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AUSTRALIAN WHEAT STORAGE:
A DYNAMIC PROGRAMMING APPROACH*
CHRIS M. ALAOUZE{, N. H. STURGESS and A. S. WATSON

University of Melbourne

Dynamic programming is used to examine whether Australia should
" store wheat for subsequent sale at higher prices. The dynamic program-
ming model is developed assuming that the demand for Australian
wheat is perfectly elastic at the world price. An important consequence
of this assumption is that the algorithm used in computing the optimal
policy takes a very simple form. It is concluded that interest rate and
wheat price in the following season are the major determinants of storage
policy. When prices are stable, rule-of-thumb policies, such as storing
when prices are below average, are sub-optimal.

Introduction

In this paper the problem of determining the optimal level of Aus-
tralian wheat storage is analysed using control theory. Underlying the
analysis is the assumption that the Australian Wheat Board (AWB) at-
tempts to maximise the sum of current and future discounted expected
net revenue from wheat sales. The inventory model presented in this
paper is developed using the simplifying assumption that the demand
curve for Australian wheat is infinitely elastic at the world price. The
model was analysed using sets of simulated prices and a dynamic pro-
gramming algorithm.

The model has the following features:

(a) It is assumed that the area sown to wheat is fixed (at the 1968/69
level) and that the yield distribution is stationary and normal.

(b) The cost of storage function is assumed constant over time. Only
variable costs were considered and these were estimated for the
1973/74 season.

(c) The data from which price series were simulated span the period
1949/50 to 1973/74.

Thus the model is a simplification which represents no particular
period in time. We believe it is a useful abstraction which permits in-
ferences about some aspects of past and future wheat storage policy.
Our decision to analyse the model for simulated prices and a fixed time
horizon, rather than treat price as a state variable and find the steady
state solution for an infinite time horizon, is based on the following
considerations. Firstly, the steady state solution would result in a more
‘operational’ storage policy in the sense that if the model were realistic
the AWB could use the solution as a basis for its inventory policy. Un-
fortunately, due to recent policy changes by major wheat importing
and exporting countries, our understanding of future patterns of supply
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and demand in the world wheat market is speculative!, thus limiting the
operational usefulness of a steady state solution based on historical
prices.

Secondly, a great deal is known about the supply and demand con-
ditions that generated the historical price series for the period under
consideration. The annual price series consists of a long period of low,
stable prices (1953/54 to 1971/72) between two periods of high
prices. The sequence of stable prices was the direct result of the large
inventories held by the United States and Canada and, after 1968/69,
by Australia. Over much of this period Australia was in a price-taking
position (the exceptions are identified in the following section). From
the viewpoint of the stable price period, the factors which caused the
periods of high prices can be regarded as episodic.

This suggests two interesting questions concerning historical policy:

(a) If the AWB knew the mean of the stable price series with
certainty, how would a policy of storing wheat in seasons of below
average prices compare with the optimal policy?

(b) What is the optimal storage policy in seasons immediately preced-
ing the occurrence of episodic price increase?

Approximate answers to these questions can be obtained by examin-
ing the pattern of storage over time associated with optimal storage
policies determined for sets of simulated prices. Because of the costs
associated with obtaining the steady state solution and its limited useful-
ness, we chose to investigate the two questions outlined above. The
answer to the second question should provide some insight into the
possible gains from holding speculative reserves to service episodic in-~
creases in demand in the future.

Another aspect of the paper is that we show that the assumption of
an infinitely elastic demand curve for Australian wheat greatly simplifies
the dynamic programming algorithm used in obtaining the optimal
policy, thereby significantly reducing the cost and programming effort
required. We also provide an economic interpretation of the solution
procedure implied by Bellman’s principle of optimality for inventory
problems.

The Inventory Model

Dynamic programming

A concise treatment of the dynamic programming technique may be
found in Bellman and Kalaba (1965) and Hastings (1973). The relation-
ship of dynamic programming to other control theory problems is dis-
cussed extensively in Intriligator (1971) and Bellman and Dreyfus
(1962). A discussion of the application of dynamic programming to
problems arising in agricultural economics may be found in Throsby
(1964) and Agrawal and Heady (1972). Dynamic programming was
first applied to problems of grain storage by Gustafson (1958). Brown-
ing (1970) used the framework developed by Gustafson to evaluate the

I For a discussion, see Johnson (1975) and Alaouze et al. (1978, pp. 183-4).
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costs of different methods of supplying food aid to less developed
countries.

