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I 

Both the dynamic and stochastic aspects of economic life are increasingly 
being recognized and incorporated in current analytics. In this paper we 
examine these aspects in production models, with the aim of achieving the 
following goals: (i) Unifying the various existing efforts into one more 
general analytic framework; (ii) Evaluating the tractability of the two 
dominant functional forms in the presence of dynamics and uncertainty; 
(iii) Exhaustively analyzing the estimation issues of the general form in 
stochastic multiperiod and multistage problems with observable and 
unobservable intermediate outputs; (iv) Determining the conditions under 
which production function and factor demand estimation is separable, i.e., 
when knowledge of the production process is not required for efficient factor 
demand estimation, and vice-versa; (v) Examining the existence of analytic 
factor demands in the general dynamic stochastic model; and finally, 
(vi) Providing alternative conditions that lead to an assortment of 
tractable, estimable models for empirical use. 

We are encouraged by the conclusion that, subject to avoiding certain 
pitfalls, the general production model can be extended to include both 
multiple periods and uncertainty, with increased empirical relevance. 
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FORMULATING AND ESTIMATING DYNAMIC STOCHASTIC PRODUCTION MODELS 

The aim of this paper is to develop the general econometric structures 

and to identify appropriate estimators for dynamic production models. This 

research is motivated by the growing recognition that production is typically 

a dynamic, time-dependent phenomenon and that dynamic technological relations 

have important theoretical and empirical implications (Hansen and Sargent 

1980, Kydland and Prescott 1982, Long and Plosser 1983, Antle 1983a, 1983b). 

Surprisingly, the production function estimation literature has largely 

ignored dynamic production relations, despite innovations in other areas such 

as risk and duality. In contrast, dynamic factor demand models have a long 

tradition, originating with the Nerlovian partial adjustment model and 

culminating in recent cost of adjustment models explicity incorporating the 

firm's optimization problem (see Berndt, Morrison, and Watkins 1981). 

Our approach to formulating dynamic production models is based on the 

observation that the fundamental dynamic structures of production processes 

are due to basic technological "facts of life," such as the time required to 

make physical capital investment, the biological processes in agricultural 

production which give rise to crop rotations, and so forth. We begin with 

general representations of the production processes which encompass these 

fundamental dynamic technological relations. Following Antle (1983b), we 

model the firm's input choice problem as a discrete time stochastic control 

problem. Two general sources of production dynamics are identified, input 

dynamics and output dynamics. The former results in models in moving average 

form, while the latter leads to autoregressive models. These two fundamental 

dynamic structures imply that, generally, both the production functions and 

the input demand functions are dynamic, recursive equation systems. Thus our 

analysis shows that the structural equations of dynamic production models 
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necessarily consist of both production functions and input demand functions, 

in contrast to the literature which treats production function estimation and 

dynamic factor demand equation estimation as distinct problems. Analysis of 

the statistical properties of these models shows that, depending on the 

dynamic structure and observability of the model being considered, either 

single equation estimation, seemingly unrelated equations estimation, or 

simultaneous equations estimation is appropriate. 

Our approach to formulating dynamic production models recognizes 

production as both a dynamic and stochastic phenomenon, and thus generalizes 

static econometric production function models and deterministic cost of 

adjustment models. The approach also permits a broader class of dynamic 

phenomena to generate production dynamics than the cost of adjustment model. 

Explicitly modeling the production problem as stochastic also gives insights 

into the questions of error specification and functional form, two issues of 

major concern in the static production literature not yet investigated in a 

dynamic framework. We show that the quadratic model which has been used in 

the cost of adjustment literature is not tractable for a broad class of 

dynamic phenomena. We also show that, remarkably, the dynamic Cobb-Douglas 

production model, even though nonlinear, is tractable in the stochastic 

control framework. Moreover, the Cobb-Douglas model can be used to represent 

a much broader class of dynamic phenomena than the quadratic model. 

Modeling production as a stochastic phenomenon brings a number of issues 

to empirical research which do not arise in deterministic models. One major 

difficulty is that the conventional duality relations between production, 

cost, and profit functions generally do not hold. This is a major 

justification for our "primal" approach to formulating and estimating dynamic 
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production models. TI-le stochastic properties of dynamic production processes 

simply cannot be represented by dual functions because the maximization 

problem under uncertainty is defined over an expected value taken with respect 

to the random variables in the model. nierefore, the dual functions of this 

expected value are nonstochastic functions of the parameters of the 

distributions of the random variables in the firm's objective function. 

Hence, the duals cannot be used to represent the stochastic structure of the 

production process. 

The paper begins with examples from the literature illustrating some 

properties of the DPM. The second section characterizes the general structure 

of the DPM. The third section discusses functional forms including the 

properties of the quadratic and Cobb-Douglas DPM. The next section discusses 

general estimation considerations and the appropriate methods for important 

special cases of the DPM, followed by the conclusion. 

1. Examples of Dynamic Production Models 

Before providing a general structure for dynamic production models (DPM) 

it is useful to review five examples from the literature which illustrate how 

dynamic relations enter production processes. These seemingly disparate cases 

will prove to be useful referents during our development of the general DPM. 

1.1 Cost of Adjustment Model 

Hansen and Sargent (1980) developed a discrete-time cost of