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Irreversible Supply Functions: Concepts and Estimation 

Fixed asset theory in agricultural production has a long tradition in our 

profession (Johnson), and has led to the term irreversible supply functions. 

During the last decade or so there has been a growing interest in dynamic 

demand equations which also might exhibit irreversibilities. The primary 

means for statistically testing and modeling irreversible functions has been . 
that proposed by Wolffram and its modification by Houck. Ironically, this 

method evolved for purposes of supply response estimation (Tweeten and 

Quance), but appears to be appropriate for demand and not supply equations.I 

A fundamental problem with Wolffram's model for supply response is 

that changes in prices, in and of themselves, cause a permanent change in 

output. A sequence of price movements from an initial level with a return to 

that level, followed by no further price changes, will not ultimately lead to 

the same output as would have occurred if price had remained constant at the 

initial value. There is no long-run equilibrium associated with a given price 

level.2 Fixed asset theory in supply response would imply only short-run 

asymmetries to account for depreciation of capital stocks. Of course, 

technological change will permanently shift the long-run supply function, 

but this is a separate matter from price changes per se doing so. 

On the other hand, the habit formation hypothesis in demand theory 

would be compatible with Wolffram's model because a change in 

consumption associated with price changes could precipitate a char~.ge in 

tastes. Supposedly the consumer's history of consumption affects his tastes 

and preferences, thus the term habit formation. A period of relatively low 
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prices for a good could stimulate a permanent increase in the quantity desired 

at a given price, and vice versa. But the author sees no particular reason to 

expect asymmetry with respect to positive and negative changes in prices in 

general as in supply response. The case of drugs and narcotics is one small set 

of goods where irreversibility probably prevails.3 The stock-adjustment 

phenomenon in consumer behavior with respect to durable goods is 

essentially the same as for capital stocks in supp~y response. This paper 

focuses on the dynamics of supply response, but is applicable to the stock­

adjustment case of dynamic demand equations. 

The next section reviews the W olffram model of irreversible functions 

and interprets this model and Houck's modification in the context of how 

initial conditions are estimated for the dynamic process implied by the 

regression equations. The third section presents a distributed lag model for 

asymmetric responses which does have a well defined equilibrium for a 

given price level. Aggregate crop output in the United States is analyzed with 

this model and its symmetric counterpart for comparison. The fourth section 

is a general discussion of dynamic supply response in which it is argued that 

most apparent irreversibilities are a reflection of inadequate modeling of 

capital stocks and other latent state variables which underlie the production 

process. The paper closes with some concluding remarks on econometric 

specification and estimation of supply response relationships. 
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Wolffram's and Houck's Methods 

A basic weakness in Wolffram's argument to support his method, also 

in Houck's reformulation of it, was absence of a disturbance term in the 

equation used for analysis. Suppose the time series sample is comprised of n 

observations and the specification desired is such that increases and decreases 

in the explanatory variable x have different slopes in a linear relationship 

with the dependent variable y, and z denotes a second explanatory variable 

which enters the equation with an ordinary linear response. Following 

Houck except for addition of a disturbance term, u, the differenced form of 

such a regression equation can be written, 

(1) t = 2, 3, ... n, 

where~ is the difference operator such that ~Yt = Yt -yt-l' and ~+xt and ~-xt 

denote ~Xt when it is positive and negative, respectively, and zero otherwise; 

~1 , ~2, and y are unknown parameters. If ~ut had properties which made 

statistical estimation easy, there would be little more to discuss; (1) would be 

estimated as written. 

But ~Ut is likely to have a first order moving average component, and 

certainly will have if ut has the classic properties, or is autoregressive without 

a unit root. Therefore, interest lies in the integrated equivalent of (1) 

obtained by summing both sides from i=2 to n to get 

Transposing y1 to the right hand side and collecting terms gives 



4 

where X~ and x; denote the cumulative sums of ~+x and ~-x in (2). 

If ut has the classic properties, an obvious way to estimate (3) is by linear 

least squares and the constant term is an estimate of the initial condition 

expression, y1 - u1. Houck's analysis without a disturbance term led him to 

use y1 as an~ priori initial condition; then a disturbance is added for 

estimation purposes.· The intercept in (3) is y1- u1 = E(y1), where E(.) is the 

expectation operator. Therefore, Houck's approach uses y1 as an~ priori 

estimator of E(y1) by forcing the intercept to zero and defining the dependent 

variable as Yt -yl' t = 2, 3, ... n. 

