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TIME AND RECURSIVENESS IN
LIVESTOCK FEEDING TRIALS®

J. H. DULOY and G. E. BATTESE
University of New England

In livestock feeding experiments the problem of recursiveness arises
because the quantity of feed consumed by an animal is a function of its
past history of feeding. The problem is most acute where experiments
are designed to analyse sub ad lib feeding. The analysis of such experi-
ments encounters two important problems. The first is that the actual
quantity of feed consumed is an endogenous variable and is not directly
under the control of the experimenter or the livestock producer. The
second problem is the mathematical complexity of the relationships
involved. A solution is suggested as a quasi reduced-form model.

Livestock production processes are essentially of two types: the first
is the factory type, such as milk and wool production, where inputs are
processed by a relatively fixed livestock unit to yield a flow of outputs
(which may or may not be harvested continuously); the second is that
of meat production, where the livestock increase in weight, and it is this
growth which constitutes the product. We are here concerned with the
second type of process, although it is apparent that the analysis has
relevance to the former.!

In experiments aimed at estimating the production functions associated
with meat production and hence at determining the optimal use of
resources, two particular problems are noted. First, for physiological
reasons, it is likely to make sense to feed an animal rations of different
composition as it matures and grows. Second, an animal is fed at differ-
ent levels of feeding over time. We abstract from the first problem of
ration composition by assuming that animals are brought into the experi-
ment at a constant weight and age, and that the composition of the ration
is held constant for the further duration of its life. However, it is clear
that the methodology proposed at the end of the paper can be extended
to account for changing the ration composition throughout the produc-
tion period.

Consideration of the second problem of differing feed levels over time
reveals important differences between livestock and crop experiments. In
a crop experiment designed to explore response to fertilizers, no special
difficulties arise in fixing the levels of fertilizer inputs, given the experi-
mental design. Also, with most annual crops, only one crop is possible
each year, with the time to harvesting largely being determined by the
plant’s physiological response to various environmental stimuli: thus,
time is not a relevant instrumental variable. However, in livestock ex-

* The authors are indebted, with the usual caveats, for comments and sug-
gestions to a number of colleagues, foremost amongst these being John L. Dillon.

1 The design and analysis of agricultural experiments has generated an exten-
sive literature. Excellent bibliographies are to be found in Heady and Dillon
(1961) and Dillon (1967).
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periments the application of inputs is a continuous process over time,
and the time to reach marketing size is a function of the levels of feeding.
For livestock we need to determine not just levels of inputs to be applied
instantaneously, but a pattern of input levels over time. Obviously, it
would not be economic to feed growing livestock a constant quantity
per day for the whole production period. Any fixed-over-time feeding
regime would be uneconomic as the animal may be over-fed when young
and under-fed when older. Because livestock processes are continuously
recurring processes over time, and time to reach marketing weight is a
function of feeding levels, it is clear that there are costs associated with
slow weight gain. Thus time enters the objective function for livestock
processes, although it does not in annual crop production. The time
function in this sense has been considered in the literature, and we use
the results obtained in defining our objective function.2

Livestock feeding experiments may be carried out to determine the
optimal rate of feeding (of a ration of fixed composition), or the optimal
composition of the ration (at some fixed rate of feeding), or to deter-
mine both optimal rate of feeding and composition of the ration simul-
tancously. In the past it has been most common to feed livestock rations
of differing composition on an ad lib basis with a view to determining
the optimal composition. However, there exist good reasons for believing
that feeding at a sub ad lib level may be optimal from an economic
standpoint. That is, for rations of fixed composition, there are likely to
exist diminishing returns to feed as the rate of feeding is increased.
Certainly, the marginal product of feed is zero in the region of stomach
capacity and greater than zero below it.3

For heuristic reasons, we first deal with sub ad lib feeding experiments
in which the ration consists of constant proportions of different feeds,
with only the level varied. Rates of feeding are fixed and coded as k..
We set maximum k; appropriate to the ad lib level of feeding. The
analogue in a crop experiment would be, say, levels of fertilizer O, 1, 2,
3, 4 cwt. per acre coded as 0, 0-25, 0-50, 0-75, 1-00. If we abstract
from replication and define C;; as the capacity level for the i-th animal
on the i-th ration at the r-th time period, then the quantity of feed for
the i-th animal at time ¢, R;;, is given by

(1) R” = kiC“.

The treatments having k; equal to unity are on ad lib feeding. In other
treatments k; is varied downwards from unity,

We define Y, as the weight of the i-th animal at the end of the #-th
period and postulate the production function

(2) A4Yy :f(Y'E,t—-I; Ri),
where 4Y;/(=Yy — Y,;_1) is the animal’s weight gain during the
t-th period. A period is defined as the time over which the daily quantity

of feed fed is constant. It seems that the optimum rate of feeding can
be determined from (1) and (2), given the appropriate prices.

