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ESTIMATING AN UPPER BOUND ON THE
PRATT RISK AVERSION COEFFICIENT
WHEN THE UTILITY FUNCTION IS
UNKNOWN?*

BRUCE A. McCARL and DAVID A. BESSLER
Department of Agricultural Economics, Texas A&M University, .
College Station, TX 77843, USA

The use of stochastic efficiency techniques frequently requires knowledge
of a risk aversion coefficient (RAC). For example, use of mean-variance
programming models (for example. Freund 1956) or stochastic dominance
with respect to a function (Meyer 1977) usually requires knowledge of either
specific RACs or at least a range of values. When investigators possess
reliable estimates of decision makers’ utility functions, as well as data on
wealth, they can use the Pratt RAC definition | — «"(X)/ut/(X)] where u(X)
is the utility function at wealth level X. However, utility function esti-
mates are not always available, can be expensive to obtain, are personalistic
(thus, not necessarily applicable to groups of decision makers) and are
sometimes of questionable reliability (for example, Whittaker and Winter
1980).

In a situation where the resolution of risky choices is desirable and
appropriate utility functions are unknown, incompiete rankings are often
all that i1s possible without assumptions on RACs. Analysts facing this
quandary have utilised RACs from other studies [for exampie, Holt and
Brandt (1985) used the RACs from Kramer and Pope (1981)]. Such a proce-
dure 1s questionable since individual characteristics influencing utility func-
tions, the dispersion of the risky prospect, and wealth levels would change
between studies. Furthermore, RACs have been used which have been too
large (Grube 1986), and this can cause numerical difficulties {for example,
in the programme implementing Meyer’s (1977) procedure, numericai over-
flows often occur because of large RACs, while expected value-variance
models do not utilise all of their resources] or vield an excessivelv large
non-dominated set. Thus, needs arise for inferring the magnitude of the
RAC when the appropriate utility function is not availabie. This paper
provides formulae which satisfy these needs.

RAC:s are needed either to aid in developing the ‘best’ risky prospects
or to resolve choices among risky prospects. RACs aid in developing ‘best’
risky prospects when using techniques such as expected value-variance
analysis where the RAC value is specified a priori. On the other hand,
the RAC may be used ex post after the risky prospects have been fully
described to identify the dominant set. In the ex post case, when dealing
with known prospects, the RACs needed to rank these prospects can be
developed utilising procedures such as those described by Grube (1986),
McCarl (1988) or Hammond (1974). Thus, in this paper attention is res-
tricted to identifying bounds for @ priori specification of the RAC.

* Technical paper No. 24150 of the Texas Agricultural Experiment Station. The authors
thank Ed Rister, Tim Baker and the Journal reviewers for their comments.
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A Review: The Prait Risk Aversion Coefficient and the Risk Premium

Pratt (1964) defined a local RAC which measures risk aversion [r(X)]
which is given by:

nX)= - u"(X)/u(X)

where u(X) is the decision maker’s utility function of wealth, X is the deci-
sion maker’s level of wealth, /(X)) is the first derivative of u(.X") with respect
to X, and «"(X) is the second derivative of u(X) with respect to X.

Pratt (1964, p. 125) also developed a relationship between the risk
premium, the variance ot the risky prospect and n.X) as:

(1) (X, Y)=0.503r(X) + 0(a})

where [1(X, Y) is the risk premium given a level of wealth X and a risky
prospect Y, o} is the variance of the risky prospect, r(X) is the RAC at
level of weaith X and o(g¢) are the higher order terms in the Taylor series
expansion of the expected utility function around the mean of X. The risk
premium is the amount that expected income differs from a certain income
level with equal utility and is defined as:

(2) ul X+ E(Y)-TI{X, N =Eu(X+ Y)]
where E(+) is the expectation operator.

