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ARMAX-Model Parameter Identification without and with Latent Variables 

by Leon L. Wegge l/ 

There are three parts to this paper. In the first part we obtain identifi­

ability conditions for ARMAX-Model parameters without latent variables when the 

external characteristics are a finite numher of means and covariances. We show 

how the conditions obtained here are related to conditions discussed by Fisher [4], 

llatanaka [7], llannan [6], Deistler fl] and others in the literature on asymptotic 

identifiability. Our results are formally complete in the sense of characterizing 

the quantity and quality of extra prior information when Fisher's Conditions or 

llannan's rank condition on the parameter matrices of highest order or if his 

minimality conditions do not hold. Having conditions for identifiability that require 

a finite number of first and second moments has obvious advantages in suggesting 

estimators that are natural composites of the identifying function and the estimating 

function for the external information. 

In the second part of the paper latent variables are introduced and the results 

of the first part are re-stated when the external information are the subvectors of 

first moments and the principal submatrices of the intertemporal covariances asso­

ciated with the observed variables. As a general rule, with latent variables extra 

prior information is needed for identifiability. In dynamic models however the extra 

prior information can he made up in many more ways than in the static models 

analyzed in [10].Even more important is the conclusion that under observability 

conditions, as this is defined in linear system theory, no extra information on the 

parameters that determine the means of the variables, is needed. 

l/ I wish to thank P. Schtlnfeld and N. Christopeit of the Sonderforschungsbereich 21 at 

Universit~t Bonn and M. Deistler for the many conversations during the formative 

stages of this paper. All remainina errnr~ ~rP minP 



2. 

In part three of the paper we consider the dynamic factor analysis model with 

fixed exogenous variables and illustrate how independence assumptions between measurement 

and state variable equations alone can establish identifiability of the model 

parameter. The example itself should be of interest also because it has a resemblance 

with the models considered in the literature on Kalman-filters. In this paper 

however the parameters of the model are not known and are to be estimated. 



(l) 

3. 
I. Identifiability Conditions for AR~iAX (p ,q) -Hodel Parameters 

1. The Three Forms of the ARM.i\X (p ,q) -Model 

Below write ZT =(zt) for the matrix with T columns, having zt as its t-th column, 

t=l, .. ,T. Let LZT be the matrix with zt placed in the (t+l)th column, t=O, .. ,T-1. 

The ARMAX ~fodel under consideration is introduced in three farni 1 iar forms, the 

structural form (SF), the reduced form (RF) and the final form (Pf-). These are 

the G+I! eauations in each period t=l, .. ,T, and are written in standard notation 

(Sf-) 

(RF) 

(H) 

(2) 

(3) 

Y' 
T 

Y' 
T 

q 
+ r XI : 'T u ' = (u ) = ( E t. e ) 

T t k t-k ' with et=O for t< 0 , 
k=O 

I\ is (G+l!) x (G+H) with 8
0 

nonsingular 

r is (G+H)xK with K the number of exogenous variables 

i\ is (G+H) x (G+H) with 60 = IG+l l 

(et) is a white noise process, mean zero, covariance E for t=l, . . ,T 

YT and XT are the data matrices on endogenous and exogenous variables 

+ 

-1 V'=(v )=(B u )=( 
T t 0 t 

-1 -1 
j1 =B ER ' =E(v v') o 'o 1 1 

"I' . T \\" 
T 

t t-1 
' I' (µt) 

s 
cnl µt-1 +TI 0xt ) ,· T = = (TI 1µ0 + L: rr l rr Oxt-s) = given iio 

s=O 
t-1 t-1 q 

- B-1 ) s ll s I\'' = (wt) = ( E IT l v ) = ( E L: ::k 0 et-s-k T s=O t-s s=O 1 k=O 

The final form expresses the endogenous variahles as the sum of the means ~~ 

and the final form residuals Wf. Each component wt is a distribut ed lag of t he 

-1 
sequence of residuals R0 et, which is a whi te noise sequence wi th covariance n. 
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We show the relations (3) in more detail by rewriting them in the form 

0 0 0 -1 
wl 1G+H I I Bo el 

I I 0 0 I -1 
w2 nl+ -1 G+H I I 

Bo e2 

- - - - - - - - - - - - - - - - -
q 

ns= 
q-1 I I -1 (4) w = I: r ns= I 1G+H 0 I Bo eq+l q+l 1-q-s i-q-1-s 

s=O s=O 

-1 I q 
TI S 

q I I 
w TI 1 I: - I: TIS:'.: I TI 1 + :::1 1G+H I B e 

q+2 s=O 1 q-s s=O 1 q-s 0 q+2 

- - - - + - - - - - - - - + 
T-q-1 q 

ns= I I -1 
WT nl I: 1-q-s 1G+H BO CT 

s=O 

where vecET is the row of rows of ET written as a 

From (4) we verify that wt is a moving average 

column and ET 
-1 

of s0 et with the first q+l weights 

determined by the movin~ average weights in the reduced form residuals as well 

as by the reduced form matrix n1 . Beyond q+l the weights are geometrically changing 

with the matrix TI 1 . An important property of the matrix of weights n is that it is 

recursive and the lag coefficients only depend on the lag and not on the time t. 

Letting 0 .. he the (i,j)th suhmatrix of D, from (4) we verify that the covariance 
1,J 

matrix C(T) satisfies 

(Sa) C(T) = (E(wtw~ 1 ))= D(IT® n ) n I I t,t'=l, .. ,T, 

t-1 
(Sb) E(wtwi) = Dt, 1 n = ( I: n~:::t-1-s) ll = :::t-112 + " 1E(wt-1wi), t < q+l 

s=O 

(S) nt l n 
t-q-1 

E(wq+lwp t > q+l = = IT 1 
• 

(Sc) E (w w' ) = E(wtw~,) + D n 0~ 1 +1,1 t,t'=l,..,T-1. t+l t'+l t+l,l 

2/ (vecZ)' is the row of rows of a matrix Zand (vec*Z)' is the row of rows of a 
symmetric matrix omitting the elements below the.dia~onal. The matrices QG+!I and 
PG H are matrices of zeroes, ones and halves sat1sfy1ng vec*Z=~+HvecZ and 
vetZ= PG vec*Z, where Z is symmetric of order G+H. The operator vec has the 
property+~at vecz 1z2z a(Z ~Z')vccZ 

3 1 3 2. 
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The recursive relation {Sc) implies that if we were to start the dynamic 

stochastic process one period later, i.e. in period 2 given wt=O, t ~l. instead 

of in period 1 given wt=O, t~O, the conditional covariance structure is exactly 

the same as the original covariance structure, with one period delay. Property 

(Sc) follows from (Sa) and the recursive nature of D. Conversely if a covariance 

satisfies (Sc) it can be shown that there exist a recursive matrix D such that 

(Sa) holds. 

