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Abstract

Using San Francisco Bay Area Travel Survey (BATS) data, this paper uses spatial econometrics to
evaluate whether consumer interaction influences automobile choices. We demonstrate how to
determine if space is a factor, establish whether it is true or spurious, and modify choice models in
order to control for spatial effects. We provide evidence for aggregate level concentrations in the
proportionate ownership of several different auto types after controlling for potential confounders. At
the disaggregate level, we apply a spatially autoregressive logit model to the decision to buy a new car
type. According to our results, including spatial factors can improve vehicle choice models.
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3.1 Introduction

Although space is an integral component to transportation choices, no study has yet
considered whether automobile purchases are spatially influenced. Nevertheless, the
makeup of the surrounding automobile fleet may play a role in the household choice
process. The composition of nearby ownership may serve to signal auto reliability,
normalize perceptions in the case of a new body type like SUV’s, or stimulate a

desire for conformity.

Spatial interdependence is signified by the presence of spatial autocorrelation (Cliff
and Ord, 1973). In the case of vehicle ownership, nearby observations display would
more similar ownership characteristics than do distant ones. This alone does not
prove that household utility is affected by the actions of their neighbors.
Alternatively, houscholds with similar preferences may self select for certain regions.
Still, it does indicate that aggregate level models of vehicle ownership must take
account of the spatial dimension, and provides justification for further inquiry at the

household level.

Conventional choice models express household utility as a function of its own
characteristics and the traits of available alternatives (Cameron and Trivedi, 2005),
but do not allow for the possibility of inter-household interaction. Consequently, if
indeed social interdependence affects the vehicle choice decision, the utility function
must be restated to account for the observed actions of the surrounding community.

Otherwise, the choice model is misspecified, resulting in biased and invalid estimates.
A



Excluding a significant spatial term biases results, but the problem grows in
importance if other coefficients are impacted by the missing control. Unless
accounted for, coefficients of the remaining covariates will be biased to the degree
that they pick up the relationship between the outcome and the missing spatial term,

resulting in incorrect inference. We display such a finding in our aggregate analysis.

Using 2000 San Francisco Bay Area Travel Survey (BATS) data, we consider
whether households herd in their automobile type choice in the nine-county region.
We apply diagnostic tools to reveal spatial autocorrelation in ownership data
aggregated to the census tract level, and test concentrations to determine whether they
are substantive. At the disaggregate level, we apply an autoregressive choice model

to evaluate whether spatial effects affect consumer vehicle choice.

3.2 Overview and Related Work

Over the last few decades, social scientists have devoted a growing interest to the
nature and impact of spatial interaction (Anselin and Bera, 1998). Formally
accounting for spatial effects allows more thorough evaluation of traditional choice
problems, and may be crucial to understand and properly estimate the data generating
process. Anselin and Griffith (1988) show that if spatial effects are ignored, incorrect

inference may result.




Transportation behavior exhibits signs of spatial interdependence, sometimes termed
herding or bandwagon effects. Forecasting household travel activity (Scott and
Kanaroglou, 2002; Vovsha et al., 2004), modeling the decision to telecommute (Paez
and Scott, 2007), and explaining commodity flows on a highway network (LeSage
and Polasek, 2005) comprise notable examples. Dugundji and Walker (2005)
consider whether an individual is more likely to choose a given travel mode when
accounting for the decisions of others located in his residential zone. Goetzke (2008)
finds that the spatial proximity between individuals affects their likelihood of
exhibiting herd behavior in selecting public transit to work. No research has yet
considered whether households factor the composition of local ownership into their

own auto choice.

In addition to the number of cars on the road, the degree of vehicle heterogeneity
affects roadway congestion, accident rates, pollution levels, and petroleum
consumption. Consequently, responsible public agencies use models that project
vehicle fleet composition in order to meet policy objectives. Choice models (Bhat
and Sen, 2006; Choo and Mokhtarian, 2004; Mohammadian and Miller, 2003) are
commonly used to estimate the parameters relevant to vehicle type choice. Since the

set of car types is categorical, we employ a choice framework.

Including a spatial component can complicate discrete choice modeling. For
example, Goetzke’s (2008) spatial lag term 1s assumed to be exogenous, and no

spatial autocorrelation is allowed in the error term of the utility specification.




Mohammadian et, al. (2005), also make the simplifying assumption of an independent
error term in their spatial logit specification of a residential choice model. We
condition household utility on observed auto choices, and model spatial effects

exogenously.

3.3 Data

Vehicle fleet ownership and socioeconomic/demographic data for 15,064 households
were collected by the 2000 San Francisco Bay Area Travel Survey (BATS),
commissioned by the Bay Area Metropolitan Transportation Commission (MTC).
During the period February 2000 to March 2001, BATS was conducted in the nine
counties that make up the region. However, the residential addresses of survey
participants are not reported. Instead, BATS geocoded the location of cach surveyed
household, and associated every home with its pertinent census tract. The survey
achieved a 99.9% success rate in geocoding the home addresses of surveyed
households. We subsumed the location of surveyed households to the census tract
geographical centroid. Distances between tracts are calculated using the Haversine
function with the latitude and longitude coordinate inputs listed by the U.S. Census

Bureau.

Proportionate auto ownership for each tract was calculated by averaging over the
vehicle types exhibited by its surveyed houscholds. Explanatory variables were

drawn from census information imported from the year 2000 United States Census




Summary File 3. According to the U.S. Census Bureau, tracts contain 4000 people on
average, and are specifically designed to group relatively homogeneous individuals in
terms of demographics and economic status (US-Census-Bureau, 1994).

Additionally, census tracts are intended to be permanent statistical subdivisions,
increasing their usefulness in empirical applications. Census measures include
population size, racial composition, average age, average educational attainment,

marital status, and median income.

We classified the vehicles in BATS into nine vehicle types according to those used by
the auto information company Edmunds.com, Inc.: coupe, compact sedan, mid-size
sedan, large sedan, station wagon, sports utility vehicle (SUV), pickup truck.
minivan/van, and sportscar. Additionally, we created two additional indicators:
whether the vehicle was new at the time of the study (model year 2000), and whether
it was made by a premium automaker, such as Porsche, BMW or Ferrari. Therefore,
we investigated the presence of spatial interdependence in eleven categories of car

ownership.

Those tracts that did not display sufficient observations according to the definition of
proportionate ownership were excluded. Out of the 1332 tracts surveyed by BATS,
requiring that a tract have at least 20 cars or 10 surveyed homes limited the sample to
425 observations and 560 tract observations, respectively. Those cars in BATS that

could not be readily identified or classified into car type were not included.



