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1. Introduction 

A classical problem of Marxian economics has been to investigate the 

effect of technical innovation upon the equilibrium profit rate. Marx (1966) 

surmised that, if the real wage remained constant, the technical changes which 

capitalists introduced would have a "tendency" to lower the rate of profit. It 

has been shown this is not the case: briefly, viable technical changes cause 

the wage-profit rate frontier to move outwards, and therfore raise the equilib-

rium profit rate at constant real wages. This result was rigorously demonstrated 

by Okishio (1961) in a linear, Leontief model of an economy. More recently, 

the question has been investigated by this author (Roemer 1977, 1978). 

Formal discussions of the falling (or rising) rate of profit have been 

limited to simple Leontief models. For a treatment of the question in which 

the existence of fixed capital, differential turnover times, and joint products 

are fully taken into account, it is natural to ask what happens to the rate of 

profit consequent upon technical change in a von Neumann model of an economy, a 

model capable of handling these more general specifications of production. 

This is the purpose of the present paper. 

Let a von Neumann economy be specified (B,A), where Bis then x m matrix 

of outputs and A is then x m input matrix. The ith column of B or A specifies 
vector 

the ~ of outputs or inputs produced or used from unit opertation of the ith 

process. (There are n goods and m processess.) We abstract away from the 

question of labor by assuming that labor's requirements are already embodied in 

the matrix A. (Hence (B,A) is a model of commodities produced entirely by 

commodities.) Since we shall assume the real wage is fixed, this is an appro-

priate abstraction. We say the semi-positive vector p is a price vector 

associated with profit factor P if: 
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p ~ 0 , P > 0 and pB ~ PpA. 

Under the assumptions that A_> O, B _> O, Ai > 0 and B. > 0 (where Ai is the ith 
- J -

column of A and B. is the jth row of B), it is well-known that there exists a 
J 

minimal positive value p . with respect to which a semipositive price vector min 
. t 1 exis s. (See Gale (1960).) If we write pmi· n = 1 + 1T • , then 1T • can be min min 

thought of as the minimum possible profit rate which the economy can sustain, 

or what Morishima (1974) calls the guaranteed profit rate. 

Suppose the economy is sustaining equilibrium prices p at pmin· A 

technical innovation is a new pair of columns (b',a') which may be appended to 

the matrices (B,A). The innovation will be called viable at prices p if and 

only if: 

pb' > p . pa' min 

A viable innovation will immediately be adopted by capitalists who treat prices 

as given, as they will make super-profits from its operation. If a viable 

innovation appears, then it is reasonable to append it to the old technology, 

creating a new technology (B' ,A') where B' =(Bib'), A' =(Ala'), and ask: 

what happens to the minimal profit rate in passing from (B,A) to (B',A')? It 

is easy to see the minimal profit rate cannot fall; it may, however, not rise 

either. 

The central task of the paper is to provide conditions which guarantee 

that the minimal profit does rise. This turns out to be akin to defining a 

kind of indecomposability for van Neumann economies. It is known that the same 

phenomenon occurs in Leontief models: there, a viable innovation in an 

indecomposable Leontief economy produces an increase in the rate of profit 

(which in that model is related to the eigenvalue of a matrix), whereas the 

rate of profit may remain constant in a decomposable economy. 
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At the mathematical level, then, this study investigates indecompsabilit y 

in van Neumann models. It turns out that the previous definition of indecom-

posibility in the van Neumann literature, Gale's irreducibility (Gale, p. 31 4 ), 

is not a sufficiently strong condition to provide what is needed here. It 

shall be seen, also, that the question is equivalent to asking for a condition 

which guarantees that a unique price ray exists at P . . Interest in the min 

unicity of the van Neumann price ray has appeared elsewhere (Balinski & Young, 

1974). From the economic point of view, this study shows that the rising-profit-

rate story which has been told for the Leontief model generalizes suitably to 

the general activity analysis of van Neumann. In n~~ticular, the existence of 

fixed capital does not change the effect of technological change on the profit 

rate from the simpler circulating capital story. (For the view of the van 

Neumann model as a model of fixed capital, see Morishima (1969).) 