Inferring a Bound on the Risk Aversion Coefficient

Given u(X), X and oy, the above risk premium is a logical result of the
equations. However, when w(X') is unknown, there may be cases when
the above equation may be manipulated to vield information on A X). This
can be done by solving for r(X) from equation (1), which yields

(3) n(X)=2{II(X, Y) - o(e9)]/ 0}

[f, following Tsiang (1972) the dispersion of the risk prospect is assumed
small relative to weaith, then the term o(s#)/ 0} may be neglected.! Thus,
r(X) is approximately given by:

(4) r(X)=2I1(X,Y)/ o

Now suppose a bound on AX) is desired. An 1(.X) bound can be developed
by bounding IT(.X, Y) and manipulating. Three approaches may be taken
to deveioping this bound:

(a) The bound may be established such that the certainty equivalent ignor-
ing wealth [E(Y) ~TI(X, Y)] is non-negative. (Equivalently, one res-
tricts the risk premium to be no greater than the mean.)

(b) The bound may be established such that the risk premium is bounded
above by a confidence interval.

(c) The bound may be established such that the risk premium does not
exceed those found in appiied MOTAD studies.

Each of these approaches is discussed below.

! The Tsiang (1972) assumption of small risk relative to weaith wiil be used herein so that
all of the risk aversion coefficient discussion properiy retates to Pratt’s ‘local’ risk aversion
coefficient. Major wealth changes wiil not be considered.
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Non-negative Certainty Equivalent

Pursuing the first approach, the certainty equivalent ignoring wealth
is given by:

(5) CE=E(Y)-II(X,Y)

In turn, if the certainty equivalent is non-negative, then
(6) EY)=II(X,Y) or

N E(Y)=z0.50}(X)+ o(od)

and a bound on r(X) is

(8) r(X)={2E(Y)/a?} - [20(a})/ 0}
Assuming the o(o$)/o# is close 10 zero vields the bound:
9 r(X)=<2E(Y)/ o}

This bound is equivalent to twice the inverse of the coefficient of varia-
tion divided by the standard deviation.

Confidence Interval

Yet a second bound may be derived based on results found using clas-
sical decision theory. Many such applications have found decision makers
willing to take small risks in order to attain highly probable gains (Keeney
and Raiffa 1976). In other words, decision makers have been found to
be willing to risk unlikely values of the distribution. The likelithood of
such items has been expressed in terms of a confidence interval utilising
the standard deviation. An r(X) bound may be derived by assuming that
the number of standard deviations (D) in the confidence interval is related
to the risk premium. Suppose a Do, confidence interval is established.
In turn, the risk premium may be bounded as:

(10) II(X,Y) < Do,

Substituting equation (1) into inequality (10) yields
(11) TI(X, Y)=0.503(X) + o(0}) < Doy

Manipulating inequality (11) and again neglecting o(¢2) vields a second
bound:

(12) r(X)y=2D/oy

Note that this bound is tighter than the first when the inverse of the co-
efficient of variation exceeds D.?

MOTAD

The third approach to deveioping a bound comes from the numerous
applied studies with MOTAD (Hazell 1971). In such studies, as discussed
in Hazell (1971) or later in Brink and McCarl (1978), a transformation
is applied such that the objective function can be interpreted as:

{13) max U, — yoy
2 Two related bounds have been derived. Tsiang (1972, p. 358) pursues an approach in

the case of constant absolute risk aversion which results in the bound AX)<1/a, after
manipulation. Paris (1979, p. 273) finds a bound of D/g,.
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where {/, is the mean of the risky prospect, ¢ is the risk aversion parameter
and o, is the standard deviation of the risky prospect. In this case, the
term o, is the risk premium. In appiied studies as reviewed in Apland,
McCari and Miller (1980) or Hazeil, Norton, Parthasarthy and Pomereda
(1983), there have been estimates of ¢ based on the best correspondence
with observed data. The range of ¢ values found has fallen between zero
and 2.5. Using the maximum v usually reported (2.5) and bounding the
risk premium yields

(14) INX,Y) <2.50,
and, as above, a bound on (X)) arises where
(15) r(X)SS/Uy

Note that this bound is tighter than the first when the inverse of the co-
efficient of variation exceeds 2.5 and is tighter than the second when D
exceeds 2.5.

Inferring a Magnitude for D in the Second Bound

The second approach described above yields bounds on A X) given a
number of standard deviations to use for the contidence intervai (D). Esti-
mates of D are needed to use the bound. This term can be estimated based
upon the interrelationship of the RAC with the risk premium under
assumprtions of normality or no distributional knowiedge.