For the disaggregate analysis, the dependent variable is the binomial outcome
associated with the purchase of a given model year 2000 body type. Explanatory
variables were taken directly from BATS; census information for block group density
and median housing age was imported from the year 2000 United States Census
Summary File 3. Vehicle characteristics used in the disaggregate analysis were
obtained from the Cars.com (a division of Classified Ventures, LLC) used car buying
guide research feature. For cach car, we obtained purchase price, type of drive
wheels (front, rear or all wheel drive), engine displacement (in cubic inches),
horsepower, Environmental Protection Agency (EPA) rated miles per gallon (for city

and highway travel), and curb weight.

About 6% of BATS vehicles, or 1,660 out of 27,822 records, represented model year
2000 cars. Of these, 439 did not contain information essential to this study, such as
self-reported household income, employment status, or age. Choosing to define a
narrow neighborhood for each household, we settled on the smallest possible distance
cutoff for the spatial weight matrix: a three-quarter mile radius. In order to produce
meaningful estimates, we further eliminated 496 observations that did not contain at

least 30 neighbors in that radius.

3.4 Aggregate Methods

A consequence of spatial autocorrelation in auto ownership data is that estimates

generated by applied research can be adversely affected. Statistical inference from



models that do not account for clustering suffer from a loss of efficiency, since an
independent sample of the same size contains more information, and may produce
biased and inconsistent estimates. Although improving the sampling scheme may be
adequate, models themselves can be modified to control for the spatial dimension of
the data. Since we rely on a previously conducted survey, and cannot increase the
sample size or take other corrective measures, we instead incorporate spatial
components and test for their significance in our regression analyses. In the
following sections, we discuss the methods used to determine whether aggregate level
auto choice exhibits spatial autocorrelation, and review models that relax the

assumption of spatial independence—explained in detail by Anselin (1992).

One way to consider the factors associated with vehicle choice, and transportation
behavior more generally, is to observe and analyze the collective actions of
consumers. In this fashion, aggregate, also termed ecological, travel behavior data 1s
related to community level characteristics. For example California’s Department of
Transportation prepares the annual Motor Vehicle Stock, Travel and Fuel Forecast
(MVSTAFF) using county level data including auto body type ownership rates,
population, and income level. A risk of using ecological data is that the explanatory
variables may be sufficiently correlated and pose a multicollinearity concern. Despite
this, the data and computation requirements are often much easier to satisfy than

those essential to a micro-level framework.




3.41 Detecting Spatial Autocorrelation

The presence of spatial autocorrelation signifies that a variable is spatially dependent.
If the data are further positively spatially autocorrelated, this dependence is
observable in the form of spatial clusters. For example, as shown in Figure 1, BATS
data show that census tracts with like rates of pickup truck ownership are spatially
congregated, and is particularly sparse in the census tracts that make up the city of
San Francisco. In order to detect whether auto ownership is globally spatially
autocorrelated, we compute the Moran’s | statistic. A rejection of the null hypothesis
of no spatial autocorrelation is evidence of spatial dependence, with a positive or

negative relationship as indicated by its sign.

However, the significance of Moran’s I does not imply that proportionate ownership
is truly spatially dependent (Lin, 2008). Quite possibly, other factors might be the
source of the spatial autocorrelation. For example, the dependence may vanish after
explanatory variables are considered and a flexible error process is specified. In the
case of Figure 1, does the low pickup truck ownership in San Francisco indicate

spatial interdependence, or is it perhaps an artifact of high population density?

3.42 Dependent Variable: Proportionate Auto Ownership

Interdependence in vehicle choice may be evident in the rate of similar cars (vehicle
rate), or the rate of households that own a similar car (household rate). Moreover, the

dichotomous definition of the dependent variable serves to provide robustness to the




study. As a result, we use two different dependent variables in each of the aggregate
regression analyses. For a given area, the vehicle rate is calculated by a simple ratio
of the cars of certain type located in a region, divided by the total number of cars in
that area. The regional level considered in our analysis is that of census tract, since it
was the lowest level of aggregation that allowed a useful number of observations.

For a given body type i, the vehicle rate is defined by:

N
(1) Y= C’" ,fori=1,2,....11 and t=1,...,T, where
(2) N, =2 1(n =), fori=12,..,11,and
c, =SSN,
(3) al
Here, i=1,...,9 refers to the nine different body type classifications for the

automobiles in BATS: compact sedan, SUV, etc. The other two values for i (10,11)
indicate whether the vehicle in question can also be termed a premium or new car. N,
the total number of cars of a certain type in census tract £, is the sum of n, the
indicator for whether a given car in the tract is of type i. The total number of cars in
the tract, C, is calculated by totaling only the number of cars that are classified body
types 1-9 so as to avoid double counting. The same method is used to calculate the

proportion of houscholds owning a similar car (household rate), with N and C chosen

10




to represent the tract’s households that own a car of type i, and the total number of
surveyed households, respectively. Since y is a proportion of cars or households, T is
rationed by setting minimum levels of observations in order to ensure meaningful

estimates.

3.43 Naive Aggregate Model

Aggregate ownership models can be used to estimate vehicle type choice, if only for a
limited amount of alternatives (De Jong et al., 2004). For a given body type i, we
define the naive model so that it relates proportionate auto ownership to the
characteristics of the region under consideration, without taking account of spatial
effects. For example, the rate of pickup trucks in a region (or households owning a
pickup truck) is regressed on area-wide characteristics likely correlated with auto type
ownership. A general form of the aggregate type ownership model is given by a

simple linear model:

(4) Yi :"-ﬁ*'gr'

where y is a Tx1 vector of dependent variables that represent the rate of auto type i
ownership for every region 7. Regional characteristics are represented by the Tx|
vector x, while the 1XT vector f indicates the relationship between the regressors and
the outcome. After reviewing recent type choice models (Choo and Mokhtarian,

2004; Mohammadian and Miller, 2003), we determined that census tract level traits
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likely to be related to auto type ownership include median income, average age,

average educational attainment, marital status, and racial makeup. We incorporated
population density, and average travel time to work since these variables may prove
important, particularly from a spatial perspective. The Tx1 error vector ¢ is usually
assumed to be independent and identically distributed, and is implicitly spatially
random. If these assumptions are valid, then the naive model can be estimated by

ordinary least squares (OLS).