The argument employed is geometric. In the next section, the geometric 

point of view is developed. In the third section, the questions of indecompos-

ability and rising profit rate are studied. 

2. Geometry of the van Neumann model 

Definition 2. 1. A van Neumann equilibrium for the model (B,A) is a triplet 

(p,x,p) where p E ~ ' p > O, pan n-row vector, p > O; x an m-column vector, 

x > O, such that: 

(a) pB ~ ppA 

(b) Bx = ppAx 

(c) Bx ~ pAx. 

(Note that (b) is redundant given (a) and (c).) 

We say p i s a price vector for p, and x is an intensity vector for p. In 

addition, i f: 
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(d) pBx > 0 

then (p,x,p) is an economic von Neumann equilibrium. (For the study of 

economic von Neumann equilibria, see Kemeny, Morgenstern and Thompson (K- M-T) 

(1956).) 

Definition 2.2. For any p >0 , define 

P(p) = { p 2. 0 I pB ~ p pA} - -

r <P) = {Bi-PAiip(Bi-PAi) = 0 lip E P(p)} 

u {-eilP i 
= 0 lip E P(p)} e 

u { O}. 

(ei is the ith unit vector in ffin .) 

P(P) is the set of all price vectors for P; f(p) is derived from the processes 

which are profitable, or binding, at profit factor P, for all price equilibria. 

(We may view -ei as equivalient to a disposal activity 0 - Pei, this last being 

written in the form Bi - PAi. The outputs of the ith disposal activity, i = 1, 

n, are the zero vector; the inputs are given by the unit vector.) The vector 0 

is appended to the set f (p) in case the set is otherwise empty, for notational 

convenience. 

The geometry of the von Neumann model relevant for our inquiry is 

summarized in this theorem: 

Theorem 2.1. lip >O, P.l(p) =Cone f(p). 

(P.l(p) = {ve:~nlp•v = 0 lip e: P(p)}; Cone f(p) is the convex cone generated 

by the set f(p).) 

Proof: 

It is clear that Cone f(p) c P.l(p). 

To show the converse, let 
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It is claimed that 

P.L(p) ::_Cone f(p) implies P.L(p) ::_Cone f(p). For suppose not. Then 

3vEp1(p), vECone f(p) - Cone r(p). 
m 

Then v = .E 

0 . Since p annihilates v, p annihilates every 

. . . n . . i i i i i a (B -PA ) +.EB (-e ); 
. . 1 . i i i term (B -PA ) or (-e ) 

i Bi > a ' 

which 

appears with positive coefficient ai or Bi in the sum -- since every term in 

the sum p•v is non-positive. Consequently, 

i i i (¥ i : a >0)(¥ pEP(p))(p(B -pA ) = 0) 

i i (¥ i B >0)(¥ pEP(p))(pe =0) 

which means precisely that VECone f(p). 

.L -It is enough to show, therefore, that P (p) ::_Cone f(p). Suppose not: 3vE 

~(p), vi Cone f(p). There exists a hyperplane separating {v} from Cone f(p). 

That is: 3qE~n. q•v > O, qf(p) ~ 0. The latter condition means q ~ 0 and qB ~ 

pqA; hence q is a price vector, that is, qEP(p). But then q•v = 0 since 

.L VE p ( p). This contradicts the choice of q. q.e.d. 

As has been remarked, under reasonable conditions on (B,A), there exists 

a minimal positive p for which semi-positive price vectors exist. For p < p min' 

the cone generated by the binding constraints, which for these values p is all 

constraints (since P(p) = {O}) is ffin. At p = p . this cone shrinks to become min 
n a proper subspace of R . Since the set P(p) increases as p increases, the 

subspace P (p) can only decrease. It is interesting to ask what special 

properties are enjoyed by values P where the dimensionality of P (p) changes. 

