

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ARMAX-Model Parameter Identification without and with Latent Variables

by

Leon L.F. Wegge

Working Paper Series No. 178Note: The Working Papers of the Department of Economics, Universityof California, Davis, are preliminary materials circulated toinvite discussion and critical comment. These papers may befreely circulated but to protect their tentative characterthey are not to be quoted without the permission of the author.
September 1981
Department of EconomicsUniversity 6 faliforniaDavis, California

ARMAX-Model Parameter Identification without and with Latent Variables

Leon L.F. Wegge
University of Bonn and University of California, Davis

Summer 1981.

Research supported by the Sonderforschungsbereich 21 of the University of Bonn, on leave there from the University of California at Davis.

ARMAX-Model Parameter Identification without and with Latent Variables

by Leon L. Wegge $1 /$

There are three parts to this paper. In the first part we obtain identifiability conditions for ARMAX-Model parameters without latent variables when the external characteristics are a finite number of means and covariances. We show how the conditions obtained here are related to conditions discussed by Fisher [4], Hatanaka [7], Hannan [6], Deistler [1] and others in the literature on asymptotic identifiability. Our results are formally complete in the sense of characterizing the quantity and quality of extra prior information when Fisher's Conditions or llannan's rank condition on the parameter matrices of highest order or if his minimality conditions do not hold. Having conditions for identifiability that require a finite number of first and second moments has obvious advantages in suggesting estimators that are natural composites of the identifying function and the estimating function for the external information.

In the second part of the paper latent variables are introduced and the results of the first part are re-stated when the external information are the subvectors of first moments and the principal submatrices of the intertemporal covariances associated with the observed variables. As a general rule, with latent variables extra prior information is needed for identifiability. In dynamic models however the extra prior information can be made up in many more ways than in the static models analyzed in [10]. Even more important is the conclusion that under observability conditions, as this is defined in linear system theory, no extra information on the parameters that determine the means of the variables, is needed.

1/ I wish to thank P. SchBnfeld and N. Christopeit of the Sonderforschungsbereich 21 at Universitat Bonn and M. Deistler for the many conversations during the formative stages of this paner. All remaining errors are mine

In part three of the paper we consider the dynamic factor analysis model with fixed exogenous variables and illustrate how independence assumptions between measurement and state variable equations alone can establish identifiability of the model parameter. The example itself should be of interest also because it has a resemblance with the models considered in the literature on Kalman-filters. In this paper however the parameters of the model are not known and are to be estimated.
I. Identifiability Conditions for $\operatorname{ARMAX}(p, q)$-Model Parameters

1. The Three Forms of the $\operatorname{ARM} \wedge X(p, q)$-Model

Below write $z_{T}^{\prime}=\left(z_{t}\right)$ for the matrix with T columns, having z_{t} as its $t-t h$ column, $t=1, \ldots, T$. Let $L Z_{T}^{\prime}$ be the matrix with z_{t} placed in the $(t+1)$ th column, $t=0, \ldots, T-1$.

The ARMAX Model under consideration is introduced in three familiar forms, the structural form (SF), the reduced form (RF) and the final form (FF). These are the $G+H$ equations in each period $t=1, \ldots, T$, and are written in standard notation
(1)

$$
\begin{align*}
& B_{o} Y_{T}^{\prime}+B_{1} L Y_{T}^{\prime}+\Gamma X_{T}^{\prime}=U_{T}^{\prime}, \quad U_{T}^{\prime}=\left(u_{t}\right)=\left(\sum_{k=0}^{q} \Delta_{k} e_{t-k}\right) \text {, with } e_{t}=0 \text { for } t \leq 0 \text {, } \tag{SF}\\
& B_{i} \text { is }(\mathrm{C}+\mathrm{H}) \times(\mathrm{G}+\mathrm{H}) \text { with } \mathrm{B}_{0} \text { nonsingular } \\
& \Gamma \text { is }(\mathrm{G}+\mathrm{H}) \times \mathrm{K} \text { with } \mathrm{K} \text { the number of exogenous variables } \\
& \Delta_{i} \text { is }(\mathrm{G}+\mathrm{H}) \times(\mathrm{G}+\mathrm{Hi}) \text { with } \Delta_{0}=\mathrm{I}_{\mathrm{G}+\mathrm{ll}} \\
& \left(e_{t}\right) \text { is a white noise process, mean zero, covariance } \Sigma \text { for } t=1, \ldots, T \\
& Y_{T}^{\prime} \text { and } X_{T}^{\prime} \text { are the data matrices on endogenous and exogenous variables } \\
& Y_{T}^{\prime}=\pi_{1} L Y_{T}^{\prime}+\pi_{0} X_{T}^{\prime}+V_{T}^{\prime}, \quad V_{T}^{\prime}=\left(v_{t}\right)=\left(B_{0}^{-1} u_{t}\right)=\left(\sum_{k=0}^{q} \Xi_{k} B_{0}^{-1} e_{t-k}\right) \\
& \Pi_{1}=-B_{0}^{-1} B_{1}, \quad \Pi_{0}=-B_{0}^{-1} \Gamma \quad \Xi_{k}=B_{0}^{-1} \Delta_{k} B_{0} \quad \Omega=B_{0}^{-1} \Sigma B_{0}^{\prime-1}=E\left(v_{1} v_{1}^{\prime}\right) \\
& Y_{T}^{\prime}=Y_{T}^{\prime}+W_{T}^{\prime} \tag{FF}\\
& M_{T}^{\prime}=\left(\mu_{t}\right)=\left(\Pi_{1}^{t} \mu_{0}+\sum_{s=0}^{t-1} \Pi_{1}^{s_{0}} \Pi_{0} x_{t-s}\right)=\left(\pi_{1}^{\mu_{t-1}}+\Pi_{0} x_{t}\right) \quad \text { given } \mu_{0} \\
& W_{T}^{\prime}=\left(w_{t}\right)=\left(\sum_{s=0}^{t-1} \Pi_{1}^{s} v_{t-s}\right)=\left(\sum_{s=0}^{t-1} \prod_{1}^{s} \sum_{k=0}^{q} \Xi_{k} B_{0}^{-1} e_{t-s-k}\right)
\end{align*}
$$

The final form expresses the endogenous variables as the sum of the means M_{T}^{\prime} and the final form residuals W_{T}^{\prime}. Each component w_{t} is a distributed lag of the sequence of residuals $\mathrm{B}_{0}^{-1} \mathrm{e}_{\mathrm{t}}$, which is a white noise sequence with covariance Ω.

We show the relations (3) in more detail by rewriting them in the form

$$
=\mathrm{D}\left(\mathrm{I}_{\mathrm{T}} \otimes \mathrm{~B}_{0}^{-1}\right) \operatorname{vecF}_{\mathrm{T}},
$$

where $\operatorname{vec} E_{T}$ is the row of rows of E_{T} written as a column and $\mathrm{F}_{\mathrm{T}}^{\prime}=\left(e_{t}\right)$. 2/
From (4) we verify that w_{t} is a moving average of $B_{0}^{-1} e_{t}$ with the first $q+1$ weights determined by the moving average weights in the reduced form residuals as well as by the reduced form matrix Π_{1}. Beyond $q+1$ the weights are geometrically changing with the matrix π_{1}. An important property of the matrix of weights D is that it is recursive and the lag coefficients only depend on the lag and not on the time t.

Letting $D_{i, j}$ be the (i, j)th submatrix of D, from (4) we verify that the covariance matrix $C(T)$ satisfies
(5)

$$
\begin{align*}
& C(T)=\left(E\left(w_{t} w_{t}^{\prime}\right)\right)=D\left(I_{T} \otimes \Omega\right) D^{\prime}, \quad t, t^{\prime}=1, \ldots, T, \tag{5a}\\
& E\left(w_{t} w_{1}^{\prime}\right)=D_{t, 1}=\left(\sum_{s=0}^{t-1} \Pi_{1}^{s} E_{t-1-s}\right) \Omega=E_{t-1} \Omega+\Pi_{1} E\left(w_{t-1} w_{1}^{\prime}\right), \quad t \leq q+1
\end{align*}
$$

$$
\begin{equation*}
E\left(w_{t+1} w_{t^{\prime}+1}^{\prime}\right)=E\left(w_{t^{\prime}} w^{\prime}\right)+D_{t+1,1} \Omega_{t^{\prime}+1,1}^{\prime} \quad t, t^{\prime}=1, \ldots, T-1 . \tag{5c}
\end{equation*}
$$

$2 /$ (vecz)' is the row of rows of a matrix Z and ($v e c^{\star} Z$)' is the row of rows of a symmetric matrix omitting the elements below the diagonal. The matrices Q_{G+1} and

The recursive relation (5c) implies that if we were to start the dynamic stochastic process one period later, i.e. in period 2 given $w_{t}=0, t \leq 1$, instead of in period 1 given $w_{t}=0, t \leq 0$, the conditional covariance structure is exactly the same as the original covariance structure, with one period delay. Property (5c) follows from (5a) and the recursive nature of D. Conversely if a covariance satisfies (5c) it can be shown that there exist a recursive matrix D such that (5a) holds.