However, if the error term is spatially correlated, then the OLS assumption of
independent error is violated, and its estimates can lead to incorrect inference.
Although the coefficients are unbiased as long as cov(y,¢) = 0, the result is a loss of
efficiency, meaning that the statistics representing the significance of regression
parameters will be biased, as well as the measure of model fit. Therefore, if the

spatial dependence is present, statistical inference can be misleading.

3.44 Aggregate Error Model

One way to address spatial dependence in the error term is to formally account for it
in the model. Ordinarily, the error term in the naive model is allowed to follow an
autoregressive process, where the relationship between locations is defined by a

weight matrix, W. The error model is then:

(5) Yy, =xp+ & here 51 = AWe, +¢,




The weight matrix is a TxT matrix with zeros on the diagonal so that the error in a
particular location cannot affect itself. The remaining values in W indicate the
amount of influence each tract location is modeled to have on every other tract in the
dataset, which we define in proportion to the Great Circle distance between the
latitude and longitude coordinates provided by the US Census Bureau. Now, the
dependence in ¢ is modeled explicitly, and its magnitude is represented by the
coefficient 4. The term ¢ is assumed to be independently and homoskedastically

distributed, so it is spatially random.

If the spatial error model effectively explains the spatial dependence of the system,
then efficient estimates of # can be confidently recovered. Lin (2008) refers to this
situation as one of “spurious” spatial dependence, since the efficiency loss from
estimation can be avoided once we control for the non-spherical error term. The
additional complication of an unknown autoregressive parameter, however, makes
OLS less preferable than other approaches to estimation, namely maximum likelihood
(ML) or the generalized method of moments (GMM). In that case, inference on the

parameters is not adversely affected.

3.45 Aggregate Lag Model

On the other hand, if the true model is one where proportionate ownership in a given

tract is mutually influenced by the value of the dependent variable in other tracts, then

13




neither the naive or error model adequately specifies the system. In order to avoid
omitted variable bias, the spillover effect from one tract to another must be controlled

for explicitly. The autoregressive aggregate model is then:

{6] -Fr = pwyi T xﬁ + gr

Again, the weight matrix defines the structure of spatial interdependence, and the
expression Wy represents the spatially weighted average of nearby auto ownership.
The weight matrix has zeros on the diagonals so that no tract can affect itself.
Assuming the model is correctly specified, the significance of p indicates whether
proportionate ownership is substantively spatially dependent. A positive p represents
of positive externality of ownership, while a negative p signifies negative spatial
autocorrelation, after controlling for the predictors contained in x. In that case,
ownership of a given body type is concentrated after accounting for factors like

population density, average age and median income.

Yet, the introduction of a spatial lag does not make OLS parameter estimates
unbiased and consistent, since cov(y,¢) # 0 and the dependent variable is correlated
with the error term. The model can be suitably estimated by ML. However, the
choice of the weight matrix is an important question in applied transportation work,
particularly when the extent of spatial interaction is difficult to discern (Kawabata and

Shen, 2007).



3.46 Choosing the Weight Matrix

For both the spatial lag and error models, the spatial weight matrix plays an important
role in the estimation of spatially dependent systems. Effectively, the weight matrix
defines the neighborhood for each census tract, and enumerates the extent of the
interaction among the observed tracts. If the data is characterized by contiguity, then
neighbors can be determined on the basis of sharing a border. In this paper, the
ownership data is drawn from BATS, and represents a spatial sample that does not
fully cover the bay area. Consequently, the weight matrix is calculated using the

spatial distance between tract centroids.

For each definition of the dependent variable, the weight matrix is computed by
setting a threshold distance of twenty miles as the maximum allowable neighborhood,
and calculating the inverse distance between locations. The average number of
neighbors for the tracts that met the minimum requirements is 120 and 153, for the
vehicle and household rate, respectively. In both cases, mean distance between

neighboring tracts is 11.8 miles.

Although the weight matrices in this paper were calculated with a maximum distance
threshold of twenty miles, we verified that the robustness of our results to multiple
weight matrix specifications. Considering a range of threshold distances up to fifty
miles, we found that our results were repeatedly confirmed. Additionally, we
contemplated the use of a “'k nearest neighbor™ matrix, which would define the

neighborhood by the number of observations (k) rather than by an arbitrary distance
15



threshold. The nearest neighbor approach may be useful in situations that evaluate
census tracts in both rural and urban areas, such as this study, since they constrain the
number of neighbors to be the same (Anselin, 2002). However, the resulting
asymmetric spatial weight matrix is not supported in Geoda (Anselin, 2003), the
program we used to construct our aggregate weight matrices. Still, we evaluated the
robustness of our results to asymmetric matrices by using the spdep regression
package in the statistical program R (R Development Core Team, 2005), since that
program supports weight matrix asymmetry, and found that our results were similar

for nearest neighbor specifications.

3.47 Which Model to Use?

Although a diagnostic test like Moran’s I provides evidence that a variable is spatially
autocorrelated, it does not explain why such dependence occurs. Moreover, the
presence of spatial autocorrelation does not indicate whether to specify the resulting
model in an error, lag, or non-spatial format. This is a crucial step, since it
determines whether we include a spatial element, and affects that way that we
interpret the spatial dependence in auto ownership: nuisance or substantive. A variety
of methods have been proposed to answer this question (Anselin and Bera, 1998), and

we present both of the tests applied in this paper.

Anselin et al. (1996) showed that OLS residuals provide a guide for model selection,

and introduced a series of Lagrange Multiplier (LM) tests that diagnose the presence
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of autocorrelated errors, and misspecification possibilities such as a missing error
process or absent spatial lag. According to Florax and Vlist (2003), the LM tests
adequately determine the correct model design. Additionally, they explicitly allow
for the possibility that the OLS model describes the system properly, and that no
spatial model should be used. Still, they do not offer a direct test between the spatial
lag and spatial error model, but have the advantage of simplicity, since the method

requires only OLS estimation.

3.48 Durbin Model: Testing for “True” Spatial Dependence

If OLS is judged not optimal, a more elegant way to determine the proper
specification is relate the error and lag models using a likelihood ratio test. A
potential complication is that the likelithood ratio is only valid in the case of nested
models, and this does not immediately apply to the previous sections. Fortunately, it
is possible to restate the error model in equation (5), beginning by rearranging the
CITOT Process:

€ = AWe, +&, g =(I-Aw)'¢,

(6)

Substituting into equation (5), and organizing terms:

1y yi=xBrl=aw)e,



(8) vy, =AWy, +xf - AWxp + ¢,

Equivalently, (8) is a special case of the lag model, frequently termed the Durbin
model, where the explanatory variables are composed of [x Wx], so that distanced
versions of the ordinary predictors are included. However, the coefficients of the
Durbin model need not be constrained so that the right hand side product of the first

and second terms equals the opposite of the third:

(9) vy, =AWy, +xf - Wx + ¢,

In the literature, the nonlinear constraint that 6 = Af is referred to as the common

factor hypothesis. If the constraint holds, the Durbin model in equation (9) collapses

to the original spatial error specification, equation (5).

