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PRODUCTION RISK AND EFFICIENT
ALLOCATION OF RESOURCES

JOCK R. ANDERSON and WILLIAM E. GRIFFITHS
University of New England, Armidale, N.S.W. 2351

Efficient allocation of resources has usually been couched in riskless terms, partly
because statistical techniques did not exist for measuring the impact of varying
levels of factors of production on risks associated with production. Now that
such techniques are available, methods are required for determining efficient
allocations. Such models, particularly those exploiting stochastic efficiency
analysis, are illustrated here with respect to empirical risk-sensitive, farm-firm
production functions.

Introduction

The question of efficient allocation of resources under risk has
languished somewhat since the pioneering work of Magnusson (1969).
He developed an elegant approach to efficiency analysis, although his
work was restrictive in several respects —notably his concentration on
restrictive mean-variance utility functions with emphasis on the
quadratic utility function, and restrictive empirical exemplification of
risky production relationships through power functions featuring
multiplicative risk. His approach was taken up by Anderson (1973) and
elaborated by Anderson, Dillon and Hardaker (1977, Ch. 6) but, until
recently, the challenge of statistically efficient estimation of the underly-
ing risk-response relationships remained as a significant impediment to
progress.

The methods for estimation developed by Pope and Just (1977) and
Just and Pope (1978) paved the way for new and improved empirical
estimation. Anderson and Griffiths (1981) and Griffiths and Anderson
(1982) extended their multistage estimation approach for quantifying the
impact of selected factors of production on riskiness of production, and
attempted to apply it to the Pastoral Zone of the sheep industry of
Australia. What has not yet been addressed is the exploitation of such
empirical relationships in the analysis of efficient allocation of resources.
In this note, we endeavour to rectify this omission through further
reference to our work on the Australian Pastoral Zone.

Method

The most general approach to efficient resource allocation under risk is
to postulate a utility function, UfR), which has as its argument net finan-
cial return, R, defined as:

(1) R=p,Y-LpX,-F,
where Y = physical output;
X, = the jth variable factor of production;
F=fixed cost; and

p, and the p, = the respective prices which herein, for simplici-
ty, are assumed to be known and nonstochastic.
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Output Y, while influenced by the X,, is taken to be stochastic.
Managers must commit scarce resources among the X, while uncertain as
to the final effects on Y. A formal approach to this task is to select levels
of X: to maximise expected utility, that is, max EJU] with respect to the
X.. The first-order conditions for this maximisation are well known.
They are relatively transparent and simple for the case where E[U] can be
expressed in terms of the mean and variance of R,(E[R] and V[R]), viz.
Anderson et al. (1977, p. 171, eqn 6.25):

) P,OE[Y)/0X,—redq p,?dV(Y)/dX.=p.,

where redq is the risk evaluation differential quotient that measures the
decision maker’s optimal trade-off between the mean and variance of
returns. As these authors note, solution for the optimal levels of X, i=1,
. . ., k, involves simultaneous solution of the k nonlinear equations—a
solution that may be made more difficult because of the necessity of ac-
counting for boundary solutions such as non-negativity and maximal
limits to levels of factors.

In principle, this could be tackled as a nonlinear programming prob-
lem. However, it seems simplest in general to sacrifice elegance for prac-
ticality by systematically exploring expected utility computed across the
factor space. Such exploration could be done on an arbitrarily fine grid
which would guarantee any desired level of precision. This procedure is
seemingly quite straightforward when the particular utility function of
the decision maker is known. However, a more interesting case to ad-
dress is where only bounds can be attached to the extent of risk aversion.
One general approach then is to invoke the rules and procedures for
analysis of stochastic efficiency, using, for example, ordering rules such
as for second-degree stochastic dominance (Hadar and Russell 1969;
Anderson 1974a).' More recently, Meyer (1977q, b) introduced a
stronger ordering procedure, termed stochastic dominance, with respect
to a function. This more powerful procedure has been implemented in
agricultural decision analysis by Kramer and Pope (1981) and King and
Robison (1981). A particular application that seems most appealing is to
place bounds on the extent of absolute risk aversion that is likely among
the class of decision makers faced with the task of allocating resources
efficiently. These notions are implemented below as a practical means of
narrowing search in the numerical exploration of the expected utility sur-
face in (k + 1) dimensional space.

Application

In our study of risk phenomena in the Pastoral Zone sheep-grazing
industry in eastern Australia (Anderson and Griffiths 1981), we elected to
use power functions to describe both the mean output production rela-
tionship and the variance of output relationship. We found that some
resources increased riskiness of output as measured by variance, while

U A risky prospect is (e.g. second) stochastically dominated by another if it would never
be preferred by any member of a defined (e.g. the risk-averse) set of agents with preferences
subject to specified constraints (e.g. first and second derivatives of utility positive and
negative, respectively). A stochastically efficient set of a given degree consists of those pros-
pects not dominated at that degree by another.
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others had a risk-reducing effect.2 The particular data chosen for
illustrative purposes are those estimates reported by Griffiths and Ander-
son (1982) for Model 1 with all error components (firm, year and other)
heteroscedastic.