The properties (5c) and (5b) imply further that all the covariance matrices in $C(T)$ can be expressed in terms of the covariances $E\left(w_{t} w_{1}^{\prime}\right), t=1, \ldots, q+1$, for given π_{1}. It follows that the information contained in $C(T)$ is the same as the information contained in $\mathrm{F}\left(\mathrm{w}_{\mathrm{t}} \mathrm{w}_{1}^{\prime}\right), \mathrm{t}=1, \ldots, \mathrm{q}+2$, including the information concerning Π_{1}. Properties (5c) and (5b) are the basis for determining a minimal number of external covariance characteristics.

If the true model is an $\operatorname{ARMAX}(p, q)$-Model with a p-th order autoregression in G^{*} endogenous variables

Fisher [4] considers a first-order difference equation but nothing is known about the error structure. This is formally equivalent to an $\operatorname{ARMAX}(1, T-1)$-Model in which the final form residuals w_{t} are moving averages of the white noise process ($B_{o}^{-1} e_{t}$) as in (4) and satisfying (5c). In particular w_{T} would depend on Π_{1} and on $T-1$ arbitrary weighting matrices Ξ_{k}. In Hatanaka [7] both p and K are unknown and $q=T-1$.

2. The Identification Concept

The structural parameter α is the vector of parameters

$$
\begin{equation*}
\alpha^{\prime}=\left(\beta_{0}^{\prime}, \beta_{1}^{\prime}, \gamma^{\prime}, \delta_{1}^{\prime}, \ldots, \delta_{q}^{\prime}, \sigma^{\prime}\right) \tag{8}
\end{equation*}
$$

where

$$
B_{0}=\operatorname{vec} B_{0}, \quad B_{1}=\operatorname{vec} B_{1}, \quad \gamma=\operatorname{vec} \Gamma, \quad \delta_{k}=\operatorname{vec} \Delta_{k}, \sigma=\operatorname{vec} \star \Sigma \text {. }
$$

The reduced form parameter θ is the vector of parameters

$$
\begin{equation*}
\theta^{\prime}=\left(\pi_{1}^{\prime}, \pi_{0}^{\prime}, \xi_{1}^{\prime}, \ldots, \xi_{q}^{\prime}, \omega\right) \tag{9}
\end{equation*}
$$

where

$$
\pi_{1}=\operatorname{vec} \Pi_{1}, \quad \pi_{0}=\operatorname{vec} \Pi_{0}, \quad \xi_{k}=\operatorname{vec} \Xi_{k}, \omega=\operatorname{vec} * \Omega .
$$

By definition and B_{o} nonsingular the relation between structural and reduced form parameters

$$
\begin{equation*}
\alpha^{\prime}=\left(B_{0}^{\prime},-\pi_{1}^{\prime}\left(B_{0}^{\prime} \otimes I_{G+H}\right),-\pi_{0}^{\prime}\left(B_{0}^{\prime} \otimes I_{K}\right), \xi_{1}^{\prime}\left(B_{0}^{\prime} \otimes B_{0}^{-1}\right), \ldots, \xi_{0}^{\prime}\left(B_{0}^{\prime} \otimes B_{0}^{-1}\right), \omega^{\prime} P_{G_{1}+H}\left(B_{0}^{\prime} \otimes B_{0}^{\prime}\right) Q_{G+H}^{\prime}\right. \tag{10}
\end{equation*}
$$

is one-to-one.
The structural parameter restrictions are a list of k_{r} equations $\phi(\alpha)=0$, where $\phi=\left(\phi_{i}\right), i=1, \ldots, k_{r}$, is continuously differentiable.

We adopt the following definitions that are modifications of concepts in [9] to reflect our interest in reducing external information requirements.

Definition 1 .

The structure $s=\left\{\alpha, \phi(\alpha)=0, X_{T}^{\prime}, U_{T}^{\prime}\right\}$ with moments $M_{T}^{\prime}, C(T)$ and the structure $s^{\star}=\left\{\alpha^{\star}, \phi\left(\alpha^{\star}\right)=0, X_{T}^{\prime}, U_{T}^{\star \prime}\right\}$ with moments $M_{T}^{\star}, C^{\star}(T)$ are $\left(T_{1}, T_{2}\right)$-observationally equivalent if $M_{T_{1}}=M_{\mathrm{T}_{1}}^{\star}$ and $\mathrm{C}_{\mathrm{T}_{2}}=\mathrm{C}_{\mathrm{T}_{2}}^{\star}$, where $\mathrm{T}_{1} \leq \mathrm{T}, \mathrm{T}_{2} \leq \mathrm{T}$.

Definition_2
The parameter α of the true structure s is ($T_{1}, \mathrm{~T}_{2}$) -identifiable whenever s^{*} ($\mathrm{T}_{1}, \mathrm{~T}_{2}$) -observationally equivalent to s , implies $\alpha^{\star}=\alpha$.

Definition 3

The pair $\left(T_{1}, T_{2}\right)$ is observationally efficient if $\alpha \quad\left(T_{1}^{*}, T_{2}^{*}\right)$-identifiable implies α is $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$-identifiable, where $\mathrm{T}_{1}^{\star} \geq \mathrm{T}_{1}, \mathrm{~T}_{2}^{*} \geq \mathrm{T}_{2}$ with strict inequality at least once.

In general one would not expect the observationally efficient pairs (T_{1}, T_{2}) to be unique. Trade-offs between T_{1} and T_{2} can exist.

Remark 1

In Definition 1 the external information is T_{1} first moments $M_{T_{1}}^{\prime}=\left(E\left(y_{t}\right)\right), t=1, \ldots, T_{1}$, and the matrix $C\left(T_{2}\right)=\left(E\left(y_{t}-E\left(y_{t}\right)\right)\left(y_{t},-E\left(y_{t},\right)^{\prime}\right), t, t^{\prime}=1, \ldots, T_{2}\right.$. In contrast in the classical papers by Hannan [5], [6], also Deistler [1], the identification concept is asymptotic identifiability, the external information being an infinite number of first and second moments. These enter in their analysis through assuming that the spectral density matrix functions or the z-transformed transfer functions $\left(I_{G+H^{-\Pi}} l^{-1} \Gamma\right.$ and $\left(I_{G+H^{-\Pi}} 1^{-1}\right)^{-1} \sum_{k=0}^{q} \Xi_{k^{\prime}} z^{k}$ are given. This in turn pre-supposes stability requirements and restrictions that either the historical values of the exogenous variables are known outside the sample period or it is known that they are stationary processes.

Remark 2

From the relation (10) between structural and reduced form parameter, the structural parameter α is identifiable if and only if the parameter $\left(\left(\operatorname{vec} B_{0}\right)^{\prime}, \theta^{\prime}\right)^{\prime}$ with B_{0} nonsingular, is identifiable. In static models with intertemporally uncorrelated residuals the reduced form is in final form already and the study of identification proceeds by finding conditions under which the structural parameter α is uniquely determined given the reduced form parameter θ. The latter
is assumed supplied by the external information. This exercise produces the classical conditions for identification in static models.

Likewise we can perform this same exercise for the $\operatorname{ARMAX}(p, q)$-Model and state the conditions under which α is locally uniquely determined given θ. These conditions are that the matrix

$$
\begin{align*}
\Psi=\phi_{B_{0}^{\prime}}\left(I_{G+H} \otimes B_{0}^{\prime}\right)+\phi_{B_{1}^{\prime}}\left(I_{G+H} \otimes B_{1}^{\prime}\right)+\phi_{Y^{\prime}}\left(I_{G+H} \otimes \Gamma^{\prime}\right) & +\sum_{\mathrm{k}=1}^{\mathrm{q} \phi_{\delta}^{\prime}} \delta_{\mathrm{k}}\left[\left(\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \Delta_{\mathrm{k}}^{\prime}\right)-\left(\Delta_{\mathrm{k}} \otimes \mathrm{I}_{\mathrm{G}+\mathrm{H}}\right)\right] \tag{11}\\
& +2 \phi_{\sigma} \mathrm{Q}_{\mathrm{G}+\mathrm{H}}\left(\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \Sigma\right)
\end{align*}
$$

have rank $(\mathrm{G}+\mathrm{H})^{2}$, where $\psi\left(\mathrm{I}_{\mathrm{G}+1} \otimes \mathrm{~B}_{0}^{\prime-1}\right)$ is the Jacobian matrix of k_{r} restrictions

$$
\begin{equation*}
0=\phi\left(\alpha^{\prime}\right)=\phi\left(\left(\operatorname{vec} B_{0}\right)^{\prime},-\left(\operatorname{vec} B_{0} \Pi_{1}\right)^{\prime},-\left(\operatorname{vec} B_{0} \Pi_{0}\right)^{\prime},,,\left(\operatorname{vec} B_{0} \Xi_{k} B_{0}^{-1}\right)^{\prime}, .,\left(\operatorname{vec} B_{0} \Omega B_{0}^{\prime}\right)^{\prime}\right) \tag{12}
\end{equation*}
$$ in the $(G+H)^{2}$ unknowns $\beta_{0}=v e c B_{0}$ for given reduced form parameters and where

$$
\begin{array}{ll}
\phi_{B_{0}^{\prime}}=\frac{\partial \phi(\alpha)}{\partial\left(\operatorname{vec} B_{0}\right)^{\prime}} & \phi_{B_{1}^{\prime}}=\frac{\partial \phi(\alpha)}{\partial\left(\operatorname{vec} B_{1}\right)^{\prime}}, \\
\phi_{\delta_{k}^{\prime}}=\frac{\partial \phi(\alpha)}{\partial\left(\operatorname{vec} \Delta_{k}\right)^{\prime}} & \phi_{\sigma^{\prime}}=\frac{\partial \phi(\alpha)}{\partial(\operatorname{vec} \star \Sigma)^{\prime}},
\end{array}
$$

With linear ϕ, independent of Δ_{k} and of Σ, this condition is also globally necessary and sufficient since (12) is linear in the unknowns vec B_{0}.