2We use the result that to maximize profits f_rom a continuously recurring
process, it is necessary to maximize profits per unit of time. See Dillon (1967),
Chapter 3.

3 Evidence from stocking rate trials for sheep indicate that high stocking rates
representing sub ad lib feeding are appropriate to maximize profits. See Chisholm
(1965).
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THhe capacity of an animal to consume feed (Ci:) is a function of its
genetic potential (P;) which we assume constant over time, and its
previous levels of feeding. That is,

(3) Ciy = g(Rit—1, Rit—s, ..., Rip, p).

Equation (3) expresses the fundamental problem of determining ex-
perimental feeding rates at a sub ad lib level. This problem, which we
call the problem of recursiveness, is that the capacity of an animal to
consume feed at any given time is a function of the previous feeding
levels as well as its genetic make-up, etc. That is, what an animal can
consume this period depends upon what it was fed last period.

In practice we can observe C; only under ad lib feeding, i.e. where
k; equals unity. If we decide to feed some livestock less than ad lib, we
cannot relate their feeding level to those on ad lib rations because
feeding at sub ad lib rates changes subsequent consumption capacity.
Even if livestock are fed identically, their capacity to utilize feed varies
with their genetic constitution, and thus the optimal rate of feeding
varies. In such a feeding regime, non-optimal rations are prescribed for
some of the livestock because their rations are not based on their own
individual response to feeding. However, for some types of livestock,
notably poultry, the costs of assessing individual rations would outweigh
the savings obtained by feeding optimally on an individual basis. So it
makes sense to feed such livestock on a group basis. On the other hand,
it is common practice to feed milking cows rations individually computed
on the basis of their output of milk. Individual capacity of livestock is
considered the appropriate yardstick on which to base a theoretical
consideration of feeding.

It is easily shown that using ad lib capacity as a basis for designing
experiments does not solve the problem of recursiveness. For illustrative
purposes we consider the case where all livestock are genetically iden-
tical and rations of fixed composition are fed in a non-stochastic world.
Feed animal A (or group of animals—under our assumptions the results
are the same) on an ad lib basis, and another animal B, on a sub ad lib
ration which is in excess of maintenance requirements. The growth curve
of animal A is purely a function of time. It is clear that animal B on
the sub ad lib ration gains weight far more slowly than animal 4 on an
ad lib ration. After some time, the weight of animal B is less than that
of animal A. However, animal B consumes only a proportion of the
feed consumed by animal A. If capacity is a function of liveweight, then
B is receiving, not that proportion of its capacity which is obtained at
the beginning of the experiment but possibly even a capacity ration!
Animal B’s weight and capacity have adjusted to the available feed
supply. Therefore to examine the effects of sub ad lib feeding, we need
to relate the ration to the animal’s capacity, not have the reverse occur.

To obtain an estimate of capacity we assume that it is proportional
to liveweight and that the ration level is determined as before, by varying
k;, where k; is now some fraction of the weight of the animal at the
beginning of each feeding period. Given this and assuming for the
moment only linear functions, the algebraic statement of the problem is
as follows, suppressing the i subscript for simplicity:

(4) AYt = o + alYt_l + (IgRt + Uy
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(5) R, = kY,_,
or

(6) Y = ag+AY 14w
where A4 equals (1 -4 a; + kag).

Equation (6) is a first-order linear stochastic difference equation,

which is equivalent to (7).
(7) Y. = AYo+ (1 +A+ A2+ LA Voo +u

+ Aut_l + A2ut.._2 —I— BN + At“lul
Equation (7) is difficult to manipulate, even if we ignore the high order
terms of A which occur with oy and the disturbances. The numerical
value of 4 would be between zero and one. Were 4 > 1, the animal
would grow continuously at an increasing rate over time,

Assuming a zero rate of interest and constant technology and prices,
the appropriate procedure to yield maximum profits from the livestock
feeding enterprise is to maximize profit per unit of time.* On an
individual animal basis we thus have the objective function:

(8) /T = [p,Yr — S — V,l/T
where = is total profit per animal;®
T is the number of periods for which the process is run;
py is the price per unit of product;
Y, is the animal’s weight after T periods;

S is the fixed set-up cost per animal per run of the process;
and

Vi is the total cost of the rations.