The null hypothesis is that the spatial dependence is adequately specified by an error
model. After estimating both the error and Durbin models, the constraint is tested by
means of a likelihood ratio test. Whether or not the null hypothesis is rejected
depends on the increase in log likelihood. If the null hypothesis is rejected, it
indicates that the error model does not suitably account for the spatial autocorrelation

in the dependent variable.




There are some limitations, however. First, the common factor test requires that the
lag model be reformulated to include lagged explanatory variables, although these
may not belong in the model. Also, as opposed to the LM decision rule, it does not
allow for the possibility that OLS is satisfactory. Still, this test compares the error
and the lag specifications directly, and provides evidence in favor of “true” spatial

dependence if the null hypothesis is rejected.

3.49 Estimation Strategy |

In order to determine whether proportionate ownership is spatially dependent, we
perform LM tests on OLS errors for all eleven car types, and for both the vehicle rate
and the houscehold rate. If the LM tests suggest that a spatial model is appropriate, we
conduct common factor tests to determine whether the dependence is “true” or
“spurious”™. Taken together, we select the appropriate model, and estimate it in order

to search for spatial effects, controlling for potential confounders.

3.5 Aggregate Results

3.51 Spatial Diagnostics

Although not sufficient in demonstrating substantive spatial dependence, evidence of
autocorrelation signifies that the dependent variable is distributed differently than we

would expect if its observation were truly random. After calculating auto ownership
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rates, we evaluate whether the data exhibit spatial autocorrelation by calculating
Moran’s | for each of the eleven auto classifications, and for both definitions of the
dependent variable. Moran’s I did not display commonly accepted significance levels
for coupes (0.07 for the household rate, 0.29 for the vehicle rate), and vehicle rate
large sedans (0.43) and sportscars (0.63). For both definitions of ownership, midsize
sedans, pickup trucks, station wagons, and new cars were all positively spatially
autocorrelated at a p-value lower than 0.001. The null hypothesis of no positive
spatial autocorrelation was rejected at the 5% level for every other body type. These
results indicate the presence of clustering in most kinds of automobile ownership in

the aggregate data.

3.52 Multicollinearity Assessment

In some cases, aggregate variables are highly correlated. When these are used
together as regressors, the resulting multicollinearity can confuse the sign and
significance of parameter estimates. In that case, although the model is still valid,
inference about individual predictors may be adversely affected. We use the variance
inflation factor (VIF) method to determine how likely multicollinearity is to affect the
estimates. Mendenhall and Sincich (1996) propose a cutoff rule of 10, above which
multicollinearity is suspected. We calculated the VIF for the aggregate variables in

our analysis and verified that they did not exceed this cutoff.

3.53 Descriptive Statistics

Table 1 displays means, standard deviations, minimum and maximum values for the

variables we used to model aggregate vehicle type ownership with a household rate
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dependent variable. Table 2 shows the descriptive statistics for the case in case of
vehicle rates. In the top panel of each table, ownership rates are provided for the
different vehicle types considered; explanatory variables are listed in the bottom
panel. The difference between the two tables represents the distinction in average
community attributes across dependent variables, and is a result of the sampling
methodology used by BATS combined with the minimum cutoff values. The first
nine auto categories shown in each table are exclusive, in that each stands on its own
as a separate body type. Of these nine, those vehicles that can be further classified as

“premium” or “new cars” are included in the final two categories.

Ownership levels for the household rate do not sum to one, since this rate is
calculated as the percentage of homes that own a similar car. On the other hand, the
ownership levels for the first nine categories in the vehicle rate do sum to one, by
construction. Compact and midsize sedans are the most popular vehicle types
represented in BATS, owned by 35% and 40% of households, 21% and 25% of
vehicles, respectively. The least popular car types across dependent variables are
station wagons, sportscars and coupes. Explanatory variables are drawn from U.S.
Census tract data. Between Tables 1 and 2, the largest discrepancy in the average
community characteristics is that household rate census tracts have a higher
population density. Additionally, they are slightly less wealthy, younger, and have a

smaller housechold size.




3.54 Spatial Regression

Nearly every auto type in BATS is spatially autocorrelated, but this result could be
interpreted incorrectly without controlling for potential confounders. We use spatial
regression to evaluate whether aggregate auto ownership of any body type is spatially
concentrated after including the explanatory variables in Tables 1 and 2. All

regressions are estimated via maximum likelihood.

The LM decision rule indicates that OLS regressions of the houschold rate dependent
variable on the predictors are missing a spatial lag for the pickup truck, station
wagon, and SUV body types, as well as for the “new car” designation. When the
vehicle rate serves as the outcome, only pickup trucks and station wagons are judged
to be best represented by a spatial lag model. In every case, we verified that the
spatial lag specification improved on the error format by additionally conducting a
test of the common factor hypothesis, and rejected the constraints implied by the null
hypothesis at the 5% significance level. Together, the LM and common factor tests
indicate that for these body types, the OLS model suffers from omitted variable bias.
The results for the houschold rate are reported in Tables 3, with the lag model
parameters displayed alongside their OLS counterparts. Vehicle rate coefficients are
shown in Table 4. In both tables, 7 statistics in parentheses signify the degree of

statistical significance for each parameter estimate.

Since each dependent variable is continuous, the regression results can be interpreted

as the percentage point increase in the rate of homes that own a given vehicle type
22




(Table 3) or rate of similar vehicles (Table 4) correlated with a one unit—or
otherwise specified—increase in the regressor. For example, column 3 in Table 3
reports that a one hour increase in average travel time to work is associated with a 23

point increase in the proportion of homes that own a pickup truck.

The lone exception is the coefficient on the spatial lag. In order to maintain a
symmetric weight matrix, which simplifies estimation, we avoided row
standardization. Unfortunately, this also complicates the interpretation of the spatial
coefficient. Essentially, the spatial effects in each table represent the average
correlation of the weighted average of local ownership, calculated using the inverse
distance from the observed census tract, with the dependent variable. Therefore,
although a straightforward interpretation for a given body type is not possible, a
significant coefficient on the spatial lag is a sign that auto ownership for that body
type remains spatially correlated after controlling for a range of explanatory variables.
In this case, since the spatial lags are all positive and significant, this means that
vehicle type ownership is concentrated spatially; for these body types, nearby census
tracts are more likely to exhibit common ownership characteristics than are distant

ones.