Many results in the literature on the identification of dynamic systems are statements of conditions under which $\rho(\Psi)=(\mathrm{G}+\mathrm{H})^{2}$ is the only condition for identification. Taking together however the conditions for identification of the parameter of dynamic systems must guarantee that $\rho(\Psi)=(G+H)^{2}$ as well as that the reduced form parameter θ itself is identifiable given the external information about the final form moments. This is what makes the study of identification of dynamic model
parameters different from that of static model parameters.
3. Proposition 1:
A. The structural parameter α is locally (T_{1}, T_{2})-identifiable if and for constant rank matrices only if the matrix

$\begin{aligned} & \text { In-para- } \\ & \text { for- nete } \\ & \text { mation } \end{aligned}$	B_{0}^{\prime}	π_{1}^{\prime}	π_{0}^{\prime}	ξ_{1}^{1}	${ }^{\prime}{ }_{q}$	ω^{\prime}
Means	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \mathrm{L}^{\left(\mathrm{T}_{1}\right.}$	$\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \mathrm{X}_{\mathrm{T}_{1}}$	0	0	0
$E\left(w_{1} w_{1}^{\prime}\right)$	0	0	0	0	0	
$E\left(w_{2} w_{1}\right)^{\prime}$	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \mathrm{E}\left(\mathrm{w}_{1} \mathrm{w}_{1}^{\prime}\right)$	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}} \mathrm{BE}\left(\mathrm{w}_{1} \mathrm{w}_{1}^{\prime}\right)$	0	0
- - -	--	- . . - -	- - -		- - - -	- -
$E\left(w_{q+1} w_{1}^{\prime}\right)$	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}^{*} \mathrm{E}\left(\mathrm{w}_{1} \mathrm{w}_{\mathrm{q}}^{\prime}\right)}$	0	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}}$ (EE($\left.\mathrm{w}_{1} \mathrm{w}_{1}^{\prime}\right)$	0
---	- -	- -	- - -	- - - -	- - - - -	- - - - - -
$E\left(w_{T_{2}} w_{1}^{\prime}\right)$	0	$\mathrm{I}_{\mathrm{G}+\mathrm{H}} \otimes \mathrm{E}\left(\mathrm{w}_{1} \mathrm{w}_{\mathrm{T}_{2}-1}^{\prime}\right)$	0	0	0	0
Prior	Ψ	$-\phi_{B_{1}^{\prime}}\left(B_{0} I_{G+H}\right)$	$-\phi_{Y^{\prime}}\left(B_{0} 8 I_{K}\right)$	$\phi_{\delta_{1}^{\prime}}\left(\mathrm{B}_{0} \otimes \mathrm{~B}_{0}^{\prime-1}\right)$	$\phi_{\delta_{q}^{\prime}}\left(B_{0} \otimes B_{0}^{\prime-1}\right)$	$\phi_{\sigma},{ }^{0}{ }_{G}+\mathrm{H}\left(\mathrm{B} \beta \mathrm{Br}_{0}\right) \mathrm{P}_{\mathrm{G}+\mathrm{H}}^{\prime}$

has rank equal to the number of structural parameters. With linear prior information independent of $\Delta_{k}, k=1, \ldots, q$, and of Σ, this rank condition is necessary and sufficient for global identifiability.
B. If α is ($\mathrm{T}_{1}, \mathrm{~T}_{2}$)-identifiable and the pair ($\mathrm{T}_{1}, \mathrm{~T}_{2}$) is observationally efficient, $T_{2} \leq q+2$.

Proof. By definition the structural parameter α is (T_{1}, T_{2})-identifiable if the system (2), (5a) and (12) for given $M_{T_{1}}^{\prime}, C\left(T_{2}\right)$ and ϕ has a unique solution in $5_{1}=$ $\left(\left(\operatorname{vec} B_{0}\right)^{\prime}, \theta^{\prime}\right)$.

The system (2) $\mu_{t}=\Pi_{1} \mu_{t-1}+\Pi_{0} x_{t}$ is the linear equations system

$$
\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
-- \\
\mu_{T_{1}}
\end{array}\right]=\left(\begin{array}{ll}
I_{G_{+H}} \otimes \mu_{0}^{\prime} & I_{G+H} \otimes x_{1}^{\prime} \\
I_{G+H} \otimes H_{1}^{\prime} & I_{G+H} \otimes x_{2}^{\prime} \\
\cdots \cdots & \cdots \\
I_{G+H} \otimes \mu_{T_{1}-1}^{\prime} & I_{G+H} \otimes x_{T_{1}}^{\prime}
\end{array}\right] \quad\left[\begin{array}{l}
v e c \pi_{1} \\
v e c \pi_{0}
\end{array}\right]
$$

for given first moments $\left(\mu_{t}\right), t=0, \ldots, T_{1}$. After re-ordering of the rows, the matrix of this linear system is reproduced under the first ($\mathrm{G}+\mathrm{H}$) T_{1} rows of (13).

As discussed above the matrix $C\left(T_{2}\right)$ depends on the matrices $E\left(w_{t} w_{1}^{\prime}\right), t=1, \ldots, T_{2}$ only. From (5b) $E\left(w_{t} w_{1}^{\prime}\right)=E_{t-1} \Omega+\Pi_{1} E\left(w_{t-1} w_{1}^{\prime}\right)$ for $t \leq q+1$ and $E\left(w_{t} w_{1}^{\prime}\right)=\pi_{1}^{t-q-1} E\left(w_{q+1} w_{1}^{\prime}\right)$ for $t>q+1$, where $E\left(w_{1} w_{1}^{\prime}\right)=\Omega$. The rows in (13) corresponding to the external covariance matrices are successively

$$
\begin{aligned}
& \frac{\partial v e c * \Omega}{\partial \zeta^{\prime}} \\
& \frac{\partial \operatorname{vecE}\left(w_{t} w_{1}^{\prime}\right)}{\partial \zeta^{\prime}}-\left(\pi_{1} \otimes I_{G+H}\right) \frac{\partial \operatorname{vecE}\left(w_{t-1} w_{1}^{\prime}\right)}{\partial \zeta^{\prime}}-\left(E_{t-1} \otimes I_{G+H}\right) P_{G+H}^{\prime} \frac{\partial v e c * \Omega}{\partial \zeta^{\prime}}
\end{aligned}
$$

for $t=2, \ldots, T_{2}$, where we put $\Xi_{t}=0$ for $t>q$.
The last row are the partial derivatives of the k_{r} prior restrictions $\phi(\alpha)=0$ with respect to ζ^{\prime}, through the relation (10), and where ψ is defined at (11).

To show B. it suffices to verify that the contribution of external information on $E\left(\mathrm{w}_{\mathrm{T}_{2}}{ }^{\mathrm{w}} \mathrm{i}\right)$ for $\mathrm{T}_{2}>\mathrm{q}+2$ is proportional to the contribution from $\mathrm{E}\left(\mathrm{w}_{\mathrm{q}}+\mathrm{w}^{\mathrm{w}} \mathrm{i}\right)$ and does not add to the rank of the matrix (13).

1. As discussed above, we get back $\rho(\Psi)=(G+H)^{2}$ as part of the rank conditions for identifiability. This is to render inadmissible transformations of the structural equations (1). In comparison to static models, the matrix Ψ now includes restrictions involving the autoregressive matrix B_{1} and the moving average matrices Δ_{k} as well as the usual parameter restrictions of the static model.
2. The reduced form parameter matrix Π_{1} can be identified through external information on the means and also on the covariances as well as through prior restrictions on \mathbf{B}_{1} that are not used to meet the condition before.
3. A failure of the data matrix $X_{T_{1}}^{\prime}$ to have rank K implies that the reduced form parameter Π_{0} is not identifiable on basis of the external information. This can be remedied by extra restrictions on the matrix Γ of coefficients of the exogenous variables, which is indeed the remedy against perfect multicollinearity.
4. The moving average matrix Ξ_{k} is identifiable from the external information $E\left(w_{k+1} w_{1}^{\prime}\right)$ provided $E\left(w_{1} w_{1}^{\prime}\right)=\Omega$ is nonsingular. If Ω is singular, prior information is needed to identify Ξ_{k}. If the source of singularity of Ω is the singularity of Σ due to the presence of identities in the structural model (1), the corresponding submatrix in Δ_{k} is a submatrix of I_{G+H} and enough prior restrictions are available to identify Ξ_{k} in such cases. If the source of singularity of Ω does not lead to justifiable prior restrictions on Δ_{k}, then Ξ_{k} is not identified.
5. The parameter Ω is always identifiable since it is given in the external information matrix $E\left(W_{1} W_{1}^{\prime}\right)$.