In the inventory model developed below, there is only one state
variable, S;, the amount of wheat available for export in the stage (sea-
son) with ¢ stages of the process remaining. In the first season it is as-
sumed that there is no carryover from the previous season, so the
amount available for export, S,, is equal to the level of deliveries to the
AWB net of home consumption, X,. The decision variable is the level
of «carryover, C;. This transforms the amount available for export in
the first season to (X, — C,); the amount available for export (prior to
transformation) in the following season? is then S,_; = (X,—_; + C,),
and after a carryover of C,_;, the amount actually exported is (S,_,
— Cho1) = (Xp—1 + C, — C,_1). The optimal policy was determined
for a finite time horizon (n — 24 seasons) using the value iteration al-
gorithm (Hastings 1973). Due to the relatively short planning horizon,
it 1s possible that the storage decision in the final period of the plan can
bias the optimal policy. A non-zero carryover is prohibited in the last
season of every set of simulated prices because any carryover in that
season reduces net revenue. In a later section we present empirical
evidence which suggests that any bias is probably small.

Assumptions
'The major assumptions used in developing the inventory model are:

(a) The demand curve for Australian wheat exports is infinitely elastic
at the world price.

(b) The area sown to wheat is fixed (at the 1968/69 level) and that
the yield distribution is normal and stationary.
(c) The cost of storage function is constant over time.

The first assumption can be supported for the period before 1968/69
by the fact that Australia exported a small proportion of the commer-
cial trade in wheat. Also, it is consistent with the models of price
formation in the world wheat market developed by McCalla (1966) and
Taplin (1969) in which prices were set by a co-operative duopoly in-
volving the United States and Canada. In these models, prices were
set along the residual demand curve facing the duopolists. This demand
curve is obtained by subtracting the supply curves of the smaller pro-
ducers (including Australia) from the world demand curve for wheat
exports. The smaller exporters sold at the price, adjusted for quality,
determined by the duopolists.

Elsewhere (Alaouze et al. 1978) we argued that the United States
and Canada were (and are) concerned with their shares of the whole
commercial export market, not just their shares of the residual market
facing them. Under duopoly pricing, when the residual demand facing
the United States and Canada contracted, their shares of the total com-

21n the model the level of deliveries to the AWB net of home consumption in

the second season (X,.) is a random variable from the viewpoint of the first
season.
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mercial market would fall unless some compensating reduction in the
exports of the smaller exporters (primarily Australia) were made. In
the absence of voluntary export reductions on the part of Australia,
market shares could be restored by price cutting. We argued that this
was the explanation for the price war which occurred in the 1965/66
season. We therefore identify this season as one for which the assump-
tion of an infinitely elastic demand for Australian wheat is not valid.

Furthermore, we argued that pricing in the world wheat market in
the 1968/69 season and after could be explained by a market-share
triopoly involving the United States, Canada and Australia. Under
triopoly pricing, we showed that Australia faces an inelastic demand for
wheat exports in excess of the cartel-determined share of the residual
market facing the triopolists but, for exports below the cartel-deter-
mined share, the demand for Australian wheat is infinitely elastic at a
price set by the price leader, usually Canada. The large wheat stocks
held by the AWB in the 1968/69, 1969/70 and 1971/72 scasons indi-
cate that Australia was facing an inelastic demand during this period.
The price series simulated in this paper spanned the period 1949/50 to
1973/74. As indicated above, the assumption of infinitely elastic de-
mand for Australian wheat cannot be supported for four of these sea-
sons.

The assumption that the area sown to wheat is fixed was made be-
cause there are no apparent advantages in developing a comprehensive
time series model for wheat sown in each season. As we show below,
the occurrence of non-zero levels of carryover in the optimal policy is
independent of the level of supply, and the optimal level of carryover
is only affected in so far as the permissible range of carryover is
affected by the probability distribution of production.® Statistical evid-
ence is provided below to support the assumption that the yield distribu-
tion is stationary and normal.

The cost of storage function was assumed to be constant for the pur-
poses of solving the model. This assumption was made because of the
lack of a comprehensive time series on storage costs.

Analysis and simulation of the wheat price series

The price series which was analysed is the set of monthly ‘basic
selling prices” which are published by the AWB and the International
Wheat Council. These prices were averaged over a crop-year to yield a
series of annual wheat prices from 1949/50 to 1972/73.