Inference assuming normality

Assuming the prospects are normally distributed, then the D coefficient
is equivalent to a Z value in the standardised normal distribution. Sup-
pose that one is willing to bound the risk premium to no more than two
standard deviations.

(16) (X, Y) =20y

This corresponds to a situation where in making the decision one would
compare the values of E(Y) — 20, and choose the prospect with the greater
one of these. In turn, the bound on r(X) would be 4/0,. Generalising,
suppose under the assumption of normality and a confidence intervai with
the probability of observations falling outside of it equal to 0 — «, where
a 1S between zero and 1, then the D value could be set to the one-tailed
value of Z, arising from the standard normal table and the A.X) coetficient
would be given by:

(17 nX)=2Z.,/0y

For example. for « no greater than 0.005, then D =2.57 and the bound
on the value ot r(X) would be’

(18) O=rX)=5.14/0y

Developing bounds based on Chebyshev’s inequality

A bound on n.X) may be developed using a less restrictive distributional
assumption. Chebyshev has shown that the probability of being further
than D standard deviations away from the mean is less than or equai to

3 This equation assumes risk aversion. One couid, however, examine risk preference with
the same analivtical framework.
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1/D* In turn, one can solve for a value of D such that the probability
of being more than Do deviations below the mean is greater than or equal
to «. This value of D is given by:

(19) D=3
and the Pratt RAC would fall within the range
(20) 0=r(X)<2a%%/0y

This again gives a bound for r(X). Solving the equation for a probabil-
ity level of 0.005 yields a value for n(X) of 28 over the standard deviation
of the risky prospect. Assuming reasonable decision makers would not
wish to be more than 99.5 per cent certain in their risk premium level,
then 28/0, i1s another upper bound on r(X). This is an extreme value for
r(X) because of the conservative nature of the Chebyshev inequality.

Use of the Formuliae

The above relationships develop upper bounds on the Pratt RAC based
on expected utility theory and empirical evidence accumulated using deci-
sion theory and MOTAD. The order of magnitude for the bounds, assum-
ing risk aversion, is between zero and 28 over a relevant standard deviation
of income (5/0y seems to be a more realistic bound). Naturally, the rele-
vant standard deviation of income may not always be known a priori,
and some ex post or iterative procedure may be required to develop the
appropriate magnitudes for RACs. However, often one can develop an
esimate of the relevant standard deviation of income by calculating the
standard deviation of commonly used crop plans or the standard devia-
tion of the risky prospects being compared. We recommend that the stan-
dard deviation be constructed so that it is approximately equal to that
of a commonly followed plan (for exampie, the standard deviation of the
pian currently being used).

Transforming RACs Berween Studies

Analysts may feel uncomfortable with use of the above results, as the
values derived are not based on decision makers’ opinions or observed
behaviour, but rather are based on assumptions. However, the formulae
can be used to transform values of 7(X) from one study to another for
comparative purposes.*

Suppose an analyst is willing 1o assume that decision makers act in such
a manner that the risk premium is proportionally the same in two studies.
Suppose that in study | values of 7,(X) and o}, have been observed, and
that the risk premium as a proportion of expected value (U,) for the risky
choice Y, is

(20 II(X,0¢)/U,=0.5r(X)a,/ U,

Then, in a second study where the utility function and r(X) are
unknown, one could use the same proportion of the expected value for
the risk premium. Setting the proportional risk premiums equal to the
resultant r{X) relevant to the second study gives

(22) r(X)=[r(X)ot/ 681U/ U,

* Related transformatic- h correct for the effect of different monetary units are
derived in Raskin and C - 1986).
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which would give an r(X) value for use under the assumption that the
risk premium is of the same percentage in both studies.

RAC Comparisons

The potential usefulness of the above formulae depends upon the extent
to which inappropriate RACs have been and will be used as well as the
degree of accuracy to which the maximum RAC is predicted. These issues
are explored using data from eight previousiy published studies (Table 1).
[n the context of these studies three items are examined: the maximum
RAC used in the study, the RAC bounds derived from the formulae and
the maximum RAC required to rank any two prospects in the study. These
comparisons wiil be used to address the magnitude and accuracy issues
discussed above.