The leading question dealt with in the literature on the identification of dynamic model parameters is what are the conditions under which the structural parameter is identifiable under the sole condition $\rho(\Psi)=(G+H)^{2}$, and without having to use extra (over-identifying) prior restrictions to identify the
reduced form parameter θ, except perhaps in the presence of identities, the trivial restrictions that make up for the deficiency in the rank of Ω. Assigning the external information on the covariances $E\left(w_{k} w_{1}^{\prime}\right), k=1, \ldots, q+1$, as well as the trivial restrictions associated with identities, to Ω and to Ξ_{k}, we can assign the externally given $E\left(w_{q+2} w_{1}^{\prime}\right)$ to π_{1}. We have from Proposition 1 : Corollary 1

The structural parameter α is locally ($\left.T_{1}, q+2\right)$-identifiable without the help of extra (over-identifying) ($\left.B_{1}, \Gamma\right)$-restrictions only if condition

$$
G+H+K=\rho\left(\begin{array}{cc}
L M M_{T}^{1} & E\left(w_{q+1}^{w_{1}^{\prime}}\right) \tag{C1}\\
X_{T}^{\prime} & 0
\end{array}\right)
$$

holds.

Unfortunately the condition (Cl) is not easily verifiable.
Let the p-th order autoregression with an r-th order moving average in the K^{*} exogenous variables $Z_{T}=\left(z_{t}\right)$ be written as

$$
\begin{equation*}
\sum_{k=0}^{p} b_{k} L^{k} Y_{T}^{\star \prime}+\sum_{k=0}^{r} \gamma_{k} L^{k} Z_{T}^{\prime}=U_{T}^{\star \prime}, \quad U_{T}^{* \prime}=\left(u_{t}^{\star}\right)=\left(\sum_{k=0}^{q} \Delta_{k}^{*} e_{t-k}^{\star}\right) . \tag{14}
\end{equation*}
$$

In addition to the variables defined at (7), let

$$
X_{T}^{\prime}=\left|\begin{array}{l}
Z_{T}^{\prime} \tag{15}\\
L_{Z}^{\prime} \\
\mathrm{L}^{\prime} \\
\mathrm{Z}_{\mathrm{T}}^{\prime}
\end{array}\right| \quad \Gamma=\left|\begin{array}{ccc}
\mathrm{r}_{0} & \gamma_{1} & \gamma_{\mathrm{r}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|=\left((\Gamma)_{0} \quad(\Gamma)_{1} \quad(\Gamma)_{\mathbf{r}}\right)
$$

Lemma 1 :
In terms of the parameters of the structural model (1) a necessary condition for the condition (C1) to hold is that $\rho\left(B_{1}, \Gamma, \Delta_{q}\right)=C_{G}+H$ and $\rho\left(X_{T}^{\prime}\right)=K$. In terms of the parameters of Yodel (14) a necessarv condition for the condition (C1) to hold is that $\rho\left(h_{p}, \Delta_{q}^{*}, \gamma_{r}\right)=G_{*}^{*}$ and $\rho\left(Z_{T_{1}}\right)=K^{*}$, where G^{*} and K^{*} is the number of unlagged endogenous variahles and exogenous variables respectively.
a
Proof. From $\mu_{t}=\Pi_{1} \mu_{t-1}+\Pi_{0} x_{t}$ and from $E\left(w_{q+1} w_{1}^{\prime}\right)=\left(\sum_{s=0} \Pi_{1}^{s} E_{q-s}\right) \Omega$, we have

$$
\begin{aligned}
& \leq \rho\left(\Pi_{1}, \Xi_{q}, \Pi_{0}\right)+\rho\left(X_{T_{1}}^{\prime}\right)=\rho\left(B_{1}, \Gamma, \Delta_{q}\right)+o\left(X_{T_{1}}^{\prime}\right) \text {. }
\end{aligned}
$$

For the Model (14) $X_{T_{1}}^{\prime}$ is the matrix of K^{*} variables $Z_{T_{1}}^{\prime}$ and its r lagged values so that the matrices ${ }^{{ }^{\prime}} \mathrm{T}_{1}$ and $\mathrm{LX}_{\mathrm{T}_{1}}$ have $\mathrm{K}^{*}(\mathrm{r}-1)$ overlapping components. After elimination of these we have that (16). equals

$$
\begin{aligned}
& \leq \rho\left(\Pi_{1},\left(\Pi_{0}\right)_{r}, \Xi_{q}\right)+r K^{*}+\rho\left(Z_{T_{1}}^{\prime}\right)=\rho\left(B_{1},(\Gamma)_{r}, \Delta_{q}\right)+r K^{*}+\rho\left(Z_{T_{1}}\right),
\end{aligned}
$$

where $\left(\left(\Pi_{0}\right)_{k}\right)$ is the partition of Π_{0} corresponding to the partition of Γ. By definitions (7) the result follows, noting that $G+H=p G^{*}$ and $K=(r+1) K^{*}$.

The conditions under which it is possible to identifv the structural parameter without over-identifying prior restrictions is thus seen to be limited to models with parameter matrices of highest order meeting a full row rank condition.

Aspecial case discussed in the literature is Model (14) with $q=T-1$, i.e. when the order of the error moving average process is not known. Covariance external information does not help in identifying Π_{1}, but Proposition 1 surprisingly specializes to:

Corollary 2.

The structural parameter of the model (14) satisfyingo $\left(X_{T}^{\prime}\right)=K=(r+1) K$ * $q=T-1$ and G^{*} endogenous variables is locally (T, T)-identifiable if and for constant rank matrices only if the matrix

$$
\begin{equation*}
\left.\left(\frac{\partial \phi}{\partial(\operatorname{vec} A)^{\prime}},\left(I_{G^{*}} \otimes A^{\prime}\right) \quad \frac{\partial \phi}{\partial\left(\operatorname{vec}\left(b_{1}, \ldots, b_{p}\right)\right)^{\prime}},{ }_{0} \otimes I_{p G *}\right)-\frac{\partial \phi}{\partial\left(\operatorname{vec}\left(\gamma_{0}, \ldots, \gamma_{r}\right)\right)^{\prime}}\left(b_{0} \otimes R\right)\right) \tag{17}
\end{equation*}
$$

has rank $(p+1) G^{*}{ }^{2}$, where $A=\left(b_{0}, \ldots, b_{p}, \gamma_{0}, \ldots, \gamma_{r}\right)$ and $R=\left(X_{T}^{\prime} X_{T}\right)^{-1} X_{T}^{\prime} L M T$. With 1inear restrictions this rank condition is necessary and sufficient for global identifiability. This rank condition is sufficient and for constant rank matrices necessary for the system $\phi(v e c A)=0, E\left(U_{T}^{*} X_{T}\right)=0$ to have a locally unique solution in vecA. Proof. When $q=T-1$ only the external information on the means helps to identify π_{1}. The rank condition on the matrix (17) follows after elimination of the restrictions on $\left(B_{0}, B_{1}, \Gamma\right)$ that are implied by the definitions (7) and (15) and after pre-multiplying the rows corresponding to the external information on the means by ($\mathrm{p}_{\mathrm{p}} \star^{*} \otimes \mathrm{X}_{\mathrm{T}}^{\prime}$). The second part of the Corollary follows from considering the Jacobian matrix of the system of equations $\phi(v e c A)=0, E\left(U_{T}^{\star} X_{T}\right)=0$.

Corollary 2 is an illustration of how in Proposition 1 the conditions for identifiability and estimability are closely linked together. The estimator that emerges is very standard.

We now discuss how our Proposition 1 contains the results from the literature.