The total cost of feeding (V'r) is the sum of the costs of feeding in
each period for which the process is run. That is,

T
&) Ve = 3V,
t=1

where V; is the cost of feeding in period ¢ and is given by

(10) V: = prR:
where pr is the cost per unit of the ration. Using (5) we obtain

(11) Vi = prkY,-1.
Using equation (7), V; can be re-written as

(12) V,=prk[A*" Yo+ (1 + A+ A2 . . 4 At=2)q,
d Uiy + Aup_o 4 . AP 2.
Vr is obtained by summing (12) over the range t = 1, .. ., T. We
then have

4 Dillon (1967), Chapter 3.6.

5 This objective function is also appropriate for maximizing profits from the
whole animal feeding enterprise, given that the number of animals is exogeneously
determined. However, the objective function could be modified to include the
number of animals per process as an endogencous variable and the optimal
number determined, provided suitable constraints are specified.
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(13) V= pak{Yo(l & A1 4- A2} .. } AT-1)
+ aol(T — 1)A® + (T —2)A' + ... + AT7]
LUy (AT2 - AT-3 e A9) o up(AT3 - AT
A9 e A g AO).

Equétion (13) may be re-written as

(14) Vi = pak{Yo(1 + A + A2+ ... AT"1)
+ag (T — 1A + (T —2)A1 + ... 4 A7)
7r-1 T2

+A0 p3 ut+A1 3 ut+ +AT~2M1}.

t=1 =1

Equation (14) as it stands is rather formidable. However, on a “reason-
able” level of approximation, the terms involving the disturbances u,
may be ignored. We assume that E(u;) = 0, forall¢ =1, 2, ..., T.
We note that those terms involving u,, with low powers of A4, also
involve summing over a number of values of u;. By the law of large
numbers, we may hope that the summation of u; overt =1, 2, ..., =
approaches zero for large r. Also, we note that, where only a few
terms u, are summed, the powers of 4 are large. With 0 < 4 < 1, we
ignore these terms. Hence, using these approximations, we re-write

(14) as:

(15)  Viyp = ppk{Yo(1 + AY } A2+ ... + AT7Y)
+ao (T —1DA*+ (T —2)4A*+ ... + 477}

If we substitute (7) and (15) into (8), we have the objective func-
tion in an operational form. However, even with the approximations in
the feed-cost function (15), the objective function is still an extremely
complicated expression. To maximize it, we would need to follow an
iterative procedure, differentiating the objective function with respect
to k£ and determining maximum =/7, for each of successive values of 7,
until the maximum maximorum was obtained. In practice, whilst 4 is
likely to be less than unity, we expect that it is not close to zero, so
that only the very large powers can be ignored if tolerable precision is
to be retained. This being the case, no analytic solutions are available,
and even numerical solutions would be very costly in computer time.

Even so, what we have done so far involves the gross over-simpli-
fication of assuming a linear production function, which implies constant
returns to increases in the rate of feeding (k). If we reject this assump-
tion, and assume instead that the production function is quadratic,
we have

(16) AY,= oo+ a1 Y1 + a2R: + as(Yi—1)% + as(R,)2 - us.
Using equation (5) the production function (16) is re-written as

(17) Yi=ao+ A1Y1 4+ Ax(Y_1)? + us
where A; equals (1 4 oy + kaz) and A, equals (ag 4 k%0,). Equation
(17) is a quadratic first-order stochastic difference equation, and it
leads to impossibly complicated functions for Yy and V7 to be sub-
stituted into the objective function.

The problem of determining the optimal combination of different
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types of feed is now briefly considered in relation to the problem of
recursiveness. Even when livestock are fed ad lib and the composition
of the ration is the only variable, the problem of recursiveness still arises.
This is so because, in analogy with (3), capacity of livestock to consume
feed is still a function of genetic potential and the previous feeding
regime. This can arise because, with feeds of different composition, one
feed may be more palatable than another; or the increase in the animal’s
weight from a given volume (or weight) of one feed may be greater
than another; or because the capacity to absorb high energy rations,
which pass through the digestive processes more rapidly than low, may
be greater than for low energy feeds; or for some other reasons or
combinations of reasons. Therefore the analysis given for sub ad lib
feeding is also applicable to the case of ad lib feeding where the
composition of feeding is different for different livestock.