The properties (Sc) and (Sh) imply further that all the covariance matrices 

in C(T) can be expressed in terms of the covariances E(wtwl), t=l, .. ,q+l, for 

given rr
1

. It follows that the information contained in C(T) is the same as the 

information contained in F.(wtwl)' t=l, .. ,q+2, including the information concerning 

rr
1

. Properties (Sc) and (Sb) are the basis for determining a minimal number of 

external covariance characteristics. 

If the true model is an ARMAX(p,q)-t-loclel with a p-th order autoregression 

in G* endogenous variables 

(6) 

we can always write this in the form of (I) 

Y* I 
T bo bl bp-1 

(7) Y' = T LY*' T , B = 
0 

0 IG* 0 B = 
1 

Lp-lY*' 
T 

0 0 IG* 

U* I T , 

by 

0 

U*'=(u*) = ( 
T t 

letting G+H=pG* 

0 h 
r 

-Ir.* 0 0 r= , 
.I 

0 -IG* 0 

and definin g 

yl ,-~k ol 0 

o[ ,fl Jo IG* 0 
k I 

, 
I 

!Gj I 
0 l 0 

e = t 

,-· 

e* t 

0 

0 

Fisher [4] considers a first-order difference equation hut nothing is known about 

the error structure. This is formally equivalent to an AR\ fAX(l,T-1)-~lodel in which the 

-1 final form residuals wt are moving averages of the white noise process (B
0 

et) 

as in (4) and satisfying (Sc). In particular wT would depend on rr 1 and on T-1 arbitrary 

weighting matrices ~k' In Hatanaka [7] hoth p and Kare unknown and q=T-1. 
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The structural parameter a is the vector of parameters 

where 

The reduced form parameter 8 is the vector of parameters 

(9 ) e I: (11' I 11' I 1: I 1: I ) l' O' sl'""' sq, w 

where 

By definition and B
0 

nonsin gular the relation between structura l and reduc ed 

form parameters 

is one-to-one. 

The structural parameter restrict i ons are a list of krequations ~ (a)= O , wher e 

~ =( ~. ), i=l, .. , k is continuously differcntiahlc. 
i r• 

We a<lopt the following definitions that are modifications of concepts in [g] 

to reflect our interest in reducing external information requirements. 

Definition 1. 

The structure s= {a, ~(a)=O, XT, UT} with moments MT, C(T) and the structure 

s*={ a*, ~(a*)=O, x+, Ui'} with moments Mr',C*(T~rc (T 1,T2)-observationall y 

equivalent if ~IT= \Ir' and CT =Cr, where Tl~ T, T2 < T. 
1 1 2 2 

Definit i on 2 

The parameter a of the true structure s is (T1 ,T 2)-identifiable whenever s* 

(T 1,T 2)-observationally equivalent to s, implies a*=a. 
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Definition 3 

The pair (T1,T2) is observationally efficient if a (Ti,Ti)-identifiable implies 

where Ti ~ T1, Ti ~ T2 with strict inequality at 

least once. 

In general one would not expect the observationally efficient pairs (T 1 ,T2) 

to be unique. Trade-offs between T
1 

and T
2 

can exist. 

Remark 1 

In Definition 1 the external information is T1 first moments MT =(E(yt)), t=l, .. ,T1 , 
1 

and the matrix C(T
2

)= (E(~t-E(yt))(yt 1 -E(yt 1 )) 1 ), t,t'=l, .. ,T2 . In contrast in the 

classical papers by Hannan [S], [6], also Deistler [1], the identification concept 

is asymptotic identifiability, the external information being an infinite number 

of first and second moments. These enter in their analysis through assuming that 

the spectral density matrix functions or the z-transformed transfer functions 

-1 -1 q - k 
(IG+H-rr 1z) r and (IG+H-rr1z) E =kz are given. This in turn pre-supposes 

k=O 
stability requirements and restrictions that either the historical values of the 

exogenous variables are known outside the sample period or it is known that they 

are stationary processes. 

Remark 2 

From the relation (10) between structural and reduced form parameter, the 

structural parameter a is identifiable if and only if the parameter((vecB
0

) ',8')' 

with B0 nonsingular, is identifiable. In static models with intertemporally 

uncorrelated residuals the reduced form is in final form already and the study 

of identification proceeds by finding conditions under which the structural para-

meter a is uniquely determined given the reduced form parameter 8. The latter 

·. 
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is assumed supplied by the external information. This exercise produces the 

classical conditions for identification in static models. 

Likewise we can perform this same exercise for the A~4AX(p,q)-Model and state 

the conditions under which a is locally uniquely determined given 6. These con-

ditions are that the matrix 

2 -1 
have rank (G+ll) , where 'I' (IG+l~B0 ) is the Jacobian matrix of kr restrictions 

(12) O::: <j> (a') :::<j> ((vec13 0 ) 1 ,-(vecB0 rr 1 ) 1 ,-(vecB 0 rr 0 ) 1 ,.,(vecB0 :::kR~ 1 ) 1 ,.,(vec*Bor.B0 ) 1 ) 

in the 2 (G+H) unknowns s0:::vccB0 for given reduced form parameters and where 

<l>s I 
;: 

Cl<P(a) 
<j> 6 I ;: 

Cl<j> (a~ 
ij>y ' 

;: 
acp (a) 

0 Cl(vecB ) ' 1 a(vecB1) 1 a (veer)' 
0 

¢> 0 ' 
;: 

Cl¢ (a) 
<j> 0 I 

;: 
Cl¢> (a) 

k a (vec i\)' a(vec*L)' 

lv ith linear <j> , independent of ~k anJ of E, this condition is also globally necessary 

and sufficient since (12) is linear in the unknowns vecB0 . 