To do this, we define g in an analogous way to P . illax min 

Definition 2 . 3. ~ax= max{pj(3x~O)(Bx2:,pAx)}. 

Under Gale's assumptions, mentioned above, g is finite, and 
illax 

(See Gale, p. 314 . ) 
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We define the dual concepts to P(p) and Cone f(p): 

Definition 2.4. For p > O, let: 

X(p) = {x 2: OIBx 2: pAx} 

= {B .-pA .1 (B .-pA . )x = 0 
J J J J 

V xEX(p)} 

u { -e . I e .x = 0 
J J 

¥ xEX(p)} 

u {O}. 

where {e.} are row unit vectors in ~m. 
J 

.L Theorem 2.2. For p > O, X (p) =Cone n(p). 

Proof: Same as for Theorem 2.1. 

Notice the cone X(p) decreases as p increases, becoming trivial for 

Hence the dimension of the subspace X.L(p) increase as p increases. P ~~ax· 

Therefore, asp increases (starting from a small positive number), the dimension 

of P.L(p) changes, at most n times, and dim X.L(p) changes, at most m times. The 

values of p where the dimensionality of the cones generated by f(p) and n(p) 

change are related to a classical result of the K-M-T paper: 

Theorem (K-M-T). There are a finite number, r, of values P for which economic 

von Neumann equilibria exist. Furthermore, r 2 min(m,n). 

We shall show the values p where economic solutions exist must be, simulta-

neously, "jump values" of dim Cone f( p) and dim Cone n( p). 

Definition 2.5. Let 

\ = {pldim Cone f(p) = k} 

and _ek = inf R . 
k 

sk = {pldim Cone n(p) = k} 

and pk = sup sk. 

(Note: En = - 00 and p = + oo. ) 
m 
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Theorem 2.6. The values P where economic solutions exist must be common values 

of P. and P .. Hence there can be at most min(m,n) of them . 
-i J 

Note: To prove this theorem, we need not assume the full strength of the K-M-T 
. for 

theorem but only that there do not exist an interval of values p A which 

economic solutions exist. 

Proof: Notice: 
I 

i economic solutions at P~P(p) •B•X(p) = 0 

~ B • X ( p) .:_ P.L ( P) 

~B·(X(p)) .:_ P.L(p), 

where (x) means the subspace generated by X. 

As p increases, P(p) increases as a set so P.L(p) decreases as a set. 

P.L(p) decreases only at the values p .. Consequently (P(p)) increases as a set 
-J. 

only at values P .. Similarly, (X(p)) decreases as a set only at values p .• 
~ J 

Suppose there were an economic solution at value p, and p i p. for any i. 
-i 

Then by definition there is a neighborhood (P-€,P) to the left of p where dim 

P.L(p) does not change. To the left of p, (X(p)) can only get larger. At p, B• 

(X(p)) 1 P1
(p) since there is an economic solution at p: but since P.L(p) stays 

constant in (p-£,p) and (x(p)) can only get larger in that interval this set 

inequality continues to hold VPE(P-£,p). Hence there exist economic solutions 

in an interval of P's, an impossibility. 

A similar argument demonstrates p = pj' some j. q.e.d. 

3. Indecomposable von Neumann systems and the profit rate 

Definition 3.1. Let p ~ 0 be a price vector associated with factor p. An 

innovation (b', a') is viable at prices p # pb' > ppa'. 

Assumption: 

V i = 1 ,m. 

We assume throughout that B. > 0 ¥ j = 1,n and Ai> 0 
J 
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sufficient to guarantee that p . < g and min - lllax 

van Neumann solutions exist for all PE (P . ,g ). In particular, for such P, min max 

(p,x ) is a van Neumann solution if and only if PEP(P) and XEX(P). 