Apparently Houck thought his method would give the same point 

estimates of parameters as Wolffram's: "This method is consistent with the 

Wolffram technique but is operationally clearer." (Houck, p. 570). This is not 

the case except for the example constructed by Wolffram, or others like it 

which are deterministic. Wolffram's method saves the first observation and 

could be implemented by assigning zero to each variable on the right hand 

side of (3) for the first observation with the others unchanged, and an 

intercept is estimated. Thus Wolffram's method could be represented by 

(4) Y1 =111 + ul 

(5) Yt = 111 + ~ix; + ~2X~ + )'(zt - z1) + ut, t = 2, 3, ... n, 

where the intercept 11 1 is y1 - u1 = E(y1). In an example like Wolffram's where 

the variance of ut is zero, the least squares estimate of 11 1 is simply y1 which 
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shows why Houck's method would give the same results as Wolffram's for 

the latter's example. 

As a practical matter, one would not expect much difference in the 

properties of these alternative estimators, but Wolffram's does use all the 

data to estimate 11 1, which would seem to be an advantage. An 

unrepresentative observation on Yl could produce poor estimates in a small 

sample using Houck's approach. Frequently the beginning of a time series 

sample is determined by assumptions about structural change and the risks of 

going back too far. Therefore, the first observation would tend to be an 

outlier more frequently than later ones. 

If data are available on the independent variables for the presample 

observation t = 0, a third estimation method would be to use (5) for · 

t = 1, 2, ... n, with 110 =Yo - u0 replacing 11 1 as the intercept. Note that Yo is not 

involved in the estimation of parameters because (4) is not used in the 

estimation. As a general statement, it would be preferable to estimate 110 

jointly with the other parameters instead of setting it equal to Yo using 

Houck's procedure, but there is not much to distinguish this third method 

from Wolffram's. Whether such considerations are of much importance in 

applications using small samples is an empirical question. 

Serious interpretation problems exist for empirically fitted equations of 

the type given in (3) because the irreversible aspect is very likely to measure 

an autonomous trend unaccounted for by the independent variable set. 

Suppose zt is a positively trended variable, or even a linear trend with 

positive slope, then the inequality ~1 > ~2 will allow the two signed variables 

in X to provide a rachet effect which mimics a positive trend. The end result 
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is likely to be a special case of multicollinearity but more subtle than usual to 

detect. Frequently, the 8:, priori basis for a trend variable is weak and it is used 

reluctantly to improve the specification, but in these circumstances, an 

estimated irreversible equation may appear to be appropriate when actually 

the response is symmetric and there is a missing variable from the equation. 

The asymmetric models analyzed in the next section are also vulnerable to 

this ambiguity of trends, but the problem would appear to be less acute 

because the specification forces a long run equilibrium response for a given 

level of price and this anchors the irreversible part. 

Asymmetric Models with Equilibria 

A serious deficiency noted for the Wolffram approach in modeling 

supply response is absence of an implied long run equilibrium for the 

dependent variable of the dynamic regression equation. This problem can be 

corrected by specifying a distributed lag on the signed price changes and 

introducing the level of price as a concommitant variable, where the 

dependent variable, quantity supplied, is also in levels. In general terms, 
00 00 

(6) qt= a+ 'L.,Pj~+Pt-j + L, Yj~-Pt-j + 0Pt-1 + ut, 
j=l j=l 

where ~+Pt-j and ~-Pt-j are defined the same way as ~+xt and ~-xt were in (1); 

while q and pare quantity and price, respectively. It is assumed that price last 

period is the nearest price in time to affect output. 

If we were to replace the two signed differenced variables in price by 

simply ~Pt-j in a single summation, it can be shown that the resulting 

equation, 
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00 

(7) qt= a+ I~/·Pt-j + 0Pt-1 + ut, 
j=1 

would be equivalent to the parameterization (see Burt 1989), 
00 

(8) qt= a+ LojPt-j + uu 
j=1 

i.e., a general distributed lag equation with symmetric response. The 

equilibrium for these three equations is obtained by taking price fixed at p*, 

which implies ~Pt-j = ~+Pt-j = ~-Pt-j = 0, j = 1, 2, .... Clearly the equilibrium for 

(6) and (7) is q* =a+ op*, in an expected value sense, and for (8) the 

coefficient on p,.. is 81 + 82 + ... which is assumed to be finite and must equal 8 

in (6) and (7). 