~fany results in t he literature on the identification of dynamic systems are state­

ments of conditions under which p('l'):::(G+H) 2 is the o~lycondition for identification. 

Taking together however the conditions for identification of the parameter of 

2 dynamic s ystems must guarantee that p('l'):::(G +H) as well as that the reduced form 

parameter 8 itself is identifiable given the external information ahout the final 

form moments. This is what makes the study of identification of dynamic model 

parameters different from that of static model parameters. 
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A. The structural parameter a is locally (T1 ,T2)-identifiable if and for 

constant rank matrices only if the matrix 

In~~-for- ete ~ 8 I 11 I 11 I E;; I E;; I 

mat ion 0 1 0 1 q 

Means 0 IG+H® D1T 1 I\i+H®Xr 1 0 0 

w' 

0 

E (w w') 1 1 0 0 0 0 0 I (G+H)(G+H+l)/2 

E(w2wp 0 IG+H®E(wlwi) 0 IG+~E(w 1wi 0 0 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
E (w w') q+l 1 0 IG+H~ E(w 1w~) 0 0 IG+l~E(w1wi) 0 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
E (w w') 0 IG+l-~E(wlwT -1) 0 0 0 0 

T z 1 2 

Prior -cj> 8 l (Bo~ 1 G+H) - cj> I (B &IK) © -1 -1 
cl>o,QG+H(B~BO)PG+H 'I' cl>o,( 80 80) cj>6,(l~~BO ) y 0 

1 q 

has rank equal to the number of structural parameters. With linear prior information 

independent of ~k' k=l, .. ,q, and of E, this rank condition is necessary and suffi-

cient for global identifiability. 

B. If a is (T1 ,T2)-identifiable and the pair (T1,T2) is observationally efficient, 

T2 ~ q+2. 

Proof. By definition the structural parameter a is (T1,T2)-identifiable if the 

system (2), (Sa) and (12) for given MT , C(T2) and cj> has a unique solution in z;, = 
1 

((vecB0) 1 ,6'). 
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µl 1G+H®µo 1G+H ®xi 
vecrr

1 
µ2 1G+H~ µl 1G+H ® x2 

vecrro 
= - - - - - - - - - -

µT 1G+H® µT -1 1G+H® x' 
1 1 Tl 

\.. 

for given first moments (µt)' t=O, .. ,T1 .After re-ordering of the rows, 

the matrix of this linear system is reproduced under the first (G+H)T
1 

rows of (13). 

As discussed above the matrix C(T 2) depends on the matrices E(wtwl)' t=l, .. ,T
2 

t-q-1 only. From (Sb) E(wtwi)=~t-l a + rr 1E(wt-lwiJ for t ~q+l and E(wtwi)= n1 E(wq+lwl) 

for t>q+l, where E(w 1wiJ= n. The rows in (13) corresponding to the external covariance 

~atrices are successively 

avec* n 
a c ' 

avecE(wtwl ) 

ac ' 

for t=2, .. ,T 2 , where we put ~ t=O fort >q. 

The last row are the partial derivatives of the k prior restrictions ¢ (a)=O r 

with respec t to c ', through the relation (10), and where ' is defined at (11). 

To show B. it suffices to verify that the contribution of external information 

on E(~r wi) for T2 >q+2 is proportional to th~ contribution from E(wq+ 2wi) and does 
2 

not a<l<l to the rank of the ~atr ix (13). 
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2 1. As discussed above, we get back p(~)=(G+H) as part of the rank condi-

tions for identifiability. This is to render inadmissible transformations of 

the structural equations (1). In comparison to static models, the matrix~ now 

includes restrictions involving the autoregressive matrix B1 and the moving 

average matrices 6k as well as the usual parameter restrictions of the static 

model. 

2. The reduced form parameter matrix rr 1 can be identified through external 

information on the means and also on the covariances as well as through prior 

restrictions on B
1 

that are not used to meet the condition before. 

3. A failure of the data matrix X.J. to have rank K implies that the reduced 
1 

form parameter rr 0 is not identifiable on basis of the external information. 

This can be remedied by extra restrictions on the matrix r of coefficients of 

the exogenous variables, which is indeed the remedy against perfect multicolli-

nearity. 

4. The moving average matrix =k is identifiable from the external information 

is nonsingular. If n is singular, prior information 

is needed to identify =k· If the source of singularity of n is the singularity of E 

due to the presence of identities in the structural model (1), the corresponding 

submatrix in 6k is a submatrix of IG+H and enough prior restrictions are 

available to identify =k in such cases. If the source of singularity of n does 

not lead to justifiable prior restrictions on 6k, then ~k is not identified. 

5. The parameter n is always identifiable since it is given in the external 

information matrix E(w 1wi)· 

The leading question dealt with in the literature on the identification of 

dynamic model parameters is what are the conditions under which the structural 

parameter is identifiable under the sole condition p ('¥)=(G+H) 2 , and without 

having to use extra (over-identifying) prior restrictions to identify the 
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reduced form parameter 6, except perhaps in the presence of identities, the 

trivial restrictions that make up for the deficiency in the rank of n. 

Assigning the external information on the covariances E(wkwl)' k=l, .. ,q+l, as 

well as the trivial restrictions associated with identities, to n and to ~k' 

we can assign the externally given E(wq+Zwl) to n
1

. We have from Proposition 1 

The structural parameter a is locally (T
1
,q+2)-identifiable without the 

help of extra 

(Cl) 

(over-identifying) (B
1
,r)-restrictions 

[ 

LMX'Tl E(wqo+lwl) l G+H+K =p 

Tl 

only if condition 

holds. 