This annual series has a mean of $57.52 and a variance of $140.40
and is composed of a long period of stable prices between two periods
of high prices. The stable period lasted from 1953/54 to 1971/72.
These observations have a mean of $52.22 and a variance of $6.75. A
linear time trend was fitted to these observations; this was not signific-

3 The permissible range of carryover is determined by the excess capacity of the
grain storage system. This is partly determined by the probability distribution of
production, The level of supply also constrains the permissible carryover when
supply is less than the excess capacity.
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ant at the 5 per cent level. In addition, these 19 observations were tested
for serial independence using the von Neumann ratio and the serial
correlation coefficient (Verhagen 1971, pp. 7-8). The more usual non-
parametric tests are inapplicable for small sample sizes. The serial inde-
pendence hypothesis was supported at the 5 per cent level by the von
Neumann ratio test. The test based on the serial correlation coefficient
also supported the hypothesis of independence.*

Little is known about the statistical properties of the episodic disrup-
tiops to the stable price series. For the purposes of simulation it was as-
sumed that these events have a probability of 1/19 of occurring and
that episodic prices are uniformly distributed in the interval {$60,
$110}. The lower limit of this interval lies three standard deviations
above the mean of the stable price series, and the upper limit is an es-
timate of the 1973/74 price.’ The possibility of wheat prices being
episodic in a downward direction was not considered because the his-
torical evidence indicates that the stock-holding policies of the United
States and Canada place a lower bound on wheat prices.

The simulation procedure involved generating normally distributed
numbers with the same parameters as those of the stable period. This
series was then interrupted by episodic events as described above. The
episodic events were assumed to last three seasons. If the third of these
uniformly distributed prices was greater than the second, the order
was reversed in order to characterise the behaviour of prices declining
from episodic peaks. In all, 20 sets of 24 simulated prices were used
in the dynamic programming model.

The probability distribution of production and excess capacity

During the wheat harvest, storage and transportation facilities in
Australia are used intensively in putting the crop under shelter in a
short period. At this time storage capacity is critical because the carry-
over from the previous season can interfere with the handling and
storage of the current crop. Excess capacity can therefore be defined in
terms of the maximum carryover that is permissible without interfering
with the delivery of the current crop at a given level of probability. The
excess capacity places an upper bound on the permissible level of
carryover.

In this study it was assumed that a constant area is sown to wheat
each year and that the total capacity of the storage system is constant.
The excess capacity was determined by solving the following simple
statistical inference problem:

We seek
(1) C: p{C+X>(F+Dk}=8

where (’: maximum carryover or excess capacity,

4 When the data are independent the distribution of a serial correlation co-
efficient tends to the normal, and is symmetrical, so that it is plausible to regard
values outside a range of four standard deviations centred on the mean as indicat-
ing a departure from the hypothesis of independence. Details may be found in
Verhagen (1971, pp. 7-8).

5 Thus figure was a preliminary estimate provided by the AWB.
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probability of the term in the braces,

quantity of deliveries to the wheat board,

capacity of the grain storage system,

proportion by which the total capacity can be exceeded
without emergency storages being built.

The expansion of effective storage capacity is due to the storage of
wheat in rail cars and in the holds of ships. The value of f for Victoria
is about 3-4 per cent, and was assumed to be the same in all States
(Victorian Grain Elevators Board, personal communication. )

The Australian average wheat yield from 1945/46 to 1968/69 has a
mean of 1-148 t/ha and a variance of 0-049 t2/ha2¢ A linear time
trend was fitted to the Australian average yields. The regression co-
efficient was positive but not significant at the 5 per cent level. The
yield data were also tested for normality and independence and both
hypotheses were supported. It was assumed therefore that Australian
average yields are stationary and normal.

Fixing the area planted at the record level of 1968/69, the mean and
standard deviation of deliveries are 11:5 Mt and 2-4 Mt, respectively.
These estimates include an allowance for farm retention of 92 kg/ha.

Assuming normality and using the Australian storage capacity in
1973/74 (20-5 Mt) as an estimate of &, the solution of (1) for 8 = 0-05
and f = 0-03 yields an estimate of 5-73 Mt for the excess capacity.
This estimate is conservative in years when the wheat area is less than
that of 1968/69 (10-8 million ha) and too high when a greater area is
sown, other things being equal.

The probability distribution of export supply was obtained from the
probability distribution of deliveries to the AWB by subtracting Aus-
tralian consumption for the 1973/74 crop year from the mean of the
probability distribution of deliveries to the AWB.” The range of four
standard deviations on each side of the mean was split into twenty
equal intervals. The mid-points of the intervals formed the vector of
supply, and the area under the normal curve for each interval is the
probability associated with each mid-point. The area under this range
of the normal distribution accounts for 0-999 936 of the total area: the
remaining area was added to the two intervals on either side of the
mean.?

e ek

6 Although average yields were available to 1972/73, the later observations
were not used because it is possible that the introduction of wheat quotas in the
1969/70 season resulted in some substitution of land for other inputs in the
seasons immediately following the introduction of quotas. Furthermore, the
reduced wheat area per farm implied by the quotas meant that the land base on
which wheat was grown was probably different from that of the preceding
seasons. In particular, the expansion into marginal lands was arrested by the in-
troduction of quotas.