The forms used for estimation were:

(3) E[ Y] = oIl X¢; and
@) VY] =Bo;j X,

We rewrite the estimated equations here using the present notation and in
a convenient order as:

(5) E[)/] :28_22 1016 S()~79 Fo-12 B0‘07 W—0-04 P-O-007; aﬂd
(6) V(Y):6'82 [,70:29 Sl-OZ F018 Bo-68 W‘0»12 PO-IS_

The X, variables (described fully by Anderson and Griffiths 1981) are:

L =labour;

S = sheep;

F=fencing services;
B=buildings and land services;
W = water services; and

P=plant and machinery services.

Other data pertinent to the following analysis are summarised in Table 1.
The ranges and means reported refer to the cross-sectional data for 38
firms, averaged over the 10 years of observation 1964-65 through
1973-74,

The estimated equations are less than ideal, particularly in respect of
the anomalous negative «, coefficients for W and P. However, the equa-
tions seem adequate for our illustrative purpose if W and P are fixed, ar-
bitrarily, at their geometric mean levels. Buildings and land services are
relatively fixed in the short run, and so the factor B is similarly held at its
geometric mean level in what follows.

Unconstrained optimisation of multifactor power functions seldom
leads to unequivocal results — the archetypical case being that of expected
profit maximisation under constant returns to scale when there is no
defined optimum —and, indeed, it may be asking too much of a simplistic
empirical production function. What makes rather more common sense,
and guarantees more sensible patterns of ‘optimal’ resource allocation, is
maximisation subject to an overall constraint; for example, a fixed outlay
or budget constraint set at, say, the geometric-mean total resource use.
Duloy (1959) illustrated this approach in his constrained profit maximisa-
tion study of resource use in the Australian Pastoral Zone. In the riskless
case of profit maximisation, allocation is based on the rule that the share
of resources allocated to the ith input is the ratio of the jth partial

? The equation here of risk and variance is made in the spirit of the present state of most
empirical work. Econometric procedures for measuring induced risk effects beyond those
embodied in variance are not well developed, although there have been some attempts to
seek more general effects using notions of stochastic efficiency (Hadar and Russell 1969;

Rothschild and Stiglitz 1970) in empirical response analysis (Anderson 19744; Anderson et
al. 1977).
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TABLE 1
Sample and Price Data for the Factors of Production

Variable Price Range Geometric
(short name) Unit per unit Lower Upper mean
$
L (labour) man-weeks 120 61 1395 255
S (sheep) 10* sheep 3000 1.5 31.7 6.7
equivalents
F (fencing) $103 1050 0.7 5.7 2.4
B (buildings) 310 1050 1.3 48.6 11.8
W (water) $10° 1050 0.5 4.4 1.6
P (plant) $10° 1050 1.9 34.4 9.7

elasticity of production («;) to the total elasticity (Z.x), that is
X =(a./Ea)(C/p.;), where C is the fixed total outlay.

To proceed, it will be helpful to introduce a specific utility or
preference function. The constant absolute risk aversion (negative ex-
ponential) function, U(R)= — exp( —6R), has been used widely in both
theoretical and empirical work, in spite of its restrictiveness in imposing
a constant coefficient of absolute risk aversion (). One particular advan-
tage in the present context is that, if R is normally distributed as might
well follow from the Central Limit Theorem, maximisation of expected
utility, E[U(R)], is equivalent to maximising E[R] ~ (6/2)VIR] (Freund
1956).

With this assumption, we can now formulate the maximisation of ex-
pected utility subject to a fixed outlay constraint. Writing this as a con-
strained objective function involving equations (1), (3) and (4) and,
eliminating the Lagrange multiplier, the optimal condition is found to
be:

N Xi=((a;: — #8:)/ (i — dZ.BINC/ p),

where ¢ =(6/2)p, V] Y]/ E[Y] is a risk adjustment coefficient incorporating
the effects of risk aversion (f) and the ‘relative’ riskiness of production
(relative-variance of Y, V[Y]/E[Y]).? Clearly, in the risk-neutral case
where 6 =0 or in the risk-absent case where VY] =0, equation {7) col-
lapses to the standard riskless result noted above. Although equation (7)

3 The constrained expected utility equation to be maximised is:
® UR)=p,ElY] - EpX: — (8/2)p} VI Y] + NC - E.p2),

where A is a Lagrange multiplier and setting the partial derivative of (8) with respect to it
imposes the outlay constraint:

© Tp:X.=C.