Compared to traditional OLS, the spatial approach to modeling aggregate vehicle type
choice offers two important advantages. First, and most importantly, since the OLS
approach produces inconsistent estimates, it cannot be relied upon for correct

inference. Evidence of a problem with incorrect estimates is apparent in Tables 3 and
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4. Obviously, the OLS models are missing the positive and significant lagged
parameter for each body type. Additionally, the OLS model parameters are biased
since they do not consider the spatial dimension of the data. In Table 3, after spatial
concentration is accounted for, the coefficient on logged median census tract income
becomes insignificant. Also, the rate of Latino residents does not in fact correlate
with stationwagon ownership, and tracts with older homes tend to be associated with
higher pickup truck ownership. Although the signs and significance of the remaining
coefficients are unchanged, the degree of their difference can have an impact if they

serve as inputs to policy sensitive models, like Caltrans’ MVSTAFF.

Another advantage offered by the spatial models is that they offer a better data fit
than do the conventional models. Since it provides an additional free parameter,
McFadden's pseudo R-squared value for each lagged model exceeds its OLS
counterpart. The corollary is that the spatial lag models produce a likelihood gain.
For each body type, we compared Akaike’s Information Criterion (AIC) values to
determine if this gain is sufficient to outweigh the penalty for the lost degree of
freedom. In every case, lag models produced a lower AIC, and thus represent the
preferred method to model vehicle type ownership. Therefore, for the body types
represented in Tables 3 and 4, spatially lagged aggregate ownership models produced
unbiased coefficients, and better data fit when contrasted with the traditional

approach.

24




3.6 The Ecological Fallacy

Aggregate level results are useful for agencies and decision makers concerned with
the collective behavior of consumers. For example, a model that estimates vehicle
choice using explanatory variables drawn from local U.S. census tracts can
adequately predict choices at the tract level. However, Robinson (1950) showed that
ccological relationships do not necessarily translate to the individual level. In his
example, although state level literacy rates were positively correlated with the
proportion of immigrants, this was due to the fact that immigrants simply elected to

settle in states with high levels of literacy.

In the current application, unless homogeneity constraints are imposed, it would be
premature to draw inference on household level auto choice from aggregate data.
Still, the existence of spatially clustered ownership among census tracts provides
some indication that spatial effects are important, and leads us to inquire about their
inclusion in conventional choice models. Moreover, since disaggregate level models
are more appropriate for estimating the components of the choice process, we also
perform an analysis of household level spatial effects. We use BATS survey data to

empirically test whether spatial influence exists at the household level.

3.7 Disaggregate Methods

Another modeling approach is to consider the household as the decision making

entity, linking micro-level characteristics to choice outcomes. Household level
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models have the advantage of better capturing consumer behavior, and as a result, the
relationship between vehicle attributes, household characteristics and ownership
choice. For this reason, they may be more useful for policy analysis (Zhao and
Kockelman, 2002). Although the data requirements are more exhaustive,
disaggregate models are the preferred method of modeling vehicle choice (Bhat and

Pulugurta, 1998).

The level of a given houschold’s automobile ownership affects its propensity to select
a transportation mode, its destination of interest in leisure activities, and the number
of trips it makes (Nobile et al., 1997). As such, disaggregate models focused on
predicting the number of cars chosen by a household are used to provide inputs into
transport projection models (De Jong et al., 2004). Likewise, car type choice models
project fleet composition, an important component of models used to predict non-
point source pollution and road network congestion. Given that car ownership is a
categorical variable, and since car-type choice is made among a known set of
possibilities, econometric methods used for parameter estimation are almost

exclusively discrete choice, latent variable models.

3.71 Household Spatial Lag Model

Perhaps the simplest way to conceive of auto type choice at the disaggregate level is
to estimate a series of binary choice models, one for each vehicle type. Although this

method may not satisfy a comprehensive approach, it can tell us what explanatory
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variables correlate with an increased likelihood that a given household will select a

certain auto body type, and provides some indication as to whether it is influenced by
network effects. For example, Goetzke (2008) uses a binary model to consider
whether New York City residents exhibit spatial interdependence in the decision to
take public transit to work, even though such consumers face a wide variety of travel
alternatives. Due to data constraints, the model is conditional on the decision to
purchase a new car. We model only the demand side of the auto market, and assume
that the supply of cars is perfectly elastic. The conditional logit model applies
random utility theory to the type ownership decision and has the advantage of
widespread usage in transportation applications (Ben-Akiva and Lerman, 1985;

McFadden, 1974).

In this model, household i chooses an auto body type in order to maximize its own
utility. For each automobile type (/), let the utility for an individual household be
given by

U‘J = V * g'!

Ul

(10)

where ¥, represents the deterministic portion of utility, and £, denotes a random

it
component. In a traditional type choice model, deterministic utility is then defined as

being composed of a vector of explanatory variables multiplied by parameters:
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{ [ 1} Vu — ﬁi:'xﬂr + ﬂ;x;

where x, represents the relevant characteristics of housechold 7, such as income,

houscholder age, local population density, and other demographic variables. Vehicle
attributes like fuel economy, manufacturer suggested retail price (MSRP), and engine

size are represented by x,. Coefficients on those explanatory variables indicate the

degree to which they affect individual utility. We modify the model to account for
the possibility that consumer interaction affects household utility, by including a

spatially autoregressive term

{]2) I,J:.' = ﬁ):'\-r.ﬁ +ﬂ:x1 +erf(I/:j)

Here, W is the spatial weight matrix that defines the neighborhood for every
household i. Since observations are assumed to not affect themselves, the weight

matrix is composed of zero values on the diagonal. Thus, the weighted average of

nearby vehicle type choices is represented by Wf(K) . We calculate the weighted

average by defining a three-quarter mile neighborhood threshold distance, weighting
cach neighborhood observation equally, and determining the rate of like car
ownership. Records that did not consider an adequate number of neighborhood
observations were removed from consideration. Any spatial effect is then translated

through the parameter p .
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The household chooses a car body type—the dependent variable ( y )—in the choice

set in order to maximize utility. In the binomial case, the body type being considered,
J,is equal to 1. Conversely, k represents the alternative, i.e. not j. More specifically,
since the model is conditional on the decision to purchase a new car, a household that
chooses not J is in fact choosing to buy another unspecified auto type. The decision

rule for the household is expressed as

(13)