Theorem 3.1. Let p be a price vector for the minimal profit factor, P . , of 
min 

system (B,A). Let (b',a') be a viable innovation at prices p, and let P' . be min 

the minimal profit factor for the appended technology (B' ,A'). then: 

Proof: 

==Y. 

(a) 

(b) 

P I > p 
min min 

P'min > Pmin for every viable innovation at p if and only if p is 

the unique price ray at p . . min 

Part (a) is immediate, since p'B' < Pp' A' - p'B ~Pp' A. 

Part (b): ~ 

Let p' be a price vector for (B' A') at p' . : ' min 

p'B' < p' . p'A'. 
= min 

In particular: 

p'B < p' . p'A. 
= min 

( 3. 1) 

If p' . = p . then, by hypothesis, p' is a multiple of p, the min min 

unique price vector for (B,A) at p . . But pb' > p . pa' by min min 

viability, which contradicts (3 . 1). 

Let q and p be two (independent) price vectors for (B,A) at p .. 
min 

Let v be a vector separating p from q: 

p•V < o, q•v > 0. 

Write i pAi Bi i l,m. Then v = = 
i 2 o, q i 2 0. p •v v 

Choose semi-positive vectors a' and b' in such a way that 

v = p . a' - b'. min 
(3 .2) 
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Since p•v < O, the constructed innovation (b',a') is viable for (B,A) at 

(p,pmin). However, the minimal profit factor does not increase in passing from 

i (B,A) to (B' ,A'), since q•v > 0 ¥ i = 1,n and q•v ~ 0. That is, q is a price 

vector for (B',A') at Pmin· q.e.d. 

To guarantee that p . rises, then, under viable innovation, we must min 

guarantee that the price ray at pmin is unique. By Theorem 2.1, this is 

equivalent to the condition that dim Cone f(p . ) = n - 1. min 

We recall Gale's concept of an irreducible von Neumann economy: 

Definition 3.2. (Gale, p. 314) A set of goods is independent if it is 

possible to produce each good in the set without consuming goods outside the 

set. The model (B,A) is irreducible iff it has no proper independent subset. 

Formally: the set of goods S ~ {1, ... ,n} is independent if there is a subset 

of processes indexed by T '.:_ {1, ... ,m} such that: (¥iE:S)(3jE:T) (b .. >0) and 
iJ 

( ¥ jE:T)( l/US)( a .. :0). 
iJ 

We introduce a stronger notion: 

Definition 3.3. A model (B,A) is indecomposable iff all intensity vectors x at 

p . use at least n processes. That is: XE:X(p . ), xi O, implies x . > 0 for 
min min J 

at least n components j. 

Remark: (B,A) is indecomposable if and only if any semi-positive intensity 

vector, for any factor p > p . , requires n positive intensity levels. For 
~- - min 

p > p . ~ X(P) c X(p . ) . Since von Neumann equilibria exist only for - min - min 

PE:(p . ,g I, indecomposability means the system (B,A) cannot reproduce itself min l!lax' 

at any equilibrium unless it operates at least as many processes as there are 

goods. 

Theorem 3.2. If (B,A) is indecomposable then dim Coner (p . ) = n - 1. min 
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Corollary 3.3 . If (B,A) is indecomposable, then the minimal profit factor 

rises with the appending of any viable innovation. 

Proof of Corollary: By Theorem 2 . 1 and Theorem 3.1, from Theorem 3.2. 

Proof of Theorem 3.2 : 

By Theorem 2.1, Cone f(p . ) is a proper subspace of ffin. Suppose dim min 

Cone f ( p . ) = r < n - 1 • min 
2 By Caratheodory's theorem, any point in the convex 

hull of r can be expressed as a convex combination of at most r + 1 points of 

r. In particular, since Cone r is a subspace, OEHu11r and 0 may be so expressed: 

0 = Eai(Bi- P . Ai) - E8iei 
min 

where at most r + 1 terms occur in the sums together . It follows that 

EaiBi > p . EaiAi 
= min 

where there are fewer than n terms in the sums, since r + 1 < n by hypothesis . 