7 This approach assumes that consumption is fairly stable and that it is effec-
tively estimated by AWB domestic sales in 1973/74. This was a year in which
there was little ‘over-the-border’ trading because export prices were higher than
domestic prices, hence most purchases were made from the AWB.

8 Because of the iterative nature of the solution procedure, large errors can
occur in the return associated with the optimal policy if the probabilities do not
add precisely to one. )
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Storage costs and the cost of storage function

The maximum permissible level of carryover in the inventory model
is the excess capacity of the Australian grain storage system (C’) esti-
mated above. This carryover was partitioned into 301 equally spaced
amounts, ranging from zero to C’. The storage cost associated with
each of these amounts of carryover determined the cost of storage
function. The excess capacity is due to storage facilities constructed by
the AWB to overcome the storage problem associated with the ‘wheat
crisis’ of the late ’sixties. Because these storages are used in seasons of
little carryover to facilitate the delivery of the wheat crop, we have at-
tributed only the variable costs of storage to the carryover.

The variable cost of storage function was estimated for the 2973/74
season. Estimates of the 1973/74 average variable costs of storing
wheat in commercial facilities were obtained by updating the estimates
published by Freebairn (1967). His estimates were for each type of silo
filled to capacity for New South Wales in 1965.

Assuming that New South Wales costs closely reflect those of other
States, the cost of storage function was obtained by imposing the fol-
lowing order of filling on the grain elevator system:

(1) terminals,
(2) subterminals,
(3) country depots.

A stopover charge was imposed on wheat storage in the subterminals.
Overall, estimated storage costs are probably higher than the ‘true’
variable costs of storage. The average variable costs of storage ranged
between 20 c/t for the low levels of carryover to 60 c/t, depending on
the quantity stored. For a detailed discussion of the calculation of the
cost of storage function, see Alaouze (1975, pp. 38-45).

Restrictions of the carryover
Three restrictions are imposed on the carryover:

(a) the carryover must be non-negative,

(b) the carryover cannot exceed the quantity available for export,

(c) the carryover cannot exceed the excess capacity of the grain
handling system.

These restraints can be written:

(2) 0 g Ct g St’
C: < C.
These two restraints can be condensed by defining the function:
(3) S*, = min{S,, C'}.
The restrictions on the carryover can now be written:
@) 0 G S*

Formulation and Solution of the Model

The remaining variables and functions in the model are defined as
follows:
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X: is wheat production net of farm retention and home con-
sumption in a period with ¢ stages of the process remaining.
This variable is stochastic from the viewpoint of preceding
stages in the process.

Py is the wheat price in the period with ¢ stages of the process
remaining.

K(Cy) is the cost of storage function. This is a monotonically increas-
ing function of C,.

6:(S:) is a function which explicitly describes the way C: depends
upon S;; that is C; = 6,(S;). Providing ¢4 n (the first stage),
this can also be written : Cy = 6,(X; -} C;.1). Following Gus-
tafson (1958), the function 6, will be referred to as a storage
rule.

W: is the net revenue function associated with the export of (S:
— C:). This can be written: W; = P;. (S; — C;) — K(Ct). Pro-
viding ¢ 5« n, this can also be written: W= P;. (X: + Cty1
— Cp) — K(Cy).

V. s the return function associated with the n-stage process. This
is the sum of the net revenues associated with every stage of the
process discounted back to the first stage.

a is the discount factor.
The return function can be written:
) Ve=W,+aW,_1+EW, o4 ...+ a" " 1W..

Because the state variable is stochastic from the point of view of the first
stage, we seek to maximise the expected value of the return function:
(6a) E[V,]=E[W,+aW,_14+ 0*W,_o ...+ a""1W4],

(6b) =W, -+ aE[W,_1 W2 +..+ a"2W4],

(60) - Wn + 0'E{Vn—ll-

The problem can now be formally stated: we seek a set of storage
rules, 6,, 8,—1,. .., 6;, (one rule for each stage of the process) which
maximises the expected value of the return function. This set, denoted
by &, #n_1, ..., &1 is termed the optimal policy. Using equation (6c),
the recurrence relationship associated with this problem can be
written:

Wy 4 aE[V,1] nsl,
W, n=1.