Pr[y=j]= Pr[U'} - Vk

=Pr[U, -U, <0]
= F‘r[l’jjt L g P U}
=Pr[e, -, <V, -V, ]

= [1(zs -2, <V, =V)f (e.)de,

Here, the indicator function / takes a value of one if the expression in parentheses is
true, and zero otherwise. We maintain the assumption of independent random error.
Additionally, we assume that ¢ is identically, Bernoulli distributed for all
households. Analytically, it can be shown that the probability that houschold /

decides to own body type j is the familiar logistic probability given by

(14)



|
I +exp(V,)

i

Although we make the simplifying assumption of no spatial autocorrelation in the
error term, estimation can be complicated by the fact that the spatial expression in
equation (12) may pose an endogeneity problem. One way to think of the problem is
that the spatial spillover may be multi-directional. For example, if household i’s
choice affects houschold k’s choice, perhaps household 4’s choice also influences
houschold i's choice. In order to avoid this obstacle, Goetzke (2008) makes the
assumption that the spatial effects in public transport decisions are exogenously

determined.

We circumvent the endogeneity problem for two reasons: the nature of car purchases,
and the temporal indicators in the BATS data. Unlike the decision to access mass
transit, which can be changed daily, once made, the choice of which car to buy is
generally fixed for a period of years. As a result, spatial spillovers in auto choices are
necessarily unidirectional. Fortunately, the BATS data denotes each car’s month and
year of purchase, allowing us to condition the disaggregate model on observed local

auto type choices.

30




3.8 Disaggregate Results

3.81 Descriptive Statistics

The mean, standard deviation and range of values for explanatory variables used in
the disaggregate model are shown in Table 5. In the table, the area wide
characteristics display a considerable scope. For example, block group population
density varies from as low as 211 to nearly 200,000 people per square mile.
Neighborhood age also differs substantially; the median year of housing construction

spans almost 80 years.

As displayed, auto ownership averages about 2 cars, while 71% of the sample records
represented home owners. Although the average home contains between 2 and 3
members, less than two are licensed to drive. Nearly half the householders are
female. Minorities make up less than one in five of surveyed homes. Again, the
range of values displays considerable variation. The minimum of car ownership and
housechold members is one, by model and survey construction, respectively.
However, one surveyed home owned eight automobiles, while multiple homes
contained seven members. The mean houscholder age of 44 is bracketed by a

minimum age of 19, and a maximum of 88.
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3.82 Spatial Regression

Table 6 displays the results for the spatially lagged binomial disaggregate vehicle
type choice models. Each column represents the logit model for the dependent
variable specified. The spatially lagged models are shown alongside their
conventional, or “base™ case, counterparts. In order to denote statistical significance,
{ statistics are reported in parentheses below the coefficient for each parameter
estimate. Those variables that did not alter the probability of choice selection were
dropped and do not have coefficients in the table; the number of observations
represents the total records out that were not completely determined by at least one of

the variables.

In discrete choice models, but also for nonlinear models more generally, parameter
estimates do not explicitly signify the extent to which independent variables influence
the outcome. Instead, the coefficients in the table indicate the sign and significance
of the probability of selecting the relevant outcome, given an increase in the
regressor. For example, according to column 3, the significant coefficient for the
female houscholder indicator 1s -0.62. According to the model, female housecholders

are less likely to purchase a compact car, versus another body type.

We include a variable for the ownership characteristics of the local neighborhood in
order to test whether household vehicle choice is spatially dependent. The spatial |
logit models show that, even after controlling for the explanatory variables in Table 5

and vehicle characteristics, compact sedans and pickup trucks exhibit positive and
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statistically significant spatial lag parameters at the 5% and 10% level, respectively.
In order to verify that the lag parameter sufficiently improves the choice model for
compacts and pickups, we conducted a likelihood ratio test on a vector of constraints
equating the lagged model to the conventional model. In both cases, the constraints
were rejected. We interpret this result to indicate that the lagged models are

sufficiently different, and that the base case is missing a lagged parameter.

Some of the notable elements of the tables include the coefficients for population
density, log income, engine size. Although small, the positive value for the
population density coefficients for compact vehicles indicates that residents of more
urban areas prefer those car types. The negative income coefficient in the context of
pickup truck ownership signifies that high income individuals prefer other car types.
In the compact lag model, the negative parameter value for engine size indicates that
all else being equal, the average consumer prefers a compact car with a smaller

engine. This seems intuitive. The opposite is true for pickup trucks.

In addition to the fact that the lagged models are validated by the likelihood ratio test,
they are also preferred in terms of data fit. As in any model, the likelihood of
observing the original outcomes is improved by the addition of a variable, such as the
lagged term. Consequently, pseudo R-squared is increased by each lag model. On
the other hand, in the interest of simplicity, AIC penalizes a model that includes

variables without a sufficient likelihood gain. As shown in the table, AIC is
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improved by both spatial lag models, signifying that the spatial lag adequately

improves data fit.

3.9 Conclusions

According to our results, spatial factors affect vehicle type choice. However, this
result does not serve as proof that household decisions are truly influenced by their
neighbors. Instead, selection bias may steer individuals with similar preferences
congregate spatially. Still, this research does suggest that spatial factors must tzc
accounted for in order to properly estimate vehicle choice models. Those agencies
that use vehicle choice models as inputs or end results would benefit by considering
spatial factors. If significant spatial effects are not included, adverse results include

improper inference, inappropriate model selection, and suboptimal prediction.

If ownership choices are indeed influenced by the vehicle population in the
surrounding community, one reason could be that individuals consume autos
conspicuously. In the aggregate analysis, we found that the ownership of pickup
trucks, SUVs, and new cars are spatially concentrated in the San Francisco Bay area.
Each of these car types has attractive features that could conceivably influence the

choices of other decision makers.
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One limitation of this paper is the constraints imposed by the household survey:
restricted sample size and spatial characteristics. BATS did not adequately sample
every portion San Francisco Bay area, and did not collect many observations where it
did have a presence. This uneven sampling may affect the results, but it is impossible
to tell in which direction, since the data is missing. For example, BATS provided
sufficient information for the aggregate analysis to study only a third of the census
tracts in the Bay Area. The ownership concentrations that we measured are subject to
the assumption that the missing tracts displayed a similar pattern to those sampled by
BATS. Additionally, this prevented us from using a contiguity matrix to test spatial
characteristics. At the disaggregate level, BATS did not provide enough geocoding
sensitivity to plot households accurately. Instead, the finest geographical point to
which a surveyed household could be associated was its census block group.
Moreover, almost a third of the houscholds that purchased a new car were missing

information vital to our MNL model.