With this background, it is seen that (6) provides a general framework to 

model asymmetric response such that a long-run equilibrium exists for the 

expected value of the dependent variable.4 We can draw on all of the 

econometric literature for parsimonious parametrizations of the general 

linear distributed lag model in (8). One of the simplest is the geometric lag, 

which with extra terms added in the lagged independent variable, provides 

considerable flexibility. The symmetric model of (7) with a geometric lag 

imposed on the ~Pt-j is 

which can be shown to be equivalent to the parameterization 

where y1 = ~ + 8 and y2 = -~(1 - A,). 
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Clearly (10) allows a free parameter on Pt-l and a geometrically constrained 

lag on higher order lagged prices. Putting the geometric lag on ~Pt-j in (9) and 

including the term with Pt-l is therefore seen to give a specification with 

more flexibility than a regular geometric lag. 

The asymmetric analogue of (9) or (10) is 

(11) qt = Po+ P1 [ ~ +Pt-1 + A1~ +Pt-2 +Ai~ +Pt-3 + · · ·] 

+ Pz[ Kpt-1 + A2~-Pt-2 + A;~-Pt-3· · ·] + P3Pt-l + ut, 

where unknown parameters are p0, p1, p2, p3, Al' A2, and A1 and A2 are 

assumed to be less than one in absolute value, and most likely positive. This 

model imposes a separate geometric lag on each of the signed price change 

variables. 

If price is held constant for an extended period, the terms in square brackets 

approach zero. Therefore, equilibrium quantity for a given price at p,.. is 

It should be clear from the details of the above model that a better term than 

irreversible response would be short-run asymmetries in response, because 

the temporal process is reversible asymptotically. 

Expected restrictions on the parameters would be: P1 < 0, P2 < 0, P3 > 0, 

0 ~ A1, A2 < 1, and I P1 I ~ I P2 I. The short-run marginal effects of Pt-j are 

obscured in (11) because Pt-j appears twice in the equation, with each a 

positive and negative sign. When there is no change in signs on ~p between 

terms t-(j-1) and t-j, it is readily seen that 
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(13) 

where i=l if Apt-(j-l) and Apt-j are both positive, and i=2 for the comparable 

terms in Ap when both are negative. 

When there is a change in sign on Apt-(j-l) and Apt-j' the results can be 

deduced from the sequence, 

(14) 

i 
+ P1 Ai [Pt-(i+l) - Pt-(i+2)], 

where the signs of the bracketed terms are+,-,+ in the order they appear. 

From (14), it is seen that when the sign change from period t-(j-1) to t-j is 

positive to negative and negative to positive, the partial derivatives for i > 1 

are, respectively, 

(15) 
j-2 j-1 

aq/aPt-j =-Pi "-1 + P2 A 2 (sign+ to-) 

(16) 
j-2 j-1 . 

aq/aPt-i = -P2 A. 2 + P1 A. 1 (sign - to + ). 

Since Pt-l occurs once and only once among the variables A+Pt-j and 

A-Pt-j'j=l,2, ... , 

(17) a ;a = {P1 + P3 if Apt-1 > o 
qt Pt-1 A + A if Ap < 0 

tJ2 tJ3 t-1 

Both P1 and P2 being negative makes the one period response to an increment 

in Pt-l less than the long-run effect, p3. When the price changes between 

periods t-(j-1) and t-j are of the same sign, the marginal net effects of Pt-j 
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given by (13) are positive and smaller than the associated I Pt I or I P2 I, for 

rising and falling prices, respectively, since 0 < Ai < 1, i = 1, 2. When L1.pk 

changes from positive to negative between periods t-(j-1) and t-j, the 

marginal net effect of Pt-j shown in (15) is negative because At is smaller than 

A2, I Pt I ~ I P2 I, and Pi < 0, i = 1, 2. But when L1.pk changes from negative to 

positive between periods t-(j-1) and t-j, the marginal net effect of Pt-j given 

in (16) is not necessarily positive because of the exponents on At and A2. 