Unfortunately the condition (Cl) is not easily verifiable. 

Let the p-th order autoregression with an r-th order moving average in 

tl1e K* exogenous variables ZT = ( zt) be written as 

p 
LkY*' 

r 
LkZ' 

q 
(14) I: bk + I: yk = U*' U*'= (u*) = ( I: fl *e* ) 

T T T ' T t k=O k t-k k=O k=O 

In addition to the variables defined at (7), let 

I Z' Yo Y1 Yr 

L~T 0 0 0 
( (r) 0 (r) 1 (r) ) . (15) x+ = r = = r 

Lrz+ 
0 0 0 

Lemma 1. 

In tenns of the para~eters of the structural model (1) a neces~ary condition 

for the condition (\.1) to hold is that p(R 1 ,r,fl~)=<;+H and p (XT )=K. In tenns of 
1 

the parameters of \fodel (14) a necessarv condition for the condition (Cl) to 

hold is that p(hr,ti~, yr)=G* and p(ZT
1
)=K*, where\,* and K* is the ntunher of unlagged 

endoge'nous variahles and exogenous variahles respectively. 
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q 

Proof. From lJ t=ITlllt-1 +ITOxt and from E(w 1wi)=( r IT~::: )n, we have 

(16) 

q+ s=O q-s 

L~' ::: In 
Tl q-

L1( I 0 
Tl 

=p [:I q 
ITs::: 

:J 
IM' E(wq+lwp ITO 0 1: 

Tl s=2 i-q-s p 
X' 0 0 IK 0 

Tl 
X' 0 

Tl 
0 S1 

0 n 

~p(TI 1 , :::q, !10) + p(XT
1

) =p(R 1,r,tiq) +o(XT
1
). 

For the ~odel (14) X' is the matrix of K* variables z+ and its r lagged 
Tl 1 

values so that the matrices x+ and ix+ have K*(r-1) overlaoping 
1 1 

components. After elimination of these we have that (16) . equals 

q 
? 

TI 1 Clio) o (TI 0) 1 (ITO) r 0 ~ ITS:'. - L -,1, ::: ln s=2 1 q-s q Tl q-

0 0 0 0 IK* 0 0 LZ' 0 p Tl 
(l IK* 0 0 0 0 0 L

2
zT 0 

l 1 
(I 0 IK* 0 (I 0 0 Lr+lz, 0 

Tl 
Z' 
Tl 

0 

0 n 

o n 

~ p(TI 1 , (ITO)r, ::q) + rK* +p(ZT
1

) = p(B1, (r)r,tiq)+rK*+ p(ZT
1
), 

where ((TI0)k) is the nartition of IT 0 corresponding to the partition of r. 

By definitions (7) the result follows, noting that G+H=pG* and K=(r+l)K*. 

The conditions under which it is possihle to identifv the structural parameter 

without over-identifying prior restrictions is thus seen to he limited to models with 

parameter ~atrices of highest order meeting a full row rank condition. 

Aspecial case discussed in the literature is Model (14) with q=T-1, i.e. when 

the or~er of the error moving average process is not known. Covariance external 

information does not help in identifying IT 1 , but Proposition 1 surr risingl y 

specializes to: 
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The structural parameter of the model (14) satisfyingp(Xr)=K=(r+l)K*, q=T-1 

and G* endogenous variables is locally (T,T)-identifiahle if and for constant 

rank matrices only if the matrix 

[ 
a~ (IG*®A') 
a(vecA)' 

(17) 

has rank (p+l)G* 2, where A=(b 0 , .. ,bp,y0 , .. ,yr) and R = CX-[~)- 1 X-fD1T. With linear 

restrictions this rank condition is necessary and sufficient for ~ lobal identifi-

ability. This rank condition is sufficient and for constant rank matrices necessary 

for the system <i>(vecA)=O, E(ll.j.'~)=O to have a locally unique solution in vecA. 

Proof. \\'hen q=T-1 only the external information on the means helps to identify n1 . 

The rank condition on the matrix (17) follows after elimination of the restrictions 

on (B
0

,B1 , D that are implied by the definitions (7) and (15) and after pre-multi­

plying the rows corresponding to the external information on the means by (IpG*~XT). 

The second part of the Corollary follows from considering the Jacobian matrix of 

the system of e~uations ~ (vecA)=O, E(U.j.'Xr)=O. 

Corollary 2 is an illustration of how in Proposition 1 the conditions for 

identifiability and estimahility are closely linked together. The estimator that 

emerges is very standard. 

We now discuss how our Proposition 1 contains the results from the literature. 
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Literature References 

1. As discussed above, Fisher's Model in [4] is formally equivalent to an 

ARMAX(l,T-l)-~1odel within the concept of (T,T)-identifiability. In our termino-

logy, Fisher derives the result that the condition 

(C2) G+H+K = p [ ~ l 
is necessary and sufficient for the classical rank condition p(~)=(G+H) 2 to 

become the sole condition for identifiability. As stated in Corollary 1 above 

the necessity of (C2) follows only if there are no over-identifying (B
1
,r)-restric­

tions. If there are more than (G+ll) 2 prior parameter restrictions, it is possible 

to identify a even when (C2) fails. 

2. Hannan [6], Deistler [l], Koch [8] and others have considered the ARi'lAX(p,q)-

~1odel from the perspective of asymptotic identifiability which is equivalent to 

(T,T)-identifiability, when T.....,., . Often the exogenous variables are assumed gene-

rated by a stationary stochastic process and identifiability is to be understood 

as identifiability within the class of stochastically generated exogenous variables. 

Within the definitions of the pth order autoregression (14), the external informa­

tion assumed is (b(z))- 1y(z) and (b(z))- 1o(z), where 

b(z)= 
p 
E b Zs 

s=O s 
y(z) = 

r s 
E y z 

s=O s 
o(z) = 

q 
E t:,.*zs 

s=O s 

are the z-transforms of the autoregressive and moving average processes. 

