reduce the set of feasible prospects
sufficiently. If the efficient set has been determined, and is considered
large, the analyst has three options: (a) accept the situation; (b) inject
further information into the analysis (for example, by placing more
restrictions on the utility function); or (c¢) abandon high principles and
opt for a workable, non-optimal and possibly invalid rule. The point
made here 1s that the problems which have been encountered with the
size of reduced sets lie in part in failure to find the efficient set through
failure to use optimal ordering rules. In order to judge the efficacy of
stochastic efficiency analysis, agricultural economists, and others, need
first to develop experience in the application of optimal rules.

Given that many decision analysts have found stochastic efficiency
analysis an appropriate form of analysis, the question of why there has
not been greater interest in the notion of mixed dominance remains.
The easy answer is that diffusion of the knowledge has been slow, but
this still leaves the question of why. A more fundamental reason is that
explicit notions of mixed dominance are not required under the
assumptions made in many efficiency analyses.

A major area of application of efficiency analysis has been in portfolio
selection problems in which the set of feasible prospects is formed from
linear combinations of a set of available investment activities. E-V
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analysis has been the most common form of portfolio efficiency
analysis, the ‘efficient” prospects forming an E-V frontier which is
convex to the E axis. The E-V rule is justified on the basis of either
quadratic utility functions or normal distributions along with
diminishing marginal utility. The rule is a valid but not an optimal rule
for efficiency analysis when quadratic utility is assumed. It can be
demonstrated that some prospects which appear efficient on the basis of
a pair-wise E-V analysis are actually inefficient on a k-way basis.’ But in
a portfolio analysis, every prospect within the E-V frontier is one-way
dominated by many individual prospects on the frontier.® Only
one-way efficient prospects on the frontier need to be examined for
possible mixed dominance. But as Baron (1977) has shown, the variance
of a random strategy prospect is greater than the same linear
combination of the variances of the component prospects. Because the
frontier is convex to the E axis, there can be no random strategy prospect
formed from one-way eflicient prospects on the E-V frontier which can
dominate other one-way efficient prospects on the frontier. Thus an
analysis for mixed dominance is not needed in a quadratic utility
portfolio analysis.

Under the alternative justification for E-V analysis, namely
normality and risk aversion, the explicit notion of mixed dominance 1s
again unnecessary. Despite Meyer’s (1979) claim to the contrary, if all
distributions are normal, the reduced set from a pair-wise analysis is the
efficient set.” This applies whether or not one has a portfolio type
problem or a problem with only a discrete set of feasible prospects.

Because of the predominance of portfolio type problems in financial
decision analysis, from where much of the stochastic efficiency analysis
has emanated, it is not so surprising that k-way dominance has not
commanded greater interest. But in many applications in agricultural
economics and elsewhere, decision problems do entail only a finite set of
prospects. The k-way dominance concepts should then be considered
explicitly.

5 Consider the three prospects with means 118, 120 and 122, and variances of 4, 18 and
20. All prospects are efficient under the E-V rule. Consider the random strategy prospect
formed by sclecting each of the first and third prospects with probability 0.5. Following
Baron (1977). this prospect has mean 120 (=0.5%118+0.5%122) and variance 16
(=0.5% 4 +0.5% 20 + 0.5%0.5%(122— 118)%). This prospect one-way dominates the second
by the E-V rule, and since the class of quadratic utility tunctions satishes the conditions of’
Theorem 2, it follows that one or other of the first or third prospects will always be
preferred to the second.

6 This does not mean that all points on the E-V frontier are one-way efficient. Hanoch
and Levy (1970) show that the E-V rule is not the optimal pair-wise rule. It fails to detect
some prospects on the frontier which are one-way dominated for quadratic utility
functions by other prospccts on the frontier.

7 In this case, members of the reduced set from a pair-wise analysis necessarily intersect,
one having the greater variance and the greater mean. Any random strategy prospect that
might dominate one prospect necessarily includes at least one prospect with a larger mean,
and hence with larger variance. The density function (and cumulatives) of this particular
component prospect, irrespective of the positive weight assigned to it, will exceed that of
the potentially dominated prospect for sufficiently negative monetary outcomes. Hence
no member of the reduced set can be dominated. Meyer’s error would appear to lie in
incorrectly assuming that the distribution formed as a convex combination or mixturc of
normal distributions is also normal. Johnson and Kotz (1970) give details of the form of
such distributions.
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