Denoting the maximised value of E[V,] as E[V*,], the relationship
we seek to maximise can be written:

(8) E[V*,]= max {(Wa+ E[V,_1]} (ns=1).
0 < C: < S*,

When the problem is expressed in the form of equation (8), the
solution procedure implied by Bellman’s principle of optimality can be
used to find the optimal policy (Hastings 1973). In this case the multi-

(7) E[V.] = {
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stage process associated with (8) has a finite time horizon. Therefore,
the solution can be obtained using the value iteration algorithm (Hast-
ings 1973).

We have mentioned that one of the important implications of the as-
sumption that Australia is a price taker in the world wheat market is
that the storage rules are independent of the level of supply. This result
simplifies the solution procedure with a consequent saving in pro-
gramming effort. Because there may be other dynamic programming
problems for which similar simplifying assumptions can be made, we
shall consider the solution procedure in some detail.

Bellman’s principle of optimality states that, for all the possible values
of the state variable which can result from the decision associated with
the first stage of the process, the remaining decisions must be optimal.
This implies that, for operational purposes, (8) may also be written:

(8a) E[V*.]= max {Wh + oE[V*,_11},
0 Ce K S™
where E[V*, ;] is the maximised discounted expected revenue asso-
ciated with the (n—1) stage process beginning with the second stage of
the original (n) stage process.
The solution procedure for the process when there are ¢ stages

remaining involves finding the storage rule, C*; = ¢,(S;) which satisfies
the recurrence relationship

) E[V*] = max {W: 4+ aE[V*:_1]1]}.
0L Ce L 5% ‘
Substituting for Wy, (9) can also be written:

(9a) E[V*] = {P;. (S: — C*)) — K(C*}) + oE[V*,_4]},

or

(9b) E[V*]={P;.(X;: + Ciy1 — C*) — K(C*) + aE[V*, 1]},

where C*, satisfies (9). That is C*; is obtained from the storage rule.
From the viewpoint of the preceding stage (¢t 4 1), X: is a random

variable, hence:

(10) E[V*e] = E[P:. (Xt 4 Cep1 — C*t) — K(C*) + aE(V*,_1)],
(10a) = PE[X¢] + Pi. (Cey1 — C*g) — K(C*y) + aE[V*,_4],
(10b) = &t+1 (Cr1).

That is, the expected maximised discounted net revenue for the t-stage
process is dependent upon the decision (the levels of carryover) in the
preceding stage (Gustafson 1958). From this result it follows that
E{V*:_1] = g«(C:); therefore (9) can be written:

(11) E[V*] = max {Pt. (St — Ct) — K(Cr) + ag(C1)}.
0<C < 5%

In practice, the problem of finding the storage rule for each stage of
the process (and hence the storage policy) is approached by solving (11)
using discrete values of the various functions corresponding to selected
finite values of their respective arguments. This is necessary because it
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is impossible to store all the possible values which the variables can
take (Bellman and Kalaba 1965, p. 59).

Examining (11), we see that there are only two relevant variables,
S: and C;. If we consider only I equally spaced points along the domain
of S:, and m equally spaced points along the domain of C; (beginning
with zero and ending with the excess capacity C’), representing all the
possible values which these variables can take, that is, S;; for i =1,
..,land Cyforj=1,..., m, we can write (11) as follows:

(12) E[V*u] = max {Ps. (Sis — Cj) — K(Cjp) + ag(Ci)}.
0<Cie < S

The storage rule C*;, — #«(Si) is then obtained by finding the ! row
maxima associated with the matrix:
(13) {P: . (Su — Cy) — K(Cj) 4 0g(Cjn)},
subject to 0 L Cjp < S*, fori=1,...,landj=1, ..., m. Each row
corresponds to a value of the state variable, and each column to a value
of the decision variable.

Our approach is to show that the row maximum is unique, and then
we prove that it is independent of the row.

Consider the elements of the i-th row (corresponding to a value of the
state variable S;;). Each element can be written as the sum of two com-
ponents.

(14a) Tyj = Pu(Sie — Cit) — K(Cj),
(14b) Ti; = ag(Cye).

The cost function K(Cj) increases monotonically with C,, hence
(T is a monotonically decreasing function of Cjz. The second term
(T2y) is a monotonically increasing function of Cj. Hence, as C;; in-
creases across a row (with j), each element can be written as the sum
of two functions which vary monotonically with C;, and hence each
element is unique.

It is interesting to note that when the row maximum corresponds
to an interior maximum, that is 0 < C*;t << S*t, the C*;; is a numerical
approximation to the C: which satisfies the following marginal con-
dition in the continuous case:

(14C) — aTu/aCt = aTQi/aCt.