In analyzing the leading question discussed in our Corollary 1, the authors found 

it necessary to introduce the following conditions: 

(C3) p (b , Yr' !::,.*) = G* (Rank Condition on Highest Order ~la trices) 
p q 

(C4) b (z) and Y (z) have no roots in common ( linimality Condition for Means) 

(CS) b(z) and o (z) have no roots in common (Minimality Condition for Covariances) 

' 
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Conditions (C4) and (CS) play a crucial role in the method of analysis followed 

in Hannan [6] and others. Failure of (C4) implies that the final form transfer 

-1 a -1 a a a function (b(z)) y(z) = (b (z)) y (z), where b (z) and y (z) are of degree 

p-1 and r-1 respectively. If this is the case the final form asymptotic means 

could be perceived as being generated by different AIU-tAX-Models of degrees (p-l,q-1) and 

(p,q). A minimality condition would assume that the true model corresponds to 

the lowest possible orders after all common roots are removed . A similar remark 

applies to justify (CS). 

Hannan [s] found the justification of (C3) from requiring that transformations 

of model (1) of the t ype 

(18) 

with matrices F
0

, F
1 

of order G+H and F110, he ruled out hy the rrior information. 

Th . · · h h ff" · of r, 2Yr'• Lr+lZr' and Lq+lEr' i· .e. is requirement is t at t e coe ic1ents 

F1 ( B
1

, (r)r' 6k) be all zeroes, for some F 1;'o. Under condition (C3) this is 

imrossible. 

Wi thout further discussion of the role played by the conditions in •~nnan and in 

otl1er references, we will state here how the failure of the above conditions 

imply a failure of our condition (Cl): 

Lemma 2. 

In terms of the parameters of Model (14) 

< G+H+K-G* + p(h , y , 6*) 
p r q 

we have p 
[ 

Ul.f 
X' 

T 

E (w 1 w') l q+l 1 

() 

< G+l!+K-G* + p((E(wq+lwp) 1 -((n~ O)E(wctl))l) if (C4) fails and IG*+az 

is a common factor in h(z) and y(z), with (Z)
1 

the first G* rows of 

< G+lf+K-G* if (C.4) and (CS) fail and I +az is a common factor in all three 

h ( z) , y ( z) and 6 ( z) , 



17. 

a 
where rr 1 is the reduced form parameter matrix when the Model (14) is 

a (p-1)-th order autoregression with 

b:_ 1) satisfying b(z)=(IG*+az)ba(z). 

parameter matrices (b~, b~, .. , 

Proof. The first inequality of Lemma 2 is a restatement of Lemma 1 for the Model 

(14). To show the second inequality, following the definitions at (7) and the 

algebra in Lemma 1, write [ LM.j. erwr1wil] = R1(p,r,b,y)R2(p,r), where 
X' T 

-1 -1 -b - lb -1 -1 -1 
-ho bl -bo hz -b y -ho r 1 -h y 0 0 p 0 0 0 r 

IC.* 0 0 0 0 () 0 E(wq+lwl) 

0 IC.* 0 0 () 0 0 
R1(p,r,h,y) = 

0 0 0 0 0 0 IK* 0 

0 0 0 IK* 0 0 0 0 

0 0 n 0 I K* 0 0 0 

L2MT L 3~1* L p+ l ~ lf LZT L2z Lr+lz 
ZT 0 

(R 2(p,r))' T T T = 

0 0 0 0 0 0 0 IpG* 

and ' ~=E(YT) is the T•G* matrix of expected values of YT. 

If (C4) fails and I+az is a common factor in b(z) and y(z), with b(z)=(I+az)ha(z) 

a L\f' and y(z)=(I+az)y (z) identically in z, it must also he true that ( · T 

x+ 
R1(p-l,r-l,ha,ya)R2(p-l,r-l). Lagging the last relation by one period 

E(wq+lwp ) = 
0 

and solving 

h f . r• . f ha Ip+l•l*' a Lr+lz, l' . b-lb Lp+l ,1*' t e irst \ J equat1ons or a p-l, ,. T + ayr-l T' e im1nate 
0 

p " T + 

b0-
1rr Lr+lZT' from the product above, using h =aba 

1
, y =aya 

1
. The result is 

p p- r r-

·-

where 

X' 
T 

0 
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-b-lba -b-lba -b-lba -1 a -1 a -1 a 0 0 1 0 2 0 p-1 -ho Yo -bO yl -bo Yr-1 

IG* 0 0 0 0 0 0 E(wq+lwl) 

0 IG* 0 0 0 0 0 

0 0 IG* 0 0 0 0 
R3 = 

0 0 0 0 0 0 IK* 0 

0 0 0 IK* 0 0 0 0 

0 0 0 0 IK* 0 0 0 

0 0 0 0 0 IK* 0 0 

The second rank inequality of the Lemma now follows hy eliminating the 

(p-l)G* rows that follow the first G* rows of R3 , remembering that the first 

(p-l) G* rows of E(wqwi) are identical to the last (p-l)G* rows of E(wq+lwil· 

The third inequality follows from (Sb) since if I+az is a common factor 

in all three, the moving average error process is a (q-1)-th order process 

In general for finite (p,q) a common factor in all three h(z), y(z) and o( z) 

results in a failure of our condition (Cl). If q=T-1, then asymptotically a 

common factor in b(z) and y(z) alone makes condition (Cl) i.e. Fisher's condi-

tion (C2) fail. This is the main difference between (C4) and (CS). 

But for finite (p ,q) a failure of (C4) and (CS) with different common factors 

is not shown to result in a failure of (Cl). 

Practically speaking the rank condition on the highest order matrices (C3) is 

the more useful condition and failure of this necessarily makes (Cl) fail also. 
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3. The last comparison is with Hatanaka (7). His Model is (14) with given G* 

and K* hut unknown p, r=p and q=T-1 i.e. nothing is known about the stationary 

error structure and nothing is known about the order of the stahle autoregression. 

External information is all asymptotic means and covariances and X.f has full 

row rank. Hatanaka shows that the parameter is identifiable under a system of 

exclusion and normalization restrictions that prescribes the coefficients of at 

least G* components in each row of (bk' yk)' these prescribed coefficients standing 

in the same columns of (bk' yk)' k=0,1,2, ... 