Literature References

1. As discussed above, Fisher's Model in [4] is formally equivalent to an $\operatorname{ARMAX}(1, T-1)$-Model within the concept of (T,T)-identifiability. In our terminology, Fisher derives the result that the condition
(C2) $\quad \mathrm{G}+\mathrm{H}+\mathrm{K}=\rho\binom{\mathrm{LM}_{\mathrm{T}}^{\prime}}{\mathrm{X}_{\mathrm{T}}^{\prime}}$
is necessary and sufficient for the classical rank condition $\rho(\Psi)=(\mathrm{G}+\mathrm{H})^{2}$ to become the sole condition for identifiability. As stated in Corollary 1 above the necessity of (C2) follows only if there are no over-identifying (B_{1}, Γ)-restrictions. If there are more than $(\mathrm{G}+\mathrm{H})^{2}$ prior parameter restrictions, it is possible to identify α even when (C2) fails.
2. Hannan [6], Deistler [1], Koch [8] and others have considered the ARMAX (p,q)Model from the perspective of asymptotic identifiability which is equivalent to (T, T)-identifiability, when $\mathrm{T} \rightarrow \infty$. Often the exogenous variables are assumed generated by a stationary stochastic process and identifiability is to be understood as identifiability within the class of stochastically generated exogenous variables. Within the definitions of the pth order autoregression (14), the external information assumed is $(b(z))^{-1} \gamma(z)$ and $(b(z))^{-1} \delta(z)$, where

$$
b(z)=\sum_{s=0}^{p} b_{s} z^{s} \quad \gamma(z)=\sum_{s=0}^{r} \gamma_{s} z^{s} \quad \delta(z)=\sum_{s=0}^{q} \Delta_{s}^{*} z^{s}
$$

are the z-transforms of the autoregressive and moving average processes.
In analyzing the leading question discussed in our Corollary 1 , the authors found it necessary to introduce the following conditions:

$$
\begin{align*}
& \rho\left(b_{p}, \gamma_{r}, \Delta_{\mathrm{q}}^{\star}\right)=G^{*} \quad \text { (Rank Condition on Highest Order Matrices) } \tag{C3}\\
& \mathrm{b}(z) \text { and } \gamma(z) \text { have no roots in common (Minimality Condition for Means) } \tag{C4}\\
& \mathrm{b}(z) \text { and } \delta(z) \text { have no roots in common (Minimality Condition for Covariances) } \tag{C5}
\end{align*}
$$

Conditions (C4) and (C5) play a crucial role in the method of analysis followed in Hannan [6] and others. Failure of (C4) implies that the final form transfer function $(b(z))^{-1} \gamma(z)=\left(b^{a}(z)\right)^{-1} \gamma^{a}(z)$, where $b^{a}(z)$ and $\gamma^{a}(z)$ are of degree $\mathrm{p}-1$ and $\mathrm{r}-1$ respectively. If this is the case the final form asymptotic means could be perceived as being generated by different ARMAX-Models of degrees ($p-1, q-1$) and (p, q). A minimality condition would assume that the true model corresponds to the lowest possible orders after all common roots are removed. A similar remark applies to justify (C5).

Hannan [5] found the justification of (C3) from requiring that transformations of model (1) of the type

$$
\begin{equation*}
\left(F_{0}+F_{1} L\right)\left(B_{0}+B_{1} L\right) Y_{T}^{\prime}+\left(F_{0}+F_{1} L\right) \sum_{k=0}^{r}(\Gamma)_{k} L^{k} Z_{T}^{\prime}=\left(F_{0}+F_{1} L\right) \sum_{k=0}^{q} \Delta_{k} L^{k} E_{T}^{\prime}, \tag{18}
\end{equation*}
$$

with matrices F_{0}, F_{1} of order $C_{1}+H$ and $F_{1} \neq 0$, be ruled out by the prior information. This requirement is that the coefficients of $L^{2} Y_{T}^{\prime}, L^{r+1} Z_{T}^{\prime}$ and $L^{q+1} E_{T}^{\prime}$ i.e. $F_{1}\left(B_{1},(\Gamma)_{r}, \Delta_{k}\right)$ be all zeroes, for some $F_{1} \neq 0$. Under condition (C3) this is impossible.

Without further discussion of the role played by the conditions in Hannan and in other references, we will state here how the failure of the above conditions imply a failure of our condition (C1):

Lemma 2 .
In terms of the parameters of Model (14) we have $\rho\left(\begin{array}{cc}L_{M}^{\prime} & E\left(w_{q}^{\prime}+w_{1}^{\prime}\right) \\ X_{T}^{\prime} & 0\end{array}\right)$

$$
\begin{aligned}
& \leq \mathrm{G}+\mathrm{H}+\mathrm{K}-\mathrm{C}^{*}+\rho\left(\mathrm{h}_{\mathrm{p}}, \gamma_{\mathrm{r}}, \Delta_{q}^{*}\right) \\
& \leq G+11+K-G_{1}^{\star}+\rho\left(\left(E\left(w_{q+1} w_{1}^{\prime}\right)\right)_{1}-\left(\left(\pi_{1}^{a} \quad 0\right) E\left(w_{q} w_{1}^{\prime}\right)\right)_{1}\right) \text { if (C4) fails and } I_{G *}+a z \\
& \text { is a common factor in } b(z) \text { and } \gamma(z) \text {, with }(Z)_{1} \text { the first } G \text { * rows of: } \\
& \leq G+H+K-G^{*} \text { if (C.4) and (C5) fail and } I+a z \text { is a common factor in all three } \\
& h(z), \gamma(z) \text { and } \delta(z) \text {, }
\end{aligned}
$$

where π_{1}^{a} is the reduced form parameter matrix when the Model (14) is a ($\mathrm{p}-1$)-th order autoregression with parameter matrices $\left(b_{0}^{a}, b_{1}^{a}, \ldots\right.$, $\left.b_{p-1}^{a}\right)$ satisfying $b(z)=\left(I_{G} \star^{+a z)} b^{a}(z)\right.$.

Proof. The first inequality of Lemma 2 is a restatement of Lemma 1 for the Model (14). To show the second inequality, following the definitions at (7) and the algebra in Lemma 1 , write $\left(\begin{array}{cc}L M_{T}^{\prime} & E\left(w_{q+1} w_{1}^{\prime}\right) \\ X_{T}^{\prime} & 0\end{array}\right)=R_{1}(p, r, b, \gamma) R_{2}(p, r)$, where

$$
\begin{aligned}
& R_{1}(p, r, h, \gamma)=\left(\begin{array}{cccccccc}
-b_{0}^{-1} b_{1}-b_{0}^{-1} h_{2} & -b_{0}^{-1} b_{p} & -b_{0}^{-1} \gamma_{0} & -b_{0}^{-1} \gamma_{1} & -b_{0}^{-1} \gamma_{r} & 0 & \\
I_{G^{*}} & 0 & 0 & 0 & 0 & 0 & 0 & E\left(w_{q+1} w_{1}^{\prime}\right) \\
0 & I_{G^{*}} & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & I_{K^{*}} & 0 \\
0 & 0 & 0 & I_{K^{*}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{K^{*}} & 0 & 0 & 0
\end{array}\right) \\
& \left(R_{2}(p, r)\right)^{\prime}=\left(\begin{array}{ccccccc}
L^{2} M_{T}^{*} & L^{3} M_{T}^{*} & L^{p+1} M_{T}^{*} & L . Z_{T} & L^{2} Z_{T} & L^{r+1} Z_{T} Z_{T} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
I_{p G} *
\end{array}\right)
\end{aligned}
$$

and ${ }^{\prime *}=E\left(Y_{T}^{*}\right)$ is the $T \times G^{*}$ matrix of expected values of Y_{T}^{*}.
If (C4) fails and $I+a z$ is a common factor in $b(z)$ and $\gamma(z)$, with $b(z)=(I+a z) b^{a}(z)$ and $\gamma(z)=(I+a z) \gamma^{a}(z)$ identically in z, it must also be true that $\left({ }^{L_{M}^{\prime}}{ }_{T}^{E}\left(w_{q+1} w_{1}^{\prime}\right)\right.$) = $R_{1}\left(p-1, r-1, b^{a}, \gamma^{a}\right) R_{2}(p-1, r-1)$. Lagging the last relation by one period ${ }^{\prime}$ and solving the first G^{\star} equations for $a b_{p-1}^{a} L^{p+1} M_{T}^{\prime}{ }^{\prime}+a \gamma_{r-1}^{a} L^{r+1} Z_{T}^{\prime}$, eliminate $b_{o}^{-1} b_{p} L^{p+1} M_{T}^{\prime *}+$ $b_{0}^{-1} \gamma_{r} L^{r+1} Z_{T}^{\prime}$ from the product above, using $b_{p}=a b_{p-1}^{a}, \gamma_{r}=a \gamma_{r-1}^{a}$. The result is

$$
\left(\begin{array}{cc}
L_{T}^{\prime} & E\left(w_{q}+1_{1}^{\prime}\right) \\
x_{T}^{\prime} & 0
\end{array}\right)=R_{3} R_{2}(p-1, r-1)
$$

where

$$
R_{3}=\left[\begin{array}{cccccccc}
-b_{0}^{-1} b_{1}^{a} & -b_{0}^{-1} b_{2}^{a} & -b_{0}^{-1} b_{p-1}^{a} & -b_{0}^{-1} \gamma_{0}^{a} & -b_{0}^{-1} \gamma_{1}^{a} & -b_{0}^{-1} \gamma_{r-1}^{a} & 0 & 18 . \\
I_{G^{*}} & 0 & 0 & 0 & 0 & 0 & 0 & E\left(w_{q+1} W_{1}^{\prime}\right) \\
0 & I_{G^{*}} & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & I_{G^{*}} & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & I_{K^{*}} & 0 \\
0 & 0 & 0 & I_{K^{*}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{K^{*}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I_{K^{*}} & 0 & 0
\end{array}\right]
$$

The second rank inequality of the Lemma now follows by eliminating the ($\mathrm{p}-1$) G^{\star} rows that follow the first G^{*} rows of R_{3}, remembering that the first ($p-1$) G^{*} rows of $E\left(w_{q} w_{1}^{\prime}\right)$ are identical to the last ($\left.h-1\right) G^{*}$ rows of $E\left(w_{q+1} w_{1}^{\prime}\right)$.