It is convenient to introduce the lag operator to discuss practical 

estimation procedures for (11). Let L be such an operator on the subscript of a 

time series variable Xt such that Lixt = xt . . If -J 

then lagging both sides of (18), multiplying by A, and subtracting the results 

from the respective sides of (18) yields 

because all the terms on the right hand side cancel except for Xt. Therefore, Zt 

can be written as 

(19) Zt = xtf (1-AL) 

if I A I < 1 so that the series in (18) converges. Using these results, (11) can be 

written as 

(20) qt = Po+ Ptl1 + Pt-t /(1-A1 L) + P2L1-pt_if (1-AzL) + P3Pt-t + Ut· 

Taking expectations of both sides of (20) and multiplying by 

(1 - At L)(l - A2L) gives 
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(21) (1-A.1 L)(l - A.2L)E(qt) = (1- A.1 L)(l - A.2L)~o + 

~1 (1- A.2L)8+Pt-l + ~2(1- A.1 L)8-pt-1 + ~3(1- A.1 L)(l - A.2L)Pt-1 · 

Adding the disturbance ut to both sides and rearranging terms yields 

(22) qt = (l-A.1)0 -A.2)~0 + ~1(8+Pt-1 + A.28+Pt-2) + ~2(8-Pt-1 + A.18-Pt-2) 

+ ~3 [Pt-1 - 0-1 + A.2)Pt-2 + A.1 A2Pt-3] 

+ <A.1 + .A.2)E(qt-1)-A.1A.2E(qt-2) + uu 

where we use qt= E(qt) + ut. Although E(qt_1) and E(qt_2) are unobservable, 

they are implicitly defined as a function of the right hand side variables 

lagged back to the beginning of the sample, the unknown parameters in (22), 

and two initial condition parameters, E(q0) and E(q_1). Details of estimation 

procedures for similar types of models are given in (Burt 1980), and in 

principle, this is a generalization of the transfer function model (Box and 

Jenkins; Harvey). 

The above model was applied to the aggregate output index for all crops 

in the United States over the period 1914-1951. This historical period was 

selected because it preceded the large government intervention programs 

after World War II which often included acreage controls on various crops 

jointly with subsidies and market price distortions. The symmetric model 

specification is almost the same as used in La France and Burt which is a 

modification of that first used by Griliches. The one exception is an extra free 

parameter required to apply the geometric lag to 8Pt-j in (9). The price 

variable is the ratio of the indices of prices received to prices paid for crops, 

and the equation also contains weather index and trend variables which enter 
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without any distributed lag response, i.e., they are just added terms in (20) like 

the level of price, Pt-l · 

Results for several estimated equations are reported in Table 1. The first 

equation is the symmetric model for comparison. In the second equation, the 
/\ /\ 

signs and relative ordering for A.1 and A.2 are met, but I p1 I > I P-i I which 

implies a greater first year response to a decrease in price than an increase, i.e., 
/\ /\ /\ /\ /\ 

P3 + P1 = (.241 - .196) < (.241 - .155) = p3 + p2. The third equation has P1 
/\ 

constrained to equal p2 so that first year response is the same for price 

increases and decreases. This would seem quite plausible in that short-run 

response is effected primarily through adjustment of variable inputs. The 

prices used here are for March in the calendar year of production. Since the 

adjusted R-squared is smaller in the second and third equations than in the 

first, we know that the extra parameters which allow for asymmetric response 

are insignificant at the usual test levels. 

The qualitative structure in the third equation is quite plausible. This 

can be seen by reviewing the implied lagged response structure of equations 

one and three. We convert the coefficients to weights which sum to one for 

easy comparison. For the symmetric model, the first five coefficients on 

lagged price <Pt-j' j=l, 2, ... 5) are: .295, .163, .125, .096, .074. For the asymmetric 

model, the same coefficients for rising and falling prices are respectively: .258, 

.169, .131, .101, .078 and .258, .059, .054, .050, .046. It is seen that the lag 

structure for rising prices is close to that for the symmetric model, but when 

prices are falling the lagged response is much more protracted. As a single 

measure of the asymmetry, the ratio (1 - A.2)/(1 - A.1) is quite informative, 

which in this case is .35. This is equal to the corresponding ratio of the 
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Table 1. Regression Equations for Aggregate Crop Output Response 
in the United States (1914-51) 

Equation 1 2 3 

Intercept -.008 -.005 -.006 
(.018) (.008) (.007) 

Weather Index .234 .223 .220 
(.045) (.048) (.047) 

Trend .00730 .00831 .00949 
(.00126) (.00566) (.00920) 

Price Level .217 .241 .279 
(.055) (.097) (.136) 

Price Increase (~1 ) -.196 -.207 
(.078) (.121) 

Lag Parameter (1,.1) .707 .772 
(.191) (.160) 

Price Decrease (~2) -.155 -.207 
(.099) (.121) 

Lag Parameter (/..2) .888 .921 
(.162) (.121) 

Price Change -.153 
(.055) 

Lag Parameter .769 
(.147) 

R.2 .862 .858 .861 

Standard Error Estimate .0316 .0321 .0318 

Durbin Watson 2.01 2.06 2.02 

Note: The numbers in parentheses are asymptotic standard errors and estimates of the 
initial condition parameters are not reported. 
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/\ /\ 

coefficients on Pt-2 in this application where ~ 1 = ~2 . The same ratio for 

higher order lags is increasing proportional to powers of A.2 /A.1, which can be 

seen by examining (13). 