The partial derivative of (8) with respect to the ith input is found (using (3) and (4)) and set
to zero as:

(10) AU/3X,=p,a.E1 Y]/ X, — p: — (0/2)p2B: VI Y)/ X+ \p; =0,
which can be arranged as:
an pXi= (o, — #8)(p,E1 Y}/ (1 —N)).

Substituting (11) into (9) eliminates X\, and p, and E]Y], and the result can be rearranged in
the convenient form of (7).
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is of simple form, the dependence of V[Y]/E[Y] on the levels of the X
and, in more complex utility specifications, a similar dependence of the
risk aversion term, necessitates solution by iterative procedures. Thus,
for example, the riskless constrained optimal allocation of {L, S, F},
namely [66.3, 13.1, 5.7}, can be contrasted with a risk-averse
(0 =5x107%) allocation based on equation (7) and p,=$1000/t, namely
{67.4, 13.0, 5.8}. The (small) differences between these optimal resource
bundles reflect the differing risk inducing or reducing effects captured in
equation (6). Both these bundles differ greatly from the geometric means
(Table 1), and feature much greater sheep/labour ratios, and substitu-
tion of fencing services for labour.

We now take up the suggestion of exploring performance numerically
across the k-dimensional factor space and sorting according to stochastic
efficiency criteria. For illustrative purposes, W, P, and B are again held
fixed and efficient levels of the variable L, S and F are sought. A grid of
eight equally spaced levels of each factor spanning the observed sample
range (Table 1) is considered, so that there are 8 x 8 x 8 =512 more-or-
less feasible combinations of resources.

The most widely used efficiency criterion is the mean-variance (E-V)
criterion. Under the assumption of normally distributed R, this is iden-
tical to the more general criterion of second-degree stochastic dominance
(Anderson et al. 1977, Ch. 9). The class of utility functions (decision
makers) for which E-V efficiency is appraised is wide, ranging from risk
neutral to infinite risk aversion. In spite of this, the E-V rule does pro-
duce a rather small efficient set of resource combinations (20 of the 512).
These can be described most succinctly by reference to triplets of coded
levels (e.g. {111} denotes the lowest (of the eight) levels of each of the
three variable factors, {13(2-4)} denotes level 1 of factor 1, combined
with level 3 of factor 2, with levels 2, 3 and 4 of factor 3). The 20-element
E-V-efficient set is {81(2-8), 82(4-8), 83(6-8), 8(4-8)8].

The idea in stochastic dominance with respect to a function is to focus
on a narrower and more relevant class of preferences (decision makers).
Finite limits are placed on the extent of absolute risk aversion and the
resulting stronger ordering rule presumably compacts further the
stochastically efficient set (Drynan 1977, Meyer 1977b; King and
Robison 1981; Kramer and Pope 1981). In the following simplified ap-
plication of the idea, the earlier assumption of constant risk aversion is
again invoked in an analysis that might be termed stochastic dominance
with respect to a constant-risk-aversion utility function. The analysis
then proceeds straightforwardly if returns are again assumed to be nor-
mal.

The effect of the compaction can be seen in the present illustration by
considering application of the procedure to different ranges of absolute
risk aversion. Beginning at the risk-neutral end of the range, the range of
#=0 to 1x 107% produces an efficient set with only one element {888}, as
may be expected, the expected profit maximising combination. Examples
of sets for more risk-averse ranges are: #=0.01 to 0.02, {8(3-8)8}, 6
elements; § =0.02 to 0.03, {81(6-8), 8(2-3)8}, 5 elements; § =0.03 to 0.05,
{8181, 1 element; §=0.05 to o, {818}, 1 clement.

These various risk-efficient sets have much in common, as nearly all
feature the highest level of labour and the higher levels of fencing ser-
vices, reflecting the negative marginal risk of these factors, as well as the
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assumed expected marginal value productivity. The sheep input (stocking
rate) has a strongly positive marginal risk as well as productivity, and
thus the level of this input, the second variable factor in the efficient sets,
depends crucially on the bounds placed on risk aversion. It ranges from
the lowest level at extreme risk aversion to the highest level at slight risk
aversion. This result corresponds broadly with the analogous effects on
stocking rates in the High Rainfall Zone of Australia explored by McAr-
thur and Dillon (1971). However, the disparate resource bundles involv-
ed in the grid considered, and thus in the efficient sets, make precise com-
parison with the earlier constrained allocations difficult.

Conclusion

Econometric methods are now available for quantifying the effects of
factors of production on risk. Decision theory and analysis provide the
theory and method for linking these effects to conditionally normative
statements about how resources should be combined to maximise the
satisfaction of the economic agents concerned. Our approach and il-
lustration serve to bridge the gulf between the emerging econometric
practice and the risk-efficient allocation of resources.

What needs to be done now is to progress toward a suite of empirical
relationships wherein the effects on risk are estimated appropriately.
Such work must be supplemented eventually by enhanced understanding
of decision makers’ goals and preferences.
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