The third inequality follows from (5b) since if $I+a z$ is a common factor in all three, the moving average error process is a ($q-1$)-th order process with $\Xi_{q}^{a}=0$.

In general for finite (p, q) a common factor in all three $b(z), \gamma(z)$ and $\delta(z)$ results in a failure of our condition (C1). If $q=T-1$, then asymptotically a common factor in $\mathrm{b}(z)$ and $\gamma(z)$ alone makes condition (C1) i.e. Fisher's condition (C2) fail. This is the main difference between (C4) and (C5). But for finite (p, q) a failure of (C4) and (C5) with different common factors is not shown to result in a failure of (C1).

Practically speaking the rank condition on the highest order matrices (C3) is the more useful condition and failure of this necessarily makes (C 1) fail also.
3. The last comparison is with Hatanaka [7]. His Model is (14) with given G* and K * but unknown $p, r=p$ and $q=T-1$ i.e. nothing is known about the stationary error structure and nothing is known about the order of the stable autoregression. External information is all asymptotic means and covariances and X_{T}^{\prime} has full row rank. Hatanaka shows that the parameter is identifiable under a system of exclusion and normalization restrictions that prescribes the coefficients of at least G^{*} components in each row of $\left(b_{k}, \gamma_{k}\right)$, these prescribed coefficients standing in the same columns of $\left(b_{k}, \gamma_{k}\right), k=0,1,2, \ldots$.

Therefore this is a system of $(p+1) G^{*}$ restrictions when the order of the autoregression is p. This result is formally contained in our Corollary 2 to Proposition 1 and the rank condition of (17) stated there should hold for every integer p. It is also obvious that many alternative $(\mathrm{p}+1) \mathrm{G}^{\star^{2}}$ exclusion and normalization restrictions have the property of satisfying the rank condition stated at (17) and llatanaka's case is special.

We end this survey of the literature with a reminder that Proposition 1 holds independently of any minimality conditions or without conditions on the rank of the parameter matrices of highest order.

We now turn to the problem of latent variables.

II. Identifiability Conditions with Latent Variables

In this part of the paper we derive the necessary and sufficient conditions for the local identifiability of the structural parameter when G endogenous variables are observed and H are not. In dynamic models the missing components are missing also in the vector of lagged endogenous variables and this makes the problem more complicated than the latent variables problem in static models. An interesting intermediate case is when observations become available after one period, but this is not treated here. When the variables are generically latent as in factor analysis, the identification prohlem must be dealt with as follows.

Assume the model is the same as model (1). Partition the endogenous variables $\mathrm{Y}_{\mathrm{T}}^{\prime}$ and the equations in G and H components. The three forms are :
(SF) $\left[\begin{array}{ll}\left(B_{0}\right)_{1} & \left(B_{0}\right)_{2} \\ \left(B_{0}\right)_{3} & \left(B_{0}\right)_{4}\end{array}\right]\left[\begin{array}{l}\left(Y_{T}^{\prime}\right)_{I} \\ \left(Y_{T}^{\prime}\right)_{I I}\end{array}\right]+\left[\begin{array}{ll}\left(B_{1}\right)_{1} & \left(B_{1}\right)_{2} \\ \left(B_{1}\right)_{3} & \left(B_{1}\right)_{4}\end{array}\right]\left[\begin{array}{l}\left(\mathrm{LY}_{\mathrm{T}}^{\prime}\right)_{\mathrm{I}} \\ \left(\mathrm{LY}_{\mathrm{T}}^{\prime}\right)_{I I}\end{array}\right]+\left[\begin{array}{l}\Gamma_{\mathrm{I}} \\ \Gamma_{I I}\end{array}\right] \mathrm{X}_{\mathrm{T}}^{\prime}=\left[\begin{array}{l}\left(U_{\mathrm{T}}^{\prime}\right)_{\mathrm{I}} \\ \left(\mathrm{U}_{\mathrm{T}}^{\prime}\right)_{I I}\end{array}\right]$,

with all symbols as defined at (1).
The initial values $\left(\mu_{0}\right)$ II are included in the list of structural parameters and the prior restrictions ϕ may or may not denend on $\left(\mu_{0}\right)$ II . Following [10], in the presence of latent variables the definition of observationally equivalent parameters is now changed to:

Definition. 4 .
With latent variables the structure $s=\left\{\alpha, \phi(\alpha)=0, X_{T}^{\prime}, U_{T}^{\prime}\right\}$ with moments $M_{T}^{\prime}, C(T)$, and the structure $s^{\star}=\left\{\alpha^{\star}, \phi\left(\alpha^{\star}\right)=0, X_{T}^{\prime}, U_{T}^{\star}{ }^{\prime}\right\}$ with moments $M_{T}^{\star}, C^{\star}(T)$ are $\left(T_{1}, T_{2}\right)$ o bservationally equivalent if $\left(M_{T}^{\prime}\right)_{1}=\left(M_{T}^{*}{ }_{1}^{\prime}\right)_{I}$ and $\left.\left(E\left(w_{t} w^{\prime}{ }^{\prime}\right)\right)_{1}=\left(E\left(w_{t}^{*} w_{t}^{\prime} \prime\right)\right)\right)_{1}, t, t^{\prime}=$ $1, \ldots, T_{2}$, where $T_{1} \leq T, T_{2} \leq T$.

Only the first G components of the mean vector are given externally and the principal submatrix of the covariance matrices. The remaining definitions are as before. Proposition 2 .
A. The structural parameter of the latent variables model (19) is locally $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ --identifiable if and for constant rank matrices only if the matrix
(20)

$\left(\mu_{0}\right)^{\prime} \mathrm{I}$ I	B_{0}	$\left(\pi_{1}\right)^{\prime} \mathrm{I} \quad\left(\pi_{1}\right)^{\prime} \mathrm{II}^{\prime}$	$\left(\pi_{0}\right)_{I}^{\prime} \quad\left(\pi_{0}\right)_{\text {II }}^{\prime}$	$\xi_{i}^{\prime}, \quad i=1, \ldots, q$	ω^{\prime}
Λ_{0}	0	$I_{G} \otimes \mu_{0}^{\prime} \quad 0$	$\mathrm{I}_{G} \otimes \mathrm{x}_{1}^{\prime} \quad 0$	0	0
Λ_{1}	0	$\mathrm{I}_{G} \otimes_{1}^{\prime}{ }_{1}^{\prime} \quad \Lambda_{0} \otimes \mu_{0}^{\prime}$	$\mathrm{I}_{\mathrm{G}} \otimes \mathrm{x}_{2}^{\prime} \quad \Lambda_{0} \otimes \mathrm{x}_{1}^{\prime}$	0	0
Λ_{2}	0		$\mathrm{I}_{G} \otimes \mathrm{x}_{3}^{\prime} \quad \sum_{s=0}^{1} \wedge_{s} \otimes x_{2-s}^{\prime}$	9	0
$\mathrm{\Lambda}_{\mathrm{T}_{1}-1}$	0		$\mathrm{I}_{\mathrm{G}} \otimes \mathrm{X}_{\mathrm{T}_{1}}^{\prime} \quad{ }_{\mathrm{s}=0}^{\mathrm{T}_{1}-2} \Lambda_{\mathrm{s}} \otimes \mathrm{x}_{\mathrm{T}_{1}^{\prime}-\mathrm{s}-1}$	0	0
0	0	${ }^{20} T_{2} \sum_{k=0}^{q} \sum_{s=k+1}^{T_{2}-1}\left(C_{s} \otimes 0 \Omega \pi i_{1}^{s-k-1}\right)$	0	$2 \mathrm{Q}_{2} \mathrm{G}^{(\mathrm{C}} \mathrm{i}^{\otimes \odot \Omega)}$	$\mathrm{Q}_{\mathrm{T}_{2} \mathrm{G}}(\odot) \mathrm{P}_{\mathrm{G}+1}^{\prime}$
${ }^{\phi}\left(H_{0}\right){ }_{\text {II }}$	Ψ	$-\phi_{B_{1}}^{\prime}\left(B_{0} \otimes I_{G+H}\right)$	$-\phi_{Y}, \quad\left(B_{0} \otimes I_{G+H}\right)$	$\phi_{\delta}\left(B_{0} \otimes B_{0}^{\prime-1}\right)$	$\begin{aligned} & \phi_{\sigma}, Q_{G+H}\left(B_{0}\right. \\ & \left.\quad \otimes B_{0}\right) P_{G}^{\prime}+H^{\prime} \end{aligned}$

has rank equal to the number of structural parameters, where $\theta=\sum_{i=0}^{q} C_{i} E_{i}, \Lambda_{s}=\left(\pi_{1}\right)_{2}\left(\left(\pi_{1}\right)_{4}\right)$ s $c_{i}^{\prime}=\left(\begin{array}{lll}0 & 0 & \left(\left(\pi_{1}^{0}\right)_{I}\right)^{\prime} \\ \left(\left(\pi_{1}^{1}\right)_{I}\right)^{\prime}\end{array} \cdots\left(\left(\pi_{1}^{\mathrm{T} 2-i-1}\right)_{I}\right)^{\prime}\right)$ with $\left(\left(\pi_{1}^{0}\right)_{I}\right)^{\prime}$ in the $(i+1)$ th set of G columns.
B. If the pair $\left(T_{1}, T_{2}\right)$ is observationally efficient, $T_{5} \leq q+2+H$.