From the considerations above, it is evident that the complexity of
the structural relationships underlying livestock feeding experiments is
such as to make a direct approach to the analysis of such experiments
operationally infeasible. The alternative generally adopted by experi-
mental analysts, whilst much less complex, is not satisfactory. This
approach is to relate change in weight to the quantity of feed consumed,
over a defined time period or periods.® On two main counts this approach
is unsatisfactory. Both relate to the fact that the quantity of feed
consumed is itself a function of the rate of feeding, and of the decisions
of the animals, as can be seen from equation (14) above. Hence the
quantity of feed fed is an endogenous variable in the system, the
exogenous variables being the feeding levels, k;, and/or the percentage
composition of different feedstuffs in the ration. Using the quantity of
feed consumed as “independent” variables in the regression analysis
leads to simultancous-equations bias in parameter estimates. The second
problem is that recommendations in terms of total quantities of feed
are not operationally useful. This is so because decisions on feed con-
sumption are taken, at least in part, by the animals. What is under the
control of the experimenter, and the farmer, is the level and composition
of rations. What is required are optimal levels of these.

To obtain a solution to what is clearly a difficult problem, we resort
to a quasi reduced-form solution.” That is, we relate change in weight
(or time to marketing at a fixed weight) and feed consumed to the
control variables—feed levels and/or composition. The approach is illus-
trated for a particular experimental situation.

Suppose that two feedstuffs (milk and grain) are fed to animals
(baconer pigs) from weaning to a fixed marketing weight.® Further,
assume that the quantities of each foodstuff fed per period are deter-

6 For example, see Heady and Dillon (1961), Chapters 8-11, 13; and Heady
et al. (1963).

7Dillon and Burley (1961) suggested this type of approach for grazing
experiments.

8 The principles to be enumerated are applicable to problems having more than
two foodstuffs and where marketing weight is variable. When marketing weight
is variable, time to marketing is a predetermined variable together with the
variables M and G specified later. The functions to be estimated then contain
three predetermined variables, and the optimal M and G and time to marketing
can be calculated in order to maximize profits per unit of time. Optimal marketing
weight and total quantity of feeds are then estimated from the functions.
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mined in proportion to the animal’s bodyweight at the beginning of each
period. An individual animal is fed a ration which consists of the two
foodstuffs in fixed proportions, but for different animals the proportions
are varied over a suitable range.

For an experiment of this type the objective function given by
equation (8) is still relevant but Y is a constant and T is an endogenous
variable which depends on the proportions of the individual rations.

Let M, and G; denote the proportions of bodyweight of the i-th animal
by which are determined the respective quantities of milk and grain to
be fed. The quantities of milk and grain fed to the i-th animal during
period ¢, denoted by m;, and g;: respectively, are therefore given by

(18) myi = MYy

(19) g = GiYis—1. ..
The time from weaning to marketing weight is a function of M and

as denoted by the equation

(20) T = (M, G).

We expect the time function to approach asymptotically a minimum as
the proportions of feeding (M and G) increase.

Since carcass composition is likely to vary with M and G such that
different prices per unit of weight are obtained for different animals, a
price function (p,) is to be estimated. That is,

(21) py = fz(M, G).
The cost of feeding (V) is clearly equal to (pmQim + PsQi,), Where

pm and p, are costs per unit of milk and grain; and Qi and Q,, are the
total quantities of milk and grain consumed by the i-th pig over

t = 1, 2, ..., T. The functions giving the quantity of foodstuffs fed
are estimated in terms of M and G. That is,

(22) Qn = (M, G)

(23) Q, = (M, G).

Given appropriate forms of the functions (20) to (23), the experi-
mental data is used to estimate the parameters of each equation.

The estimate for the profit function is therefore given as
(24) /T = [Yif2*(M,G) — S — pnfs*(M,G)

— pfs* (MG /1" (M,G)
where the asterisks denote estimated functions.

The objective function given by (24) is expressed in terms of the
predetermined variables M and G.

By partially differentiating (24) with respect to M and G and setting
the derivatives equal to zero, the optimal M and G can be determined
by solution of the two simultaneous equations obtained. However,
because the simultaneous equations derived will be quite complex for
most functions estimated, methods of numerical analysis need to be
employed to find the values of M and G which maximize (24). Too,
it may be necessary to constrain the maximization of the profit function
so that the optimal M and G are within the feasible range.

The method of analysis described here is applied to a pig-feeding
experiment which is reported in Battese e al. (1967). All animals
were fed from weaning weight to a constant marketing weight of
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160 Ib. Initially, attempts were made to estimate conventional produc-
tion surfaces expressing 4Y; as a quadratic function of beginning period
weight Y;_,, and m;, g;. Not only did this approach provide poor fits to
the experimental data (R?2 = 0-6), but it did not lead to the deter-
mination of economic optima. However, estimation of the time (7))
and total feed functions (Q, and Q,) gave values of R? in excess of
0-9, and the forms of the feed functions were in accordance with
a priori expectations. Using appropriate price information, it was possible
to specify optimal M, G and T.
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