The orthodox conclusion from the statistical results in Table 1 would be 

that the asymmetric model is not supported by the data because the 

hypothesis that ~1 = ~2 and A.1 = A.2 cannot be rejected at a reasonable level of 

significance. But on.the other hand if we strongly believe in the asymmetric 

model because of theoretical considerations, we might take the position that 

the data do not contain sufficient information on the question to provide a 

definitive answer. An informative set of data would allow us to estimate the 

more general asymmetric model with sufficient precision that the point 

estimates of A.1 and A.2 would be quite close to one another with respect to 

practical interpretation if the hypothesis A.1 = A.2 cannot be rejected. The 

results in Table 1 show estimates of A.1 and A.2 which imply much asymmetry, 

but the precision is very weak, and we would have to conclude that the 

general model encompassing asymmetry is an over-parameterization with 

respect to this data set. Nevertheless, we need to remind ourselves of the 

tenuous nature of any conclusions about the existence of asymmetries in 

supply response. 

At the close of the section on the Wolffram method, the problem of 

asymmetry being confounded with trended variables was noted. Although 

the problem is not obvious in the results of Table 1 except for relatively low 

precision in the trend and price variables, another specification where the 

years for two large residuals were dummied out of the estimation (1934 and 

1936) gave results in which the confounding was extreme. Apparently these 
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two observations provide a disproportionate amount of information on 

asymmetries in response, if they exist. 

One possible explanation for symmetry in response is that the stickiness 

in adjustments to increases in returns has been neglected by those enamored 

with asset fixity on the downside. Under the simultaneous conditions of 

output price uncertainty, limitations of capital goods suppliers to respond to 

sudden increases in demand, and possible labor shortages during a growth 

phase, the lags in response might be quite balanced between rising and falling 

returns. Uncertainty of future prices is especially important when long term 

financial commitments must be made to finance increased output. 

Dynamic Modeling of Supply Response 

A Conceptual Model 

Some fairly recent research on duality for a dynamic theory of the firm 

illustrates how measures of capital stocks and other quasi-fixed factors of 

production enter into product supply functions (Epstein, Taylor). Such a 

supply function jointly with a system of difference (or differential) equations 

describing the dynamic behavior of quasi-fixed factors constitutes a logically 

consistent model of dynamic supply response. Rather than pursuing a rather 

general analysis of the dynamics of supply couched within such a system of 

equations, a simple model with only one quasi-fixed factor is used to illustrate 

the primary aspects of apparent irreversibilities in supply response. 

Although price expectations are an important consideration in 

producer's behavior, a simplifying assumption is made that last year's price, 
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or a futures market contract price, is taken as expected price. Capital 

investments in agriculture tend to follow movements of output prices for the 

obvious reason that expansion usually requires more capital goods to 

maintain efficiency, but also because a progressive income tax makes the net 

cost to a farmer relatively less during a high income year and vice versa. The 

following linear equation for an aggregate measure of capital stocks is used to 

illustrate the way in which fixed asset theory enters the supply function, 

(23) Xt = A.xt-l + 'YPt-l +a, 

where x and pare capital stocks and expected output price, respectively. (The 

notation here is unrelated to previous sections.) Unknown parameters are A, 

y, and a, the first being associated with capital depreciation. An exponential 

decay relation is assumed to approximate annual depreciation at the rate (1 -

A,) which yields a survival proportion equal to A. The linear term in Pt-l 

measures the way new investment responds to product price; price of capital 

is suppressed in the intercept for simplicity (constant price of x). 

A simple equation to illustrate supply response is 

where qt is output and the Wil are unknown parameters. The last term in 

(24) reflects an interaction between price and capital stocks with respect to 

marginal effects of either variable on output response. Without this term, 

capital stocks would affect only the level of output and not the margin~! effect. 

of price movements on output. This latter relationship between marginal 
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response to price and capital stock levels is the essence of fixed asset theory as 

it relates to agricultural supply. 