But the vector a comprises a von Neumann intensity vector at pmin with fewer 

than n positive intensity levels, which contradicts indecomposability. q.e . d. 

We next investigate the relationship between irreducibility and indecompos-

ability . 

Definition 3. 4 . Let H be the class of indecomposable models, and G the class 

of irreducible models . 

Remark : Leontief models (I,A) which are indecomposable in the classical sense 

are members of G n H. 

Theorem 3. 4. H c G but G ¢ H. 

Lemma 3.5. Every economy (B,A) can reproduce itself using not more than n 

processes at p. . (That is: 3xEX(p . ) with at most n positive components.) min min 

Proof of Lemma: 

By the von Neumann- Gale existence theorem, there is a semi - positive 

intensity vector x at p . : min 
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Let D. = {Bi - PAi Ii = 1 ,m L The point v in the convex hull of D. lies in 

the non-negative orthant of Rn. However, no point of Hull D. lies in the 

positive orthant: for if w were such a point then 

w = ( B- PA) y > 0 , y _:: 0 

which, by complementary slackness (Definition 2.1, part (b)) implies that 

P(p) = {O}, which is false. Hence, v lies in the edge, not the interior, of 

Hull D.. Therefore v can be expressed as a convex combination of at most n 

elements of D.. q.e.d. 

Proof of Theorem 3.4: G ¢ H: 

Let (B,A) be a model which consists of two independent processes (b',a') 

and (b",a"), and several other processes which are positive convex combinations 

of these two. Let there be three goods in the model. This can easily be 

constructed to have no proper independent subsets of goods. Then (B,A)EG. 

Clearly, however, if x is an intensity vector which reproduces the system 

(Bx~ pAx), the same results can be achieved by operating only the first two 

processes, and so (B,A)iH. 

H c G: 

Let (B,A)£G. Let S = {1, ... ,s} index a proper independent subset of goods. 

Let the processes T which are used to produce the goods in S, by using goods in 

Sonly, be indexed as the first t processes: T = {1, .. ,t}. Consider B, and 

delete those columns j, m ~ j > t. Delete also the rows of B (corresponding to 

goods) i, n _:: i > s. Call the reduced matrix B. In like manner, define A. 

" Notice A has the property that every one of its processes (i.e., columns) uses 

some good in S: since every process of A used some good, and the processes 
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left in A used no goods outside of S, by hypothesis. Similarly, B has the 

property that each of its rows contains a positive element: because by hypothesis 

all goods 1 , ... ,s are produced by the processes in T. 

Therefore, a van Neumann equilibrium (p,x,p) exists for (B,A), since B. > 
J 

"i 0 for j =1,s and A > 0 for i = 1,t. 

Let p be the n-vector which is gotten by appending to p a string of zeros 

which correspond to prices for goods not in S; let x be them-vector which is 

gotten by appending to x a string of zeros which are intensity levels for 

processes not in T. It immediately follows that (p,x,p) is a von Neumann 

equilibrium for (B,A). 

By Lemma 3.5, (B,A) possesses an intensity vector x which uses not more 

than s processes. By the present construction, the existence of an intensity 

vector x for (B,A) has been shown using not more than s processes. Since s < 

n , ( B , A ) 1'H • q . e . d • 

We next ask a related question. Suppose the economy is operating at a 

van Neumann equilibrium and a viable innovation appears and is appended t o the 

technology. At the new equilibrium, will the new process in fact be used? A 

degenerate situation certainly exists if it is not used. 