Therefore this is a system of (p+l)G• 2 restrictions when the order of the 

autore~ression is p. This result is formally contained in our Corollary 2 to 

Proposition 1 and the rank condition of (17) stated there should hold for every 

integer p. It is also ohvious that many alternative (p+l)G• 2 exclusion and norma-

lization restrictions have the property of satisfying the rank condition stated 

at (17) and llatanaka's case is special. 

We end this survey of the literature with a reminder that Proposition 1 holds 

independently of any minimality conditions or without conditions on the 

rank of the parameter matrices of highest order. 

We now turn to the prohlem of latent variables. 
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II. Identifiability Conditions with Latent Variables 

In this part of the paper we derive the necessary and sufficient conditions 

for the local identifiability of the structural parameter when G endogenous 

variables are observed and H are not. In dynamic models the missing components 

are missing also in the vector of lagged endogenous variables and this makes 

the prohlem more complicated than the latent variahles problem in static models. 

An interesting intermediate case is wh~n observations hecome available after 

one period, but this is not treated here. l~~en the variables are generically 

latent as in factor analysis,the identification prohlem must be dealt with as follows. 

Assume the model is the same as model (1). Partition the endogenous variahles YT 

and the equations in G and H components. The three forms are 

' 
r I l = f cu+i 1 (BO) 1 C~n) 2 CY.f)r ( 81) 1 (B 1)j (LYJ.l 1 

(SF) + + jx+ 
(B0) 3 (B0)4 CY.f) II (Bl) 3 (Bl)4 (LYT)II r II LC!J.f) I I 

(Ill) 1 ( I1 1)2 (LYT)I (IT 0) I 
(VI) ., 

T I I 
q C:\) I f cv.;.i 1 

I , -1 
(19 ) (RF) = + x I + (vt)=( [ 80 et-k) 

LCY.f) II (IT 1) 3 en 1) 4 (LY.[) II (ITO) II 
T cv .[) IIJ k=O C:\) II 

lcv +) 1 Cl.[) I cw+) 1 Cut ) I l (F("t"~ ,)) I [( ) 1 

(FF) 

lCY-fl II = 

+ ~' I = 
Cut) IIJ' 

F.(w w' ) = 
(E(wtw~,))II_ = ( UI.[) I I (\~T) I I 

T t t' 
)3 

with all symbols as defined at (1). 

and The initial values (µ
0

)
11 

are included in t he list of structural parameters 

the prior restrictions t may or may not denend on (µ 0) 11 . rollowinn [10], in the 

( ) 2 

( )4 

presence of latent variables the definition of ohservationally e~uivalcnt parameters 

is now changed to: 
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Definition 4. 

With latent variahles the structure s={a, cj>(a)=O, X.f, ll.[} with moments ~1.f• C(T), 

and the structures*= {a*, cj>(a*)=O, x.y., Uf'} with moments ~fT', C*(T) are (T 1,T2)­

observationally equivalent if (M' ) =(M*') and (E(wtwt' ,)) 1 = (E(w~w~:JJ 1 , t,t' = T
1 

I T
1 

I 

Only the first G components of the mean vector are given externally and the 

principal suhmatrix of the covariance matrices. The remaining definitions are as before. 

A. The structural parameter of the latent variahles model (19) is locally (T 1,T 2)-

-i<lentifiahle if and for constant rank matrices only if the matrix 

Ciio)i:r 8 ' 
0 Cn1Ji: (n1)ir (no)i: (noli:r ~ ! , 

l 
i=l,.,q w' 

J\o 0 I~O 0 IG®xi 0 0 0 

J\ 1 0 1G®11 i J\o ® µo Ir.®x2 J\o © x' 1 0 0 

1 1 

J\ 2 0 Ir,®fl ' 
1 2 

[ 
s=O 

J\ © µ' 
s 1-s IG® x3 [ 

s=O f\ ©x' s 2-s 
'.) 0 

- - - - - - T -2 T -2 

~1-1 0 I~itT -l t /\ ®µ' IG©xT 1 Jo /\s®x-f 
1
-s-l 0 0 

1 
s=O s T1-s-2 

q Tz -1 
0 0 2QT G [ t cc&0nrr·s-k-l) 0 2QT 2G (Ci©0ll ) QT 2G (GjG) p G+J 

k=O s 1 2 s=k+l 

'!' (Bo® 1G+H) (Bo® 1G+H) 
-1 q,a ,QG+HC 8o 

(uolir 
-4> 8 ' -4> 

y' q,6! (Bo®8o ) 
1 l @Bo) PC,+1-1 

has rank equal to the number of structural parameters, where 0= 

C! = ( ·-. O 
l 

0 

set of G columns. 

B. If the pair (T 1 , T 2)is observationally efficient, T , ~ q+2+H. 



Proof. By definitions (2) the derivatives of (µt)I with respect to the 

structural parameters are all zero except 

a( µt)I t = (TI 1) 2 ' 
a(µo)ir 

The first rows in (20) are 

a( µt)I 

a 1T I 

1 
a(µl)I 

The 
aa' . 