The C*, which satisfies (14c) equates the marginal opportunity cost of
the carryover —od7T4;/0C; to the marginal maximised discounted ex-
pected value of the carryover d7T4;/9C;. This is an economic interpreta-
tion of the solution procedure implied by Bellman’s principle of opti-
mality for inventory problems.

We shall now show that the row maxima of (13) are independent of
the row and hence the value of the state variable.

For simplicity, we rewrite the matrix (13):

(15) {vi + Bi}» iZl,...,landj:l,,,,,m

where y; = Py . S and 8; = —P: . C;s — K(C;;) + ag(Cj,). Consider the
i-th row of (15):
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(16) {vi+Buvi+ B2 - - v+ B -« v+ Bn)

Let y; -}~ B be the row maximum, that is:

(A7) max{yi+ Buve -+ B vi F B - o s vi -+ B} = vi -+ B
Subtracting y; from both sides of (17), we obtain:

(18) max{fB1, B2, « « +» Brs + « s Bm} = Br.

That is, we have shown that the row maximum is independent of the
row. Therefore (12) can be written:

(19) E[V*3]l = Pt¢. (St — Cat) — K(Che) + ag(Che)
for all i subject to: 0 << Cy: < S*;, where S*; — min{S;, C’} as
described above (equation (3)).

Let us summarise our progress so far. We have shown that the row
maximum of (17) is independent of the row. The column in which the
row maximum is found corresponds to a specific level of carryover
Cj:. Although this carryover is associated with the row maximum, and
by construction must be less than or equal to the excess capacity, it
is not feasible for all values of S;; because negative storage is not per-
mitted. When C,; > Si;, the optimal level of carryover C*,, is equal to
Su. Hence, as written, equation (19) does not represent the maximised
expected discounted net revenue associated with values of the state
variable S;; when S;; < Cy;. For completeness, the equation correspond-
ing to (19) for this case is:

(20) E[V*;} = —K(Su) + ag(Si),
for all S;: < Cpt.

*

Equations (19) and (20) imply that the storage rule can be written as
follows:

Sit for Cre > 5%,
(1) Crv=1 C, for Cry << S*y

The three possible forms of storage rules implied by (21) are shown
in Figure 1. The curve OA4B corresponds to the case when the maximum
optimal level of carryover, Cy,, is less than the excess capacity. The seg-
ment OA corresponds to the part of the rule where C*, = S;, that is,

carryover is constrained by the available supply; the segment AB cor-
responds to the case where the available supply, S:, exceeds the maxi-
mum optimal carryover Cy:. This level of carryover corresponds to an
interior maximum and approximately satisfies equation (14c). The curve
OCD illustrates the case when the maximum optimal carryover is con-
strained by the excess capacity. This curve is composed of the follow-
ing two boundary cases: the segment OC corresponds to C*, = S, and
the segment CD corresponds to C;, = C’. The final case corresponds to
a maximum carryover of zero, that is C, = 0. In this case the curve
coincides with the S; axis.
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Ficure 1—Forms of the storage rules.

The preceding results show that, under the assumption of infinitely
elastic demand for Australian wheat exports, the solution algorithm in-
volves finding only one row maximum for each stage of the process.
The computational saving involved means that problems of much larger
dimensionality may be solved approximately with ease and with a
greater level of accuracy than would be feasible otherwise. An im-
portant implication of this is that the tradeoff between feasibility and
realism will have to be considered carefully in larger inventory problems
which do not quite satisfy the assumption of infinitely elastic demand.

Analysis
Preliminary discussion

The inventory model was analysed using twenty sets of simulated
prices and discount factors of 1:0, 0-9524, 0-9091 and 08696, which
correspond to interest rates of zero, 5 per cent, 10 per cent and 15 per
cent, respectively. The interest rate used in inventory models for dis-
counting purposes should reflect the opportunity cost of the money
tied up in stock. In the context of this model, interest rates should re-
flect the fact that we have assumed stationary prices and costs. There-
fore we should not include an allowance for inflation in the interest
rate which should reflect only risk and the cost of time. A high discount
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factor would reflect a situation where future prices are considered
highly uncertain. For the purposes of long-term policy, a discount
factor reflecting both risk and time costs of 0-9524 may be appropriate.
On the other hand, lower discount factors may be appropriate for
some farmers who place a high value on liquidity.

Even though the storage costs used in the model are estimated from
1973/74 costs, the solutions for the 5 per cent interest rate should give
a reasonable reflection of optimal inventory poli~y for the period which
was simulated, because the storage costs are small compared with the
interest cost. This is especially true for the costs associated with the
smaller amounts of carryover.