Theorem 3.6. Let pmin' ~ax be the min profit factor and max growth factor for 

(B,A). Let p' . be the min profit factor for the economy ( B' , A' ) after min 

appending an innovation (b' ,a') viable at o. for (B,A). If p' . > g then 
~in min max 

all van Neumann equilibria (p',x') for (B',A') use the innovation with positive 

intensity . Conversely, if all van Neumann intensity vectors for (B' ,A') use 

the inn ova ti on, then p' min > gmax. 
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Proof: ==}. 

Let x' be an i ntensity vector for (B',A'), at any factor p > p'min: 

B'x' 2:, PA'x'. 

If x' were zero in its last component, giving an intensity of zero for the new 

process, then the m-vector x consisting of the first m components of x' would 

be a semi-positive intensity vector for (B,A) at p which is impossible, since 

p > g • 
-max 

/- . . Conversely, if g > P' . then there is a semi-positive intensity "\ -max - min 

vector for (B,A) at p' . . Appending a zero component to this vector produces min 

a semi-positive intensity vector for (B',A') at p' .. min q . e.d. 

Corollary 3.7. If (B,A) is indecomposable, then all viable innovations will be 

used with positive intensity at all von Neumann equilibria in the appended 

technology. 

Proof: 

Gale (p. 315) has shown that (B,A)EG implies g = p . . Since -max min 

(B,A)EH c G (Theorem 3.4), we have g = p . . Since (B,A)EH, it also follows -max min 

that p' > p = gmax' and by Theorem 3.6. min min q . e . d. 

Some final comments are warranted on the uniqueness of von Neumann 

equilibria. If we demand that the von Neumann equilibria be economic, then 

K-M-T have shown as quoted above that there exist a finite number of values p 

at which solutions exist . If p . = g then there exists at most one such min max 

solution. (In particular, if (B,A)EG we need not speak of a minimal profit 

factor or guaranteed profit rate, since there is only profit factor capable of 

sustaining a full equilibrium, in the von Neumann sense.) An examination of 

Gale's duality theorem (Gale, p. 315) shows that if (B,A)EG then, in fact, Bx> 

0 for any intensity vector at P . , and a fortiori, it follows that all von min 
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Neumann equilibria are economic. Hence, if (B,A)EH, all von Neumann equilibria 

are economic, the equilibrium profit factor is unique, and the equilibrium 

price ray vector is unique. 

It is, however, not clear that indecomposability or irreducibility are 

good economic assumptions in modelling fixed capital. The principal joint 

products with which we are concerned in modelling fixed capital are old capital 

goods which exit from the production process in a depreciated but still 

potentially useful state. In the von Neumann model, every capital good of 

every vintage counts as a separate commodity. A natural kind of indecompos­

ability to assume for such an economy would be that the economy can reproduce 

itself using not more processes than than there are new goods. (That is, if 

there were some process for producing each new good reasonably efficiently 

using only new goods--a reasonable assumption--such indecomposability would 

exist.) If such were the case, the economy would not be in the class H, nor 

even in the class G (as the set of new goods would comprise a proper independ­

ent subset). 

Hence, the results of this paper cannot in all likelihood be taken to 

apply to real fixed capital economics. Indeed, one might be tempted to expect 

that, due to the highly decomposable and reducible nature of real fixed capital 

economies, in the technical senses of this paper, the positive conclusions of 

this paper concerning the rising minimal rate of profit and uniqueness of 

equilibrium will not hold. 



Footnotes 

* Credit for the discovery that indecomposabil ity , in the sense defined 
here, is a sufficient condition for Theorem 3.2 to hold, goes to the 
mathematician Roger E. Howe. Any mistakes in this rendition are, how­
ever, mine. 

1. Convention on vector inequalities: 
A > B means A ;: B and A .;. B. 

A > B mean A. > B. V components i; 
]. = ]. 

2. Caratheodory's Theorem (Mangasarian, p. 43) Let r c:_ Rn. If x is in the 
convex hull of r then x is a convex combi nation of n + 1 or fewer points 
of r. 
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