t-1 
= s~O ((TI~)I<Z)µ~-s-1' 

second rows are 
aa' 

a1T I 
0 

minus 
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first rows of (20). The third rows are 
a(µ 3) 

minus (TI 1) 1 times the second rows of (20) 

and minus (ni) 1 times the first rows of (20). In general the t-th rows are equal to 
Cl(µt)I t-1 
Cla' minus the preceding rows (l), .. ,(t-1), multiplied by (n 1 ) 1 , .. ,(n 1) 1 respectively 

where we made use of the relation 

The contribution to the rank criterion coming from the external information on the 

covariances is stated in the second part of the matrix (20). From the relations 

(Sb) and (Sc) the matrix 

= 
(E(wt+lw~ 1 • 1 )-E(wtw~ 1 )) 1 

(E(wT2wi))l t,t'=l, .. ,T2-l 

contains all the relevant information. The second to last ro\~S in (20) are the deri-

vatives avec* 0110 ' 
Cl a ' . In particular verify that 

avec*0l10 '= 20 (I C8'> 0n)avec0 
Clni 'T 2G GT 2 Cl1Ti 

ack T -1 t (Cs®nis-k-1). w-
1 

= 
s=k+l 

The last rows in (20) is the contribution from the prior information exactly as in 

the model with no latent variables. 
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To show part B. of the Proposition, observe that the contribution from 

the covariances to the identifiability of~. is proportional to C., i=l, .. ,q, 
1 1 

and hy definition of G, the contribution to n is proportional to c
0

. The contri-

hut ion to n
1 

is a linear combination of the matrices c q+l' .... CT -1. But we have .., 
L 

IG 0 0 0 0 0 0 
- - - - - - - - 0 Ao 

0 
IG 0 en 1) 1 0 0 0 J\ 1 

ct 1 1 1 () 
0 0 en 1) 1 cnl) 2 = (IT 1) 1 (TI 1) 1 J\ 2 

- - - -
cnTrt-1) enT2-t-l) enT2-t-l) en Trt-2) 0 

0 J\ 
l l 1 2 1 1 1 1 (Til) 1 T2-t-2 

so that any linear comhination of ecq+l'' ., CT _1) can not J1ave rank more than the rank 
2 

of tl1e second mat rix in the rroduct ahove. Since this matrix reaches its maximal rank 

for T -t-2=H-l and t=q+l, the Propos ition follo ws. 
2 

Discussion 

1. The unobservable initial values (µ 0)II are identifiable provided the ohserva­

bility condition 

(C6) 

holds. 

J-! = peA' 
0 

In the language of linear system theory the condition (C6) holds if the 

pair ((n1)4,cn1)2) is completely reachable or ((IT 1) 4 ,en 1) 2
1

) is completely observable. 

It plays the same role here. When (C6) fails prior information will have to he 

supplied to identify (µ 0)II. 

2. The external information on the ~eans (µt)I contributes to identify ~ot only 

(n1)I but also (n1)II' when the observability condition ec6) holds. A: though we 

do not observe H components (µt)II of (µt), the information is not lost since eµt)I 

depends partly on eµt-l)II through the matrix (n1) 2 . It also depends on (µt_ 2)II 

Indirectly (µ t)II becomes 
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available when the observability conditions hold. This is unlike the static model 

where not observing Cfb) 11 implies that prior information is the only source 

to identify the parameter (n0) 11 . 

Similar remarks apply as far as the identifiability of n0 is concerned. Under 

the observability condition (C6) it is possible to identify all components of 

(u 0) 11 , n1 and n0 without needing any over-identifying prior restrictions from the 

external information on the means alone. In the static models this is not possible 

and prior information related directly or indirectly to (IT 0) 11 is needed there. 

3. The external information on the covariances adds at most p(C.)p(On) to the 
1 

rank requirement for=·· and at most p( O)(p( 0)+1)/2 to the rank requirement for 
1 

n. Under (C6) p(C.)=G+H and the contribution to each =· could be (G+H) 2 as required. 
1 1 

Similarly the contribution ton could be equal to (G+H)(G+H+l)/2, as required 

for identifiability. 

These contributions are however not independent. The rank contribution to cn
1

, 

(Ci)' i=l, .. ,k, is limited to kG+ll. This means that if n1 is identifiable through 

the external information on the means, we will need ll(G+H) prior restrictions on 

each matrix 6., i=l, .. ,q, if there are no prior restrictions on n, assuming the 
1 

observability condition (C6) holds and Q is nonsingular. More restrictions will be 

needed if either (C6) fails or n is singular. 

Again this differs from the static model where we always have to supply GH+H(ll+l)/2 

restrictions on n11to identify n. Here in the dynamic model it is possible to 

identify n without direct or indirect prior restrictions on n
11

. However the prior 

information requirements directly or indirectly on C=i)II are new requirements not 

present ·in the static model. 
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As an illustration we restate Proposition 2 when the structural model is 

(21) 

[
IG -\ Ytl + rO -O l lrt-1]•[ rI]x,f (ut)l]= Et]+ ~l[Et-1] 
0 IH nt lo ' lnt-1 rII (ut)II ct ct-1 

Et 
with ( C ) 

t 
a white noise process 

6 

t 0 with mean zero and variance t=( EE' ). 
o 0 t ee' EE 1 

l~e will assume that 61= ( 0 -1 6 ) implying that the structural residuals 
l;C I 

-1 
(ut)I and (ut)II are not correlated. 

This is a generalization of the static factor analysis model with fixed exogenous 

variables analyzed in [10].The model (21) relates a vector of G observed variables yt, 

such as test scores, consumption items, to a vector nt of H unobserved variables, 

such as ability characteristics, permanent income, the so-called factors. 

The factors themselves follow a dynamic process over time and are influenced by 

a vector of K regressors through the coefficient matrix rII. 

Model (21) has the form of the models introduced in Kalman-filtering theory, 

where nt are unobserved state variables and yt are measurements on certain linear 

combinations of the components of the state variables and the control variables xt. 

~lodel (21) is however different from the Kalman-filtering model in that all the 

matrices fly, 11, t and 61 are all unknown parameters to be estimated. 