Equations (23) and (24) together comprise a dynamic model of supply. A 

priori reasoning suggest 'A, y, ~1, and ~2 are positive; 'A must be less than one 

for stability; and fixed asset theory implies ~3 is negative. Taking the partial 

derivative of qt in (24) with respect to Pt-1 makes the latter assertion clear. 

(25) aqt/apt-1 = ~1 + <~2 + ~3Pt-1)(dx/aPt-1) '+ ~3xt 

= (~1 + ~2"() + ~3"fPt-1 + ~3Xr 

When xt is large and ~3 < 0, marginal response to price is relatively low and 

vice versa because of the last term in (25). This structure makes sense only if 

there are limiting factors to production, such as declining quality of 

agricultural land as expansion takes place or external diseconomies. It is 

shown below that the long-run response function associated with (23) and 

(24) is concave, and the concavity results from ~3 < 0. 

Since partial derivatives of analytic functions are the same in absolute 

value for either direction of the infinitesimal change, the relationship in (25) 

which takes xt as given is "reversible". But observation of a time series on 

prices and quantities will give the impression of an irreversible supply 

response to price. A sequence of price increases starting from a relatively low 

value of x will show large increases in output as capital stocks and output 

grow together since both of the linear terms in (24) will be increasing i.e., 

~lPt-l and ~2xt· As prices peak and begin to fall, net investments in capital 

stocks will go to zero and capital stocks will start falling with a lag behind the 

falling price of output because of the dynamic structure in (23). Capital stocks 
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their equilibrium state for any contemporaneous price as prices were rising, 

and there will be a rather flat time path for stocks as prices peak and turn 

downward, ultimately followed by declining stocks. In this period of 

transition, (25) indicates a relatively small marginal response of output to the 

recently experienced falling prices. But as capital stocks purchased during the 

boom depreciate to a low level, output will become more responsive to price 

changes in either direction. 

The phenomenon described above can be clarified by solving the 

difference equation for xt in (23) and substituting the results into (24). This 

gives an equation for output response to current and lagged prices, i.e., a 

distributed lag model. Solution of (23) by sequentially substituting the same 

equation for xt-l' xt_2, ... on the left hand side into the right hand side yields 

(26) xt = a/(1-A.) + y(pt-1 + "-Pt-2 + "-2Pt-3 + · · · ). 

The intercept was simplified by the properties of geometric progressions, 

1 +A.+ A,2 ... = 1/(1 -A.). Substitution of (26) into (24) yields 

Regrouping terms gives 

(27) qt = [~o + ~1a/(l-A.)] + [~1 + ~3 a/(l-A.)]pt-1 

+ ~2'Y(Pt-1 + "-Pt-2 + "'2Pt-3 + ... ) 

+ ~3'YPt-1 <Pt-1 + "-Pt-2 + "'2Pt-3 + ·· .), 

where primary interest is in the last group of terms which is a sequence of 

terms involving cross-products, Pt-l Pt-i' i = 2, 3, .... These are the results of 
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the interaction term, p3(pt-l xt) in (24). Recall p3 and y are assumed negative 

and positive respectively so that each of the lagged price, cross-product terms 

in (27) is negative. It is noted that the linear lag operator cannot be applied to 

the last term in (27). 

Taking the partial derivative of qt in (27) with respect to Pt-l yields 

where it is seen that the marginal response is dependent on a weighted sum 

of past prices, and the weights decline exponentially from one to a limit-value 

of zero. Therefore, marginal output response will tend to be relatively small 

when recent historical prices have been relatively large, and vice versa, which 

will give the appearance of supply irreversibilities for a typical time series 

pattern on output prices. 

If pis held fixed at some value, say p*, then x in (23) will approach a 

limit, x*. Likewise, if p and x in (24) are set equal top* and x*, the implied 

equilibrium for output, q*, is obtained. These long-run equations for capital 

stocks and output are 

(29) x* = (a+ yp)/(1-A.) 

(30) ~ = [Po+ P2 a(l-A.)] + [P1 + <P2y + P3a)/0-A.) ]P* + (p3y/(1-A.) ]P:. 

Quantity supplied in long-run equilibrium is a concave quadratic function of 

price. 