Another constraint we faced is that BATS did not allow differentiation between
spatial dependence in the choice process and selection bias. A better spatial sample,
and a fuller picture of the household vehicle portfolio, would add to the validity of the
results. One candidate is the California Department of Motor Vehicles (DMV)
registry, which contains the set of registered vehicles for every registered driver in the
state, in addition to geographical indicators. If multiple DMV snapshots can be
obtained, then we can more accurately segregate households by their characteristics.

In this way, changes in household ownership can be modeled. In future research, we
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intend to use the census proxy method with local DMV records, as proposed by
Adjemian and Williams (Forthcoming), to investigate the possibility that car

purchases in California are similarly influenced by spatial factors.
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_ Table1

Table 1: Descriptive Statistics for Variables used in Aggregate S patial Model
(Household Rate)

Variable Obs Mean  Std. Dev Min Max
Ownership Rates
Compact 560 0.35 0.13 0.00 0.74
Coupe 560 0.10 0.08 0.00 0.38
Large Sedan 560 0.11 0.09 0.00 0.55
Midsize Sedan 560 040 0.14 0.07 0.92
Minivan/Van 560 0.12 0.09 0.00 0.50
Pickup Truck 560 0.19 0.13 0.00 0.70
Stationwagon 560 0.05 0.07 0.00 0.40
Suv 560 0.19 0.12 0.00 0.82
Sportscar 560 0.10 0.08 0.00 043
Premium 560 017 0.12 0.00 0.64
New Car 560 012 0.09 0.00 043
Explanatory Variables
Population Density (people/sqg. mi) 560 6478 6371 11 42538
Log of Median Income 560 11.19 0.32 9.87 12.04
Avg. Household Size 560 253 043 1.13 420
Avg. Age 560 42.79 4.91 22.48 54,12
Proportion w/ Bachelor Degree 560 020 0.07 0.04 043
Avg. Travel Time to Work (minutes) 560 29.40 4.96 13.87 49.93
Median Year Housing was Built 560 1966 13 1939 1995
Proportion of Black Residents 560 0.03 0.06 0.00 0.53
Proportion of Asian Residents 560 0.15 0.13 0.00 0.70
Proportion of Latino Residents 560 012 0.09 0.01 0.55
Proportion of Female Residents 560 0.51 0.02 0.41 0.67

Proportion of Married Residents 560 046 0.07 0.14 0.60




Table2

Table 2: Descriptive Statistics for Variables used in Aggregate Spatial Model
(Vehicle Rate)

Variable Obs Mean  Std. Dev Min Max
Ownership Rates
Compact 425 0.21 0.09 0 062
Coupe 425 0.06 0.04 0 0.20
Large Sedan 425 0.07 0.05 0 0.25
Midsize Sedan 425 025 0.09 0.03 0.56
Minivan/Man 425 0.08 0.05 0 0.32
Pickup Truck 425 0.12 0.08 0 0.41
Stationwagon 425 0.03 0.03 0 0.17
SuvV 425 012 0.06 0 0.38
Sportscar 425 0.06 0.05 0 0.21
Premium 425 0.1 0.07 0 035
New Car 425 0.07 0.05 0 0.25
Explanatory Variables
Population Density (people/sq. mi) 425 4839 4035 1 32802
Log of Median Income 425 11.24 0.31 10.37 12.04
Avg. Household Size 425 258 0.40 1.13 4.04
Avg. Age 425 43.93 4.21 25.91 54,12
Proportion w/ Bachelor Degree 425 0.20 0.06 0.05 0.38
Avg. Travel Time to Work (minutes) 425 29.32 5.10 13.87 49.93
Median Year Housing was Built 425 1967 12 1939 1995
Proportion of Black Residents 425 0.03 0.05 0 0.53
Proportion of Asian Residents 425 0.14 0.12 0 0.70
Proportion of Latino Residents 425 012 0.09 0.01 0.55
Proportion of Female Residents 425 0.51 0.02 0.41 0.67

Proportion of Married Residents 425 048 0.06 0.19 0.62
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Tablé3

Table 3: Aggregate Spatial Lag Model Estimation Results
(Household Rate)

pickup slamnwgn suy newcar
oLS Lag OLS Lag QoLsS Lag OLS Lag
Weighted Ownership 0,57 042" 0.34* 0.47**
(551) (2.14) (1.79) (2.85)
Pop Density (+100000/sq mi)  -0.31"** -0.34"**  -0.11 0.1 -0.01 -0.02 -0.02 -0.03
(2.64) (2.99) (1.59) (1.47) (0.06) (0.17) (0.23) (0.3)
Log Median Income -0.08"* -0.04 -0.03" -0.02 0 -0.01 0.05** 0.03
(2.58) (1.12) (1.78) (1.29) (0.04) (0.32) (1.96) (1.02)
Avg. HH Size (people) 0.06"** 0.06"** 0.02 0.01 0.08"* 0.08™" 0.01 0.01
(2.96) (2.81) (1.34) (1.2) (3.88) (3.93) (0.39) (0.64)
Avg. Age (+10 yrs) -0.02 -0.03 0.01 0.01 0.02 0.02 -0.01 -0.01
(026) (026) (039) (039) (074) (074) (-165) (-165)
Pct. Bachelor Degrees 0.5  -039*** 012 0.1 0.47*** 0.5™* -0.01 0.03
(3.44) (2.82) (1.37) (1.22) (3.19) (3.42) (0.1) (0.29)
Avg. Travel Time (+1hr) 0.14* 0.23"*  -011*™ 01" 0 0 -0.05 -0.02
(231)  (383) (312) (284) (004) (006)  (0.98)  (0.32)
Median Yr House Buill (+10yr) -0.01 -0.02*** -0.01*** -0.01** 0.01* 0.01** 0.01*** 0.01™
(133)  (334)  (285)  (266)  (249)  (208)  (2.85)  (2.46)
Pct. Black Residents -0.12 -0.06 0.06 0.08 017 -0.16* -0.02 -0.01
(1.25) (0.63) (1.17) (1.45) {1.76) (1.67) (0.34) (D0.19)
Pct. Asian Residents -027***  -0.19*** -0.02 -0.01 0.16***  0.15* 0.03 0.01
(577)  (3.95) (0.8) (054)  (327)  (331) (0.97)  (0.31)
| Pct. Latino Residents -0.01 0.05 -0.09™ -0.07 -0.03 -0.05 0.08 0.04
(0.18) (0.69) (2.06) (1.61) (0.41) (0.62) (1.43) (0.74)
Pct. Female Residents -0.8¢*** -0.79*** 0.14 0.13 -0.25 -0.24 0.04 0.05
(3.89) (3.58) (1.01) (1) (1.06)  (1.04) (0.22) (0.3)
| Pct. Married 0.18 0.14 -0.01 0 0.07 0.08 0.08 0.1
(1.29) (1.05) 0.11) (0.01) (0.53) (0.6) (0.76) (0.94)
Constant b2 ¥ donca 3.81** G gl y B2+ st 232" -1.93** 236 192
{2.83) (4.14) {3.06) (2.83) (2.39) (1.98) (3.26) {2.67)
Observations 560 560 560 560 560 560 560 560
Pseudo R-squared 0.36 0.39 0,07 0.08 0.18 018 0.09 0.10
AIC -899 -922 -1479 -1482 -866 -867 -1196 -1201

t statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1




Table4

Table 4: Aggregate Spatial Lag Model Estimation Results
(Vehicle Rate)

pickup statnwgn
OLS Lag OLS Lag
Weighted Ownership 0.48*** 0.34*
(4.23) (1.67)
Pop Density (+100000/sq mi) -0.27** -0.21* -0.04 -0.02
(2.37) (1.93) (0.66) (0.41)
Log Median Income -0.09***  -0.06"* -0.01 -0.01
(4.14) (2.53) (0.88) (0.61)
Avg. HH Size (people) 0 0 0 0
(0.05) (0.31) (0.12) (0.12)
Avg. Age (+10 yrs) 0 -0.01 0 0
(0.26) (0.26) (0.39) (0.39)
Pct. Bachelor Degrees -0.33***  -0.27** 0.08 0.07
(3.15) (2.65) (1.46) (1.31)
Avg. Travel Time (+1hr) 0.08* 0.13* -0.04™ -0.04*

(192)  (347)  (202)  (1.97)
Median Yr House Built (+10yr) _ -0.01* _ -0.01"™** -0.01"** -0.01"**
(1.75)  (306)  (411)  (3.84)

Pct. Black Residents -0.05 -0.05 0.05 0.05
(0.71) (0.73) (1.4) (1.49)
Pct. Asian Residents -0.13***  -0.09** -0.01 -0.01
(387)  (2.65) (0.7) (0.66)
Pct. Latino Residents 0 0.04 -0.03 -0.02
(0.086) (0.64) (0.97) (0.69)
Pct. Female Residents -0.66*** -0.61*** 0.08 0.07
(3.99) (3.78) (0.94) (0.91)
Pct. Married 0.15 0.11 0.04 0.04
(1.56) (1.16) (0.84) (0.95)
Constant 2.64** .03 1.45%** 131
(3.63) (4.32) (4) (3.62)
Observations 425 425 425 425
Pseudo R-squared 0.38 040 0.13 0.14
AIC -1105 -1118 -1697 -1698

t statistics in parentheses
***p<0.01, ** p<0.05, * p<0.1
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Table 5: Descriptive Stats For Variables Used in Disaggregate Model

Variable Obs Mean  Std. Dev Min Max
Census Blkgrp Characteristics
Pop Density (pop/sq mi) 725 9780 10298 211 172898
Median Yr House Built 725 1964 15 1939 1998
HH Characteristics
1999 Log Income 725 11.40 0.50 852 12.01
Household Vehicles 725 2.11 0.85 1 8
Household Size (people) 725 2.53 1.19 1 7
Household Owned 725 0.71 0.46 0 1
Licensed Drivers 725 1.87 0.56 0 4
Householder Female 725 0.47 0.50 0 1
Householder Age 725 44 13 19 88
Latino HH 725 0.04 0.19 0 1
Black HH 725 0.01 0.10 0 1
Asian HH 725 0.13 0.34 0 1




Table6

Table 6: Disaggregate Logit Model Estimation Results
(Dependent Variable: Binomial Outcome for Auto Type)

compact pickup
Base Lag Base lag
Weighted Ownership 3.78" 11.88*
-2 -1.65
Pop Density (people/sq mi) 0.00* 0.00* 0 0
(2.43) (1.79) (-0.23) (0.17)
MSRP/ Log Income 0.00 0.00 -0.02***  -0.02***
(0.48) (0.39) (-5.47) (-5.49)
Log Income -0.03 0 -2,79" -2.74™
(-0.11) (0.01) (-2.50) (-2.48)
Household Vehicles (0.08) (0.08) (0.69) (0.76)
(-0.36) (-0.35) (-1.21) (-1.28)
Household Size (people) 0.06 012 -0.19 -022
(0.36) (0.73) (-0.53) (-0.57)
Household Owned 0.19 028 0.55 0.71
(0.54) (0.78) (047) (0.58)
Licensed Drivers 0.05 0.05 0.55 0.36
(0.14) (0.14) (0.55) (0.36)
Median Yr House Built (Blkgmp) 0 0 0.02 0.02
(-0.36) (-0.06) (0.70)  (0.54)
Householder Female -0.62** -0.62** -1.01 -1.33
(-2.24) (-2.23) (-1.25) (-1.52)
Householder Age -0.01 -0.01 0 -0.02
(-1.05) (-0.76) (-0.08) (-0.36)
Latino HH 0.07 0.23 0.27 0.04
(0.11) -0.34 (0.19) (0.03)
Black HH -1.82 -1.67 - -
(-1.19) (-1.04) - -
Asian HH -0.33 -0.26 0.51 048
(-0.80) (-0.62) (0.25) (0.22)
Unemployed -0.03 -0.08 0.8 0.85
(-0.10) (-0.23) (0.79) (0.80)
All Wheel Drive 042 047 260" 3.04"
(0.59) -0.66 (2.10) (2.35)
Engine Size (inches cubed) -0.05*** -0.05***  0.09***  0.09***
(-4.75) (-4.74) (4.18) (4.09)
HP/ Weight T.73™ 81.068"™ <17027* 16854
(3.09) (3.22) (-3.08) (-2.79)
Fuel Efficiency (mi/gal) 0.31***  0.32***  -041*** -0.43**
(5.14) (5.32) (-3.20) (-3.18)
Constant 0.19 -7.95 15.43 24.19
(0.01) (-0.38) (0.26) (0.40)
Observations 721 721 713 713
Pseudo R-squared 0.488 0.494 0.860 0.866
AlC 403 401 98 97
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Figure 1: Pickup Truck Ownership in the SF Bay Area
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