Proof. By definitions (2) the derivatives of $\left(\mu_{t}\right)$ with respect to the structural parameters are all zero except

$$
\frac{\partial\left(\mu_{t}\right)_{I}}{\partial\left(\mu_{0}\right)_{I I}^{\prime}}=\left(\pi_{1}^{t}\right)_{2}, \quad \frac{\partial\left(\mu_{t}\right)_{I}}{\partial \pi_{1}^{\prime}}={ }_{s=0}^{t-1}\left(\left(\pi_{1}^{s}\right)_{I} \otimes_{\mu}^{\prime}{ }_{t-s-1}, \quad \frac{\partial\left(\mu_{t}\right)_{I}}{\partial \pi_{0}^{\prime}}=\sum_{s=0}^{t-1}\left(\pi_{1}^{s}\right)_{I} \otimes x_{t-s}^{\prime} .\right.
$$

The first rows in (20) are $\frac{\partial\left(\mu_{1}\right)_{1}}{\partial \alpha^{\prime}}$. The second rows are $\frac{\partial\left(\mu_{2}\right)}{\left.\partial \alpha_{3}\right)}$ minus $\left(\pi_{1}\right)$ times the first rows of (20). The third rows are $\frac{\partial\left(\mu_{3}\right)}{\partial \alpha^{\prime}}$ minus $\left(\pi_{1}\right)_{1}$ times the second rows of (20) and minus $\left(\Pi_{1}^{2}\right)_{1}$ times the first rows of (20). In general the t-th rows are equal to $\frac{\partial\left(\mu_{t}\right)}{\partial \alpha_{I}}$ minus the preceding rows (1),,$(t-1)$, multiplied by $\left(\pi_{1}^{t-1}\right)_{1}, \ldots,\left(\pi_{1}\right)$ respectively where we made use of the relation

$$
\left(\pi_{1}^{t}\right)_{2}={ }_{s=0}^{t} \bar{\Sigma}^{1}\left(\pi_{1}^{s}\right)_{1}\left(\pi_{1}\right)_{2}\left(\left(\pi_{1}\right)_{4}\right)^{t-1-s}=\sum_{s=0}^{t-1}\left(\pi_{1}^{s}\right)_{1} \Lambda_{t-1-s}
$$

The contribution to the rank criterion coming from the external information on the covariances is stated in the second part of the matrix (20). From the relations
(5b) and (5c) the matrix

$$
\theta \Omega \theta^{\prime} \quad=\left[\begin{array}{ccc}
\left(E\left(w_{1} w_{1}^{\prime}\right)\right)_{1} & \left(E\left(w_{1} w_{2}^{\prime}\right)\right)_{1} & \cdots . \\
\left(E\left(w_{2} w_{1}^{\prime}\right)\right)_{1} & \left.\left(w_{1} w_{T_{2}}\right)\right)_{1} \\
\left(E\left(w_{T} w_{2}^{\prime}\right)\right)_{1} & \left(E\left(w_{t+1} w^{\prime} t^{\prime}+1\right)-E\left(w_{t}{ }^{\prime} t^{\prime}\right)\right)_{1}
\end{array}\right]
$$

contains all the relevant information. The second to last rows in (20) are the derivatives $\frac{\partial \mathrm{vec}^{*} \theta \Omega \theta^{\prime}}{\partial \alpha^{\prime}}$. In particular verify that

$$
\begin{aligned}
& \frac{\partial C_{k}}{\partial \pi_{1}^{\prime}}=\sum_{s=k+1}^{T_{2}^{-1}}\left(C_{s} \otimes \Pi_{1}^{s-k-1}\right) \text {. }
\end{aligned}
$$

The last rows in (20) is the contribution from the prior information exactly as in the model with no latent variables.

To show part B. of the Proposition, observe that the contribution from the covariances to the identifiability of Ξ_{i} is proportional to $C_{i}, i=1, \ldots, q$, and by definition of θ, the contribution to Ω is proportional to C_{0}. The contribution to π_{1} is a linear combination of the matrices $C_{q+1}, \ldots, C_{T_{2}}$. . But we have
so that any linear combination of $\left(C_{q+1}, \ldots, C_{T_{2}-1}\right)$ can not have rank more than the rank of the second matrix in the product above. Since this matrix reaches its maximal rank for $T_{2}-t-2=H-1$ and $t=q+1$, the Proposition follows.

Discussion

1. The unobservable initial values $\left(\mu_{0}\right)_{\text {II }}$ are identifiable provided the observability condition

$$
H=\rho\left(\Lambda_{0}^{\prime} \quad \Lambda_{1}^{\prime} \ldots \Lambda_{T}^{\prime}-1\right) \leq \rho\left(\begin{array}{llll}
\left(I_{H}\right. & \left(\pi_{1}\right)_{4}^{\prime} & \cdots & \left.\left.\left(\left(\pi_{1}\right)_{4}^{\prime}\right)^{H-1}\right)\left(\pi_{1}\right)_{2}^{\prime}\right) \tag{C6}
\end{array}\right.
$$

holds. In the language of linear system theory the condition (C6) holds if the pair $\left(\left(\pi_{1}\right)_{4}^{\prime},\left(\Pi_{1}\right)_{2}^{\prime}\right)$ is completely reachable or $\left(\left(\Pi_{1}\right)_{4},\left(\pi_{1}\right)_{2}^{\prime}\right)$ is completely observable. It plays the same role here. When (C6) fails prior information will have to be supplied to identify $\left(\mu_{0}\right)$ II.
2. The external information on the means $\left(\mu_{t}\right)$ contributes to identify not only $\left(\Pi_{1}\right)_{I}$ but also $\left(\Pi_{1}\right)_{I I}$, when the observability condition (C6) holds. A: though we do not observe H components $\left(\mu_{t}\right)_{I I}$ of $\left(\mu_{t}\right)$, the information is not lost since $\left(\mu_{t}\right) I$ depends partly on $\left(\mu_{t-1}\right)$ II through the matrix $\left(\pi_{1}\right)_{2}$. It also depends on (μ_{t-2}) II through $\left(\pi_{1}\right)_{2}\left(\pi_{1}\right)_{4}$ and on $\left(\mu_{t-i}\right)_{I I}$ through $\Lambda_{i-1}, i=1, \ldots$. Indirectly $\left(\mu_{t}\right)$ II becomes
available when the observability conditions hold. This is unlike the static model where not observing $\left(\pi_{0}\right)_{\text {II }}$ implies that prior information is the only source to identify the parameter $\left(\pi_{0}\right)_{\text {II }}$.

Similar remarks apply as far as the identifiability of π_{0} is concerned. Under the observability condition (C6) it is possible to identify all components of $\left(\mu_{0}\right)_{I I}, \Pi_{1}$ and Π_{0} without needing any over-identifying prior restrictions from the external information on the means alone. In the static models this is not possible and prior information related directly or indirectly to $\left(\Pi_{0}\right)_{I I}$ is needed there.
3. The external information on the covariances adds at most $\rho\left(C_{i}\right) \rho(0 \Omega)$ to the rank requirement for Ξ_{i}, and at most $\rho(\theta)(\rho(\theta)+1) / 2$ to the rank requirement for Ω. Under (C6) $\rho\left(C_{i}\right)=\left(G+H\right.$ and the contribution to each \equiv_{i} could be $(G+H)^{2}$ as required. Similarly the contribution to Ω could be equal to $(G+H)(G+H+1) / 2$, as required for identifiability.

These contributions are however not independent. The rank contribution to $\left(\pi_{1}\right.$, $\left.\Xi_{1}, \ldots, \Xi_{q}, \Omega\right)$ is directly related to the rank of ($C_{q+1}, C_{1}, \ldots, C_{q}, C_{0}$) respectively. But note that $C_{i}-C_{i+1} \Pi_{1}=\left[\begin{array}{ll}0 & 0 \\ I_{G} & 0 \\ 0 & 0\end{array}\right]$, implying that the rank of any pair $\left(C_{i}, C_{i+1}\right)$ is limited to $2 \mathrm{G}+\mathrm{H}$. $\quad \begin{array}{ll}0 & 0\end{array} \quad$ Similarly the rank of any subset of k matrices $\left(C_{i}\right), i=1, \ldots, k$, is limited to $k G+H$. This means that if Π_{1} is identifiable through the external information on the means, we will need $H(G+H)$ prior restrictions on each matrix $\Delta_{i}, i=1, \ldots, q$, if there are no prior restrictions on Ω, assuming the observability condition (C6) holds and Ω is nonsingular. More restrictions will be needed if either (C6) fails or Ω is singular.