The main purpose of this simple model has been to illustrate how 

apparent irreversibilities arise in typical time series data, but the actual 
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phenomenon can be modeled with ordinary "reversible" functional 

relationships if the state variables describing the entire dynamic process are 

incorporated. One is then working with a system of dynamic equations, one 

for each state variable entering the supply function plus the supply equation 

itself. Provided that the dynamic system is stable, a long-run equilibrium will 

exist for price held constant into perpetuity. 

Although the correct approach is clear conceptually, many problems exist 

in practical modeling. Capital goods are extremely heterogeneous and too 

numerous to use without aggregation, but aggregate measures have obvious 

limitations. Geometric depreciation is often used for measures aggregated 

across firms and separate capital items, but is at best an approximation. 

Technological change results in the quality of capital inputs changing over 

time so that even a disaggregated capital stock variable becomes ambiguous. 

Then frequently all the above difficulties are moot because data are not 

available anyhow, or at least not in a form needed and with sufficient 

accuracy to be useful. Consequently, research workers usually try to model 

supply response without jointly modeling the behavior of capital stocks. 

Empirical Models 

The simple model defined by (23) and (24) was reduced to a single 

distributed lag equation, (27), expressing quantity supplied as a function of 

lagged output prices, which avoids estimation of a capital stock equation 

explicitly. The depreciation parameter A. is identified, but other individual 

parameters from (23) and (24) are not. Nevertheless, a long-run supply 

equation is identified from estimates of the composite coefficients in (27), i.e., 
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the parameters in (30). A short-run relationship from estimates in (27) would 

have to be interpreted as a reduced form of sorts where capital stocks are 

tacitly embedded in the lag structure on output price. 

Since (27) is conditionally linear for a given value of A., least squares 

estimates could be computed by a sequence of linear regressions and a search 

over 0 < A.< 1. The infinite series in weighted lagged prices can be truncated 

at the last sample observation and the presample part replaced with an 

unknown pararneter.5 Letting <l>o denote the presample series, 

where it is seen that the parameter <l>o enters linearly for given A.. Nonlinear 

least squares could also be used for estimation, but use of analytical 

derivatives with respect to the parameters is tedious. The better algorithms 

using numerical approximations for derivatives are another possibility. 

The structure in (27) reflects nonadditivity in the lagged response to 

prices, which is an essential characteristic to deal with fixed asset theory in 

supply response. A large family of models exhibiting nonadditive lags is 

provided by nonlinear difference equations in the dependent variable of the 

regression. In order to avoid confounding the disturbance term with the 

dynamic response, it is better to specify these as "nonstochastic" difference 

equations. For example, a simple model similar to (24) written as a statistical 

equation is 
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where ut is a disturbance term and E(qt) =qt - ut. Taking expectations of both 

sides of (31) yields a nonstochastic difference equation as the mean for the 

regression, while a more common model with qt-l on the right hand side 

would have a mean conditional on qt-l · (See LaFrance and Burt for 

application of an additive version of (31), i.e., 8 = 0, to aggregate U.S. farm 

supply.) 

One could interpret (31) as an approximation to (24) where xt is replaced . 
by E(qt_1). Since prices tend to show a persistence in their level over time 

(positively autocorrelated) this smooth path would tend to make E(qt_1) a 

sensible index for aggregate capital stocks. A natural generalization of (31) is 

to use higher order polynomial terms in the two variables, Pt-l and E(qt_1), 

but one may encounter parameter estimates which give implausible long-run 

supply functions. The author has obtained some promising preliminary 

results for U.S. aggregate farm supply using a functional form which is the 

product of a convex function in Pt-l (with an asymptote) and a quadratic in 

E(qt_1). The implied long-run supply equation is a sigmoid curve with an 

asymptote for maximum production. However, the statistical precision 

leaves much to be desired, somewhat like the empirical results reported 

earlier for the asymmetric model of U.S. crop supply. 

Concluding Remarks 

The importance of either directly, or indirectly, introducing nonadditive 

distributed lag response into empirical supply functions should not be 

exaggerated, but the allowance for purely additive dynamic response in a 

rather general way can hardly be overemphasized. The smoothness of 
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economic time series frequently allows good approximations to dynamic 

response without generalizing to nonadditive lags. This does not mean that 

the "true" response is strictly additive, but within the limitations of the 

implicit experimental design imposed by the smooth time series data, often 

only an additive approximation is operational. In the context of dynamics, 

additivity is analogous to linearity in static models where we readily accept 

linearity, within the family of monotonic transformations, as about the limit 

in complexity which our economic data can support statistically. 