Results

Two representative sets of simulated prices with their associated
storage rules for the four interest rates are shown in Tables 1 and 2.
Only the maximum carryover for each stage of the process is shown.
Referring to Figure 1, the parts of the storage rules shown in these
tables correspond to the horizontal segments of the diagram. The ex-

TABLE 1
Optimal Storage Rules for a Simulated Price Sequence (Run No. 2)
Storage rules—maximum carryover
Simulated prices (Mt)
Season $A
Mean: 57-83 Interest rate
Variance: 237-92 0.0 0.05 010 015
1 55-86 0 0 0 0
2 52-28 1.91 0 0 0
3 52.82 0 0 0 0
4 52.64 0 0 0 0
5 5175 5-73 0 0 0
6 54-17 0 0 0 )
7 53.28 0 0 0 0
8 53.04 5-73 5-40 0 0
9 5675 0 o 0 0
10 55-02 0 4] 0 0
11 50-46 5-42 ¢ 0 0
12 51-85 5-42 0 0 0
13 53.33 0 o 0 0
14 52-64 0 O 0 0
15 47-.98 573 573 ) 0
16 52-39 573 5.42 0 0
17 56-17 0 0 0 0
18 48-43 542 0 0 O
19 49-92 0 0 0 0
20 45-96 573 573 573 5-73
21 101-49 5-73 0 0 0
. 22 103.43 o 0 0 0
23 84.35 0 ] 0 0
24 51.95 0 0 0 0
Expected return to storage 402-37 4224 16-56 6-81
($ million)
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TABLE 2
Optimal Storage Rules for a Simulated Price Sequence (Run No. 18)

. . Storage rules—maximum carryover
Su’nulatg}l prices (Mt)
Season Mean: 64-93
Variance: 466-45 Interest rate
0-0 0-05 0-10 0-15
1 52-65 542 0 0 o
2 53.76 ] 0 0 0
3 52-55 573 5-73 1.83 o
4 5778 5.73 5-73 573 5-73
5 98-18 573 5-40 0 0
6 103-91 O 0 0 0
7 102-86 0 O 0 0
8 94.26 573 573 573 0
9 108-55 0 0 0 1]
10 99.21 0 0 0 0
11 56-83 0 0 0 0
12 50-61 573 o o 0
13 53.07 0 0 0 0
14 48-68 573 5-73 1:81 0
15 54.05 0 0 ] 0
16 50-90 5-73 0 0 0
17 52-60 0 0 0 0
18 49.85 5-73 0 0 O
19 51-63 5-42 0 O )
20 52-81 573 o 0 O
21 54-65 0 0 ¢ o
22 52.96 0 0 0 O
23 49-70 5-73 573 5-42 o
24 56-41 0 0 0 ]
Expected return to storage 461-42 232-66 144-41 100-34
($ million)

cess capacity is 5-73 Mt and when this number appears in the tables,
the storage rule requires the maximum possible to be stored. Storage of
5-73 Mt, and storage of less than 5-73 Mt corresponds to the segments
CD and AB in Figure 1, respectively. The expected return to storage
(Tables 1 and 2) is defined as the difference between the maximised dis-
counted expected net revenue with optimal storage and the discounted
expected net revenue when the carryover in each period is zero (Gus-
tafson 1958, p. 55).

Tables 1 and 2 show that the optimal policy associated with each set
of simulated prices is markedly affected by the choice of interest rate.
For example, in Table 1 the optimal policy requires non-zero storage
in 10 out of a possible 23 seasons at an interest rate of zero. Non-zero
storage is required in four seasons at an interest rate of 5 per cent and
one season at interest rates of 10 and 15 per cent. This pattern is also
reflected in the expected return to storage associated with each interest
rate.
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We shall now discuss the pattern of storage rules associated with epi-
sodic price increases. In Table 1 these prices occur in seasons 21, 22
and 23. As expected, the optimal policy requires the maximum possible
storage in season 20 at all interest rates. However, the optimal policy
in season 19 required zero storage at all interest rates. This implies that
the $4 drop in prices between seasons 19 and 20 was enough to offset
any gain to storage from holding a carryover in season 19 in anticipa-
tion of a twofold increase in price in season 21. Because this effect was
observed at a zero interest rate, it can be concluded that an important
determinant of storage (apart from the interest rate) in any season is
the price in the following season, with prices and storage in other
future seasons having little effect. This suggests that any bias in the op-
timal policy due to compulsory zero storage in the final period of the
simulation horizon is probably smalii.?