The reduced form corresponding to (21) is 

(22) l y t1 = II l [y t - l 'J + ITO xt + vt, 
nt nt-1 

where the parameters arc 

rr = [o A 'l [-r1-A ru] y II = y 
1 0 

, 0 , 
11 -r II l r ,+ 

fl t fl 
n =E(v v')= E:E Y CC I Y 

1 1 E fl I ' 
CC I Y 

-1 

1 
t 

k=O 

r .". = -1 
0 

.. 
fl E ] y cc' 

t CC I 

6 fl + A 6 
e:e:' y y cc' -1 -1 

6 
l; c I 

-1 l 
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The structural parameter of the dynamic factor analysis model (21) is locally 

(T1,T2)-identifiable if and for constant rank matrices only if the matrix ('1'1 , '1'
2

) 

has rank equal to the number of its columns, where 

- (vecJ\ ) ' 
y 

'I' 1 = 0 

2a~ ~(I~J\yE t;t; ' ) 

Cl(vec*E , ) ' 
e: e: 

-----
d (V eCf\ ) I 

v 

+ 

a (vec r 1)' 

with 0 = ( 

0 

6 
E: E: I 

- -:.1 

0 

0 

0 

(vec* r ) ' 
E:E: I 

0 

() 

0 

(vec* E ) ' l; l; I 

0 

0 

0 

0 ((0 II+ 
-T 2G 

2G1A )©OII )P' 
y H 

Cl (v ec* E ) ' 
a~ t;r, ' 

d (VeC* l: ) I 
£: £: I 

0 

J\ ('11 +6 I ) - 6 J\ 
_Y _ ~5 -l e:e:_~l y 

a T /~x (G+H) matr ix am'. 

T -2 
A ~ 2 ( '11 +6 I ) 

y r,r, _l 
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(µo)rI -(vec~)' (vect:. , ) ' 
EE - l 

(vect:. , ) ' 
r;r;_l 

A 'i i\©Cµo) II 0 0 
y 

A ~2 AYfi©(µo)rI•Ay®(µ1)rI 0 0 
y 

A f.Tl 
T -1 

lE Ay f. s~(µT -1-s)II 0 0 
y s=O 1 

'¥ = 
2 1 T -1 2E((C1A + 2()T r E 

I I ((C~Av+c~ 1 )©on 11 ) 0 2 ~' k=O s=k+l 5 y 2()T G (Cl & G E , ) 2QT{ 
CII)0 (GOTI's-k-l)II 2 ' EE 

s 1 
a¢ a qi aq, aq, 

a(µo) rr a (vecf.)' a (VeCl:. I ) 
1 

EE_l 
a (VeCfl I ) I 

z;;z;; -1 

0 0 

and c = ( CI en ) = IG 0 with the matrix (IG 0) in the (s+l)th s s s 

0 A ~T 2 -s-l y 

set of G rows, is a GT 2 ~G+H) matrix. 

The proof is straightforward and follows from Proposition 2 after elimination 

of the (B
0

, n1, t:.
1

, E)-restrictions that are explicitly shown in the model state­

ment (21). 

The matrices ('¥
1

, '¥ 2) contain the criteria for the identifiability of the 

parameters belonging to the static and to the dynamic parts of the model. In '¥ 1 

we find back exactly all the different ways to identify the static model as may 

be compared by checking Proposition 4 of[lO]. The rank conditions contained under 

'¥2 are the additional conditions. 
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It is possible for the structural parameter of the dynamic factor analysis 

model to be identified without any further prior restrictions beyond the zero-

-one-restrictions shown explicitly at (21). This is the case if in addition to 

the observability condition l~p(f'A;. f
12A; •... ,,,T1A;). we also have H=p(f(µ

0
)

11
• 

f(IT0)IIx1, .. ,f(II0)IIxT _1). This is in contrast to the static model with'fl=O, where 
1 

at least GH+IlK+H(II+l)/2 prior restrictions on A , r ,L: , • L: , are always needed. 
y e:e: r;r; 

This is an example of a dynamic model where the zero correlation between the 

structural observational and state variables equations is sufficient for identi-

fiability. 

I 
I 
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IV. Concluding Remarks. 

11le main result of this paper is Proposition 1 and its Corollary 2 which 

contain necessary and sufficient conditions for the identifiability of the 

parameter of the ARMAX(p,q)-Model when the observational external characteris­

tics are a finite number of first and second-order moments, instead of the 

transfer functions employed in the studies of asymptotic identifiability. 

We discuss how our results contain the results in asymptotic identifiability 

stated in the literature. 

In the second part of the paper we developed necessary and sufficient 

conditions for the identifiability of the parameter of the AR\fAX(p,q)-Model 

when some endogenous variables are latent variables. In comparison to the 

static model analyzed in [10],the conditions for identifiability of the dynamic 

model parameter are far less stringent. We illustrate this by specializing 

our results to the dynamic factor analysis model, which is a Kalman-filtering 

model with unknown coefficients, and show how observability conditions together 

with zero correlations between structural errors are sufficient for identifia­

bility. 

Dynamic features of the model help to identify, generally speaking. 



r 

. 30. 

REFERENCES 

[l] Deistler M., The structural Identifiability of Linear Models with Autocorre-

lated Errors in the Case of Cross-Equation Restrictions, Journal of Econometrics 

8 (1978) pp 23-31. 

[2] Deistler M. and H-G Seifert, Identifiability and Consistent Estimability in 

Econometric Models, Econometrica, Vol. 46, No 6, July 1978. 

[3] Deistler M. and J. Schrader, Linear Models with Autocorrelated Errors: Struc­

tural Identifiability in the Absence of Minimality Assumptions, Econometrica, 

Vol. 47, No 2, March 1979. 

[4] Fisher F.M., The Identification Problem in Econometrics, McGraw !!ill, 1966. 

[7] Hatanaka M., On the Global Identification of the Dynamic Simultaneous Equations 

Model with Stationary Disturbances, International Economic Review, Vol.16, 

No 3, October 1975, pp 545-554. 

[5] Hannan, E.J., The Identification of Vector ~ -lixed Autoregressive :-loving Average 

Systems, Biometrika, LVI, March 1969, pp 223-225. 

[6] llannan, E.J., The Identification Problem for Multiple Equation Systems with 

Moving Average Errors, Econometrica 39, 1971, pp 751-765. 

[8] Kohn, R., Identification Results for Armax Structures, Econometrica, Vol . 47, 

No 5, Sept. 1979, pp 1295-1304. 

[9] Sch~nfeld, P., A Survey of Recent Concepts of Identification, Discussion 

Paper , University Bonn, 1975. 

[10] Wegge, L., Identification with Latent Variables, Working Paper Sonderforschungs­

bereich 21, University of Bonn, January 1981. 


	Cover0055
	img0031