First, consider the degree of accuracy with which maximum RACSs are
predicted by the formulae defined in this study. This may be examined
by comparing the resultant bounds with the largest RAC required to rank
the aiternatives. This largest RAC is derived following Hammond (1974)
using the assumption of constant absolute risk aversion utility functions
and the RISKROOT procedure of McCarl (1988). RISKROOT solves for
atll RACs at which the expected utility for two prospects is equal [Ham-
mond (1974) and McCarl (1988) provide additional discussion]. The RACs
found with the greatest absolute values are presented in Table L. This com-
parison shows that the bounds from the formuiae derived herein are greater
than the maximum RACSs required to rank (in some cases being as much
as 20 times greater). Generally, the value from the formulae based on the
confidence interval under normality and MOTAD was a tighter bound,
but in the King and Robison {1984) case the certainty equivalent bound
was less. It appears safe 10 use the smaller of these bounds as the upper
bound.

TABLE |

Comparison Between RAC Values

Maximum RAC Inequaiity Inequalities Maximum n(.X) at

used in (9) (12) & (15)  which rankings
Previous study previous study bound” bound “ occurred
Nanok, McCarl and 0.1 0.000123 0.000114 0.000037
White (1980)
Holt and Brandt (1985) 2.02 0.770 0.04 -
King and Robison {1984) 0.00008 0.000123 0.0015 0.000181
Klemme (1985) -0 0.150 0.925 0.0077
Kramer and Pope (1981) 0.03 0.000307 0.000264 0.000135
Lee, Brown and
Lovejoy (1985) b 0.00113 0.0009 0.00003
Lemieux, Richardson 0.003501 0.008781 0.000015 -
and Nixon (1982)
Rister, Skees and 0.000063 0.000667 0.00008 =<
Black (1984)

¢ Tabulated as the largest vaiue trom the bound formuia over all the prospects considered
using D equal to 2.5.

® The authors of the study being referenced used first- and second-degree stochastic
dominance and therefore no maximum RAC was used.

© The data needed for this calculation were not avaiiable in the study being referenced.
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The issue of whether the bounds might be useful or whether inappropri-
ate RACs may have been used is examined by comparing the formula
results with the maximum size of RAC used by the authors of the studies.
Under this comparison, it can be noted that two of the studies used maxi-
mum risk aversion parameters which were more than 100 times larger than
the RAC required to reduce the certainty equivalent below zero. Further,
in two of the studies the risk aversion parameters were 20 to 200 times
too small, suggesting that the authors’ ‘strongly risk averse’ range might
not be so.

Concluding Comments

The RAC bounds that have been derived are subject to an important
caveat. It is normally expected that the risk aversion coefficient would
be a function of wealth and not of the dispersion of the prospect.® This
relationship has been negiected in this analvsis. The appropriate risk aver-
sion coefficient shouid fall within the bounds derived above, but the
specific coefficient value should varv with other characteristics of the
individual.

The above relationships can have important uses. First, one may use
the results to devise upper bounds on r(X) and, in turn, explore the inter-
val between zero and the bound. This appears useful as, apparentlv, some
previous studies have used too large or too small a range of r(X) values.
Second, the results can be used to translate (X)) between studies. Papers
such as Raskin and Cochran (1986), Wilson and Eidman (1983), Kramer
and Pope (1981), and King and Robison (1984) report values of the risk
aversion coefficient. Obviously, these are relevant in the source studies,
but under most cases would not be directly relevant in other studies.
However, some studies have directly and inappropriatelv used the risk aver-
sion coefficients obtained in our study in entirely different contexts [see
Holt and Brandt (1985) or several others as identified in Raskin and
Cochran (1986)]. Clearly, the appropriate value of r(X) changes berween
studies and should be elicited or formed as shown herein. Third, one could
use the formula for D in relation to r(X) {that is, D=0.5r(X)o,] and the
normality assumption to interpret the r(X) value in terms of a probability.
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