Again this differs from the static model where we always have to supply $\mathrm{GH}+\mathrm{H}(\mathrm{H}+1) / 2$ restrictions on $\Omega_{\text {II }}$ to identify Ω. Here in the dynamic model it is possible to identify Ω without direct or indirect prior restrictions on $\Omega_{I I}$. However the prior information requirements directly or indirectly on $\left(\Xi_{i}\right)_{\text {II }}$ are new requirements not present in the static model.

As an illustration we restate Proposition 2 when the structural model is
(21) $\left[\begin{array}{cc}I_{G} & -\Lambda_{y} \\ 0 & I_{H}\end{array}\right)\binom{y_{t}}{n_{t}}+\left(\begin{array}{cc}0 & 0 \\ 0 & -\pi\end{array}\right]\left[\begin{array}{l}y_{t-1} \\ \eta_{t-1}\end{array}\right)+\binom{\Gamma_{I}}{\Gamma_{I I}} x_{t}=\binom{\left(u_{t}\right)_{I}}{\left(u_{t}\right)_{I I}}=\left[\begin{array}{l}\varepsilon_{t} \\ \zeta_{t}\end{array}\right)+\Delta_{1}\binom{\varepsilon_{t-1}}{\zeta_{t-1}}$,
with $\binom{\varepsilon_{t}}{\zeta_{t}}$ a white noise process with mean zero and variance $\Sigma=\left({ }_{0}^{\Sigma} \varepsilon_{0}{ }_{\Sigma}{ }_{\Sigma_{\zeta \zeta^{\prime}}}^{0}\right.$, We will assume that $\Delta_{1}=\left({ }_{0}^{\Delta^{t}} \varepsilon_{-1}^{\prime} \Delta_{\zeta \zeta_{-1}^{\prime}}\right.$) implying that the structural residuals $\left(u_{t}\right)_{I}$ and $\left(u_{t}\right)_{\text {II }}$ are not correlated. ${ }^{-1}$

This is a generalization of the static factor analysis model with fixed exogenous variables analyzed in [10].The model (21) relates a vector of G observed variables y_{t}, such as test scores, consumption items, to a vector η_{t} of H unobserved variables, such as ability characteristics, permanent income, the so-called factors. The factors themselves follow a dynamic process over time and are influenced by a vector of K regressors through the coefficient matrix $\Gamma_{I I}$.

Model (21) has the form of the models introduced in Kalman-filtering theory, where η_{t} are unobserved state variables and y_{t} are measurements on certain linear combinations of the components of the state variables and the control variables x_{t}. Model (21) is however different from the Kalman-filtering model in that all the matrices $\Lambda_{y}, ~ \llbracket, \Sigma$ and Δ_{1} are all unknown parameters to be estimated.

The reduced form corresponding to (21) is

$$
\binom{y_{t}}{n_{t}}=\pi_{1}\binom{y_{t-1}}{n_{t-1}}+\pi_{0} x_{t}+v_{t}, \quad v_{t}=\underset{k=0}{1}\binom{\left(E_{k}\right)_{I}}{\left(\Xi_{k}\right)_{I I}}\left(\begin{array}{ll}
I_{G} & \Lambda_{y} \tag{22}\\
0 & I_{H}
\end{array}\right)\binom{\varepsilon_{t-k}}{\zeta_{t-k}},
$$

where the parameters are

$$
\begin{aligned}
& \pi_{1}=\left(\begin{array}{cc}
0 & \Lambda_{y}^{\pi} \\
0 & \pi
\end{array}\right), \Pi_{0}=\binom{-\Gamma_{I}-\Lambda_{y} \Gamma_{I I}}{-\Gamma_{I I}}, \quad \Xi_{1}=\left(\begin{array}{cc}
\Delta_{\varepsilon \varepsilon}^{\prime} & \Delta_{\varepsilon \varepsilon_{-1}^{\prime}} \Lambda_{y}+\Lambda_{y} \Delta_{\zeta \zeta}^{\prime} \\
0 & \Delta_{\zeta \zeta}^{\prime}
\end{array}\right], \\
& \Omega=E\left(v_{1} v_{1}^{\prime}\right)=\left(\begin{array}{cc}
\Sigma_{\varepsilon \varepsilon^{\prime}}+\Lambda_{y^{\prime}} \Sigma_{\zeta \zeta^{\prime}} \Lambda_{y} & \Lambda_{y^{\prime}} \Sigma_{\zeta \zeta^{\prime}} \\
\Sigma_{\zeta \zeta} \prime^{\prime} \Lambda_{y}^{\prime} & \Sigma_{\zeta \zeta^{\prime}}
\end{array}\right) .
\end{aligned}
$$

Corollary 3.

The structural parameter of the dynamic factor analysis model (21) is locally $\left(T_{1}, T_{2}\right)$-identifiable if and for constant rank matrices only if the matrix $\left(\Psi_{1}, \Psi_{2}\right)$ has rank equal to the number of its columns, where

a $T_{2} C \times(G+H)$ matrix and
 and $C_{S}=\left(\begin{array}{cc}C_{S}^{I} & C_{S}^{I I}\end{array}\right)=\left|\begin{array}{cc}0 & 0 \\ I_{G} & 0 \\ -\quad . & - \\ 0 & \Lambda_{y} T^{T} 2^{-s-1}\end{array}\right|$ with the matrix $\left(I_{G} \quad 0\right)$ in the $(s+1)$ th set of G rows, is a $\mathrm{GT}_{2} \times(\mathrm{G}+\mathrm{H})$ matrix.

The proof is straightforward and follows from Proposition 2 after elimination of the $\left(B_{0}, B_{1}, \Delta_{1}, \Sigma\right)$-restrictions that are explicitly shown in the model statement (21).

The matrices $\left(\Psi_{1}, \Psi_{2}\right)$ contain the criteria for the identifiability of the parameters belonging to the static and to the dynamic parts of the model. In Ψ_{1} we find back exactly all the different ways to identify the static model as may be compared by checking Proposition 4 of [10]. The rank conditions contained under Ψ_{2} are the additional conditions.

It is possible for the structural parameter of the dynamic factor analysis model to be identified without any further prior restrictions beyond the zero--one-restrictions shown explicitly at (21). This is the case if in addition to

 at least $\mathrm{CH}+\mathrm{IIK}+\mathrm{H}(\mathrm{H}+1) / 2$ prior restrictions on $\Lambda_{y}, \Gamma, \Sigma_{\varepsilon \varepsilon}, \Sigma_{\zeta \zeta}$, are always needed. This is an example of a dynamic model where the zero correlation between the structural observational and state variables equations is sufficient for identifiability.
IV. Concluding Remarks.

The main result of this paper is Proposition 1 and its Corollary 2 which contain necessary and sufficient conditions for the identifiability of the parameter of the $\operatorname{ARMAX}(p, q)-M o d e l$ when the observational external characteristics are a finite number of first and second-order moments, instead of the transfer functions employed in the studies of asymptotic identifiability. We discuss how our results contain the results in asymptotic identifiability stated in the literature.

In the second part of the paper we developed necessary and sufficient conditions for the identifiability of the parameter of the $\operatorname{ARMAX}(p, q)$-Model when some endogenous variables are latent variables. In comparison to the static model analyzed in [10], the conditions for identifiability of the dynamic model parameter are far less stringent. We illustrate this by specializing our results to the dynamic factor analysis model, which is a Kalman-filtering model with unknown coefficients, and show how observability conditions together with zero correlations between structural errors are sufficient for identifiability.

Dynamic features of the model help to identify, generally speaking.

REFERENCES

[1] Deistler M., The structural Identifiability of Linear Models with Autocorrelated Errors in the Case of Cross-Equation Restrictions, Journal of Econometrics 8 (1978) pp 23-31.
[2] Deistler M. and H-G Seifert, Identifiability and Consistent Estimability in Econometric Models, Econometrica, Vol. 46, No 6, July 1978.
[3] Deistler M. and J. Schrader, Linear Models with Autocorrelated Errors: Structural Identifiability in the Absence of Minimality Assumptions, Econometrica, Vol. 47, No 2, March 1979.
[4] Fisher F.M., The Identification Problem in Econometrics, McGraw Hill, 1966.
[7] Hatanaka M., On the Global Identification of the Dynamic Simultaneous Equations Model with Stationary Disturbances, International Economic Review, Vol.16, No 3, October 1975, pp 545-554.
[5] Hannan, E.J., The Identification of Vector Mixed Autoregressive Moving Average Systems, Biometrika, LVI, March 1969, pp 223-225.
[6] Hannan, E.J., The Identification Problem for Multiple Equation Systems with Moving Average Errors, Econometrica 39, 1971, pp 751-765.
[8] Kohn, R., Identification Results for Armax Structures, Econometrica, Vol.47, No 5, Sept. 1979, pp 1295-1304.
[9] Schठnfeld, P., A Survey of Recent Concepts of Identification, Discussion Paper , University Bonn, 1975.
[10] Wegge, L., Identification with Latent Variables, Working Paper Sonderforschungsbereich 21, University of Bonn, January 1981.