In some applications, like milk supply response where a primary state 

variable is the dairy herd, it is feasible to model the dynamic structure of the 

state variable jointly with the commodity supply equation (see Lafrance and 

De Gorter for a study of the U.S. dairy industry). On the other hand, it is 

likely to be infeasible to model the dynamic adjustments in capital stocks and 

quasi-fixed labor in estimating an aggregate supply function for U.S. 

agriculture. Labor adjustments are too dependent on transitory factors of the 

economy which are not stationary enough for parameter estimation, and the 

basic measurement problems in data on capital stocks probably cancel out the 

disadvantages of going to a reduced form supply function. It would appear 

that an allowance for nonadditivity is more important as the level of 

aggregation increases because of less flexibility in the usage of capital items. 

Crops which tend to be grown in rotations for disease, insect, and weed 

control, such as corn and soybeans in the corn belt, are less apt to require a 

nonadditive lag specification than crops requiring specialized equipment in 

monoculture production, e.g., wheat in some parts of the Great Plains. 
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The profession's infatuation with static duality theory as a basis for 

empirical modelling of supply response is most unfortunate because no 

attempt is made to identify a dynamic structure which approximates short­

run adjustments in time series data. Taylor's recent results for stochastic, 

dynamic duality suggest that a primal approach is likely to be the more 

fruitful in modeling time series data because one would be less inclined to 

choose a rigidly parameterized model which encompasses a very narrow 

family of hypotheses. In the author's opinion, our economic theory of the 

firm with presumption of super-rationality under optimization, contrasted 

with the nature of the data on which an econometric model is based, makes it 

questionable to let the theory dictate the model except in a rather general way. 

The data are aggregates of heterogeneous resources: capital is a mix of many 

separate items of different vintages and ages; labor and management reflect 

all the diversity of the human species; land combined with natural climate is 

equally heterogeneous and the amount of land of a given quality is fixed. 

If the implication of this assessment of the setting in which supply 

functions are estimated is that the estimation process must be relatively more 

empirical than many recent studies would suggest, so be it. That is not to say 

theory has no place in specification of dynamic supply response; it is a matter 

of relative weight and how presumptuous the analyst should be in the 

amount of detail economic theory can provide about the structure of 

aggregate time series data. As applied economists, we were told by the experts 

for a decade or two that economic data are so weak that theory must be used 

to determine the structure within a tightly specified model with very few 

parameters. Then during the last decade we have been told by the time series 



25 

enthusiasts that many of our devices to achieve the closely structured and 

identified models border on being ludicrous with respect to the detailed 

knowledge assumed. The most fruitful approach would appear to be a 

compromise between these two extreme viewpoints by letting the data largely 

determine details of the dynamic structure, but using economic theory to 

impose constraints on the equilibrium behavior of the dynamic system, as 

well as providing as much other information (but possibly misinformation) 

as would appear prudent within the context of a particular application.6 

Certainly, economic theory would always be used to provide candidates for 

explanatory variables in a regression equation. 

no 11/14/89 OB-7.0 
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Footnotes 

lThis type of irreversible regression equation has also found application in 

the analysis of price margins in the agricultural processing sector (Kinnucan 

and Forker). An application in macroeconomics which preceded Wolffram 

was Thurow's study of unemployment dynamics. 

2 Traill, Colemen, and Young argued that the long-run response should be 

reversible although the short-run response might exhibit irreversibilities. 

Their discussion was in the context of appropriate distributed lag models, but 

they did not seem to be concerned about the ambiguity of an equilibrium state 

for a fixed price level. Their modification of the Wolffram technique has 

special problems of its own (see LaFrance and Burt). 

3 One would expect a rather complex relationship between income and price 

response with habit formation. A period of increased consumption caused by 

greater income would alter behavior with respect to prices, which implies an 

interaction between lagged income and current price response of the 

consumer. There is also the influence on consumption·of prices of related 

goods; see Young for a study of these issues and an application to coffee 

demand. 

4This form of irreversible model could be used in marketing margin studies 

by measuring prices and costs in deflated instead of nominal dollars, thus 

providing the opportunity to impose more structure, viz., a unique steady­

state for any given level of price regardless of transient changes in prices. 
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5 This innovation was first used by Klein and can be found in many text books 

under the discussion of geometric lags or more general rational lags (Theil, 

Kmenta). 

6 The author's position here has been heavily influenced by the applied 

research philosophy of David Hendry (see Hendry, Hendry and Richard, and 

Hendry and Wallis). 
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