The pattern of storage in Table 2 illustrates the structure of the opti-
mal policy when the simulated prices in the two seasons immediately
preceding an episodic increase in price (season 5) form an increasing
sequence. In this example (at the zero interest rate) we find that the
price fall of $1.21 between seasons 2 and 3 is enough to offset any
gains from storage in the second season, even though the sequence of
prices for seasons 3, 4 and 5 is increasing, culminating with a high price
in season 5. Storage in season 3 can be attributed to the $5 increase in
price between seasons 3 and 4. This conclusion is reached because it is
clear from the pattern of storage rules (at the zero interest rate) that a
small positive price difference can result in storing the maximum pos-
sible, as can be seen from the storage in season 16 for the $1.70 price
increase between seasons 16 and 17. The preceding discussion indicates
that holding (speculative) carryover to service episodic increases in
prices is in general not an optimising strategy except for the season
immediately preceding an episodic price increase. The other conclusion
that can be drawn is that a major determinant of storage (apart from
interest rates) in a particular season is the price in the following season.

We shall now compare the policy of storing wheat in seasons of be-
low average prices with the optimal policy when prices are stable. There
were 110 seasons in which non-zero levels of storage were required by
the optimal policies for the S per cent interest rate in the 20 sets of
simulated prices. This number is small compared to the 460 simulated
seasons for which storage rules can appear (after allowing for the fact
that storage is prohibited in the last season of each set). These storage
rules may be separated into:

(a) those not immediately preceding episodic price increases (76),
and

(b) those immediately preceding episodic price increases (34).

9 Because the price in season 20 (in Table 1) is less than that in season 19, any
return to storage in season 19 occurs because the carryover from season 19
allows more wheat to be stored when supply is less than the excess capacity in
season 20. In the model as structured, this phenomenon is not strong enough to
offset the opportunity cost associated with the carryover.
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TABLE 3
Summary of Results

Interest rate 0.0 0.05 0-10 0-15

Average expected return to storage 555-57 | 161-55 80-48 47-69

($ million)

Range of the expected return to storage | 150-61 29-19 0.93 (]

($ million) to to to to
69919 | 293.98 | 237-54 | 214-00

Number of storage rules associated 35 34 32 30

with episodic events

Number of storage rules not associated 184 76 23 3
with episodic events

Number of storage rules not associated
with episodic events which require the 68 32 8 0
maximum possible carryover

Number of storage rules not associated
with episodic events which require less 116 44 15 3
than the maximum possible carryover

Of the storage rules which do not immediately precede episodic price
increases, 65 occur in seasons with below average prices.

The number of seasons in which these storage rules appear is smail
compared to the 171 seasons for which below average prices prevailed.
This does not include seasons in which below average prices occurred
immediately before episodic price increases, nor does it include below
average prices which occurred in the last season of each set of simulated
prices. This indicates that, even if the AWB knew the mean of the
price series with certainty and based its storage policy on the occurrence
of below average prices, this policy would have been wrong more than
half the time. Moreover, any rule of thumb approach to the storage
problem which is based on deviations of prices from the mean or trend
requires an accurate estimate of the mean or trend. For example, if
the estimate of the mean is higher than the true mean, stocks will tend
to accumulate indefinitely. This argument is similar to the one advanced
by Gustafson (1958, p. 8) against basing storage rules on the deviation
of crop size from normal.

Summary, Conclusions and Further Work

In this paper we developed an inventory model based on the simplify-
ing assumption that the demand for Australian wheat exports is in-
finitely elastic at the world price. This model is valid for analysing the
inventory problem for commodities which are traded under competitive
conditions or where the exporting country is in a price-taking position,
for example, a fringe-supplier in a cartel dominated market.

The major conclusions of this paper are as follows.
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(a) Apart from interest rate, the most important factor affecting stor-
age in any season is the price in the following season.

(b) The holding of a speculative reserve to be sold in seasons of epi-
sodic price increases (events which have a low frequency) is
generally unwarranted.

(c) The optimal policies associated with simulations of the historical
price series observed for the period 1953/54 to 1971/72 (when
Australian wheat prices had a stable mean and a low variance)

¢ indicate that a storage policy based on storing wheat in seasons of
"~ below average prices would have been wrong more than half the
time.

The model we have developed here has limitations in analysing Aus-
tralian wheat storage. These arise because of the complex nature of the
demand facing Australian exports. We do not know how our conclu-
sions would change if we relaxed the assumption that the demand for
Australian wheat exports is infinitely elastic at the world price; for this
reason alone our results require cautious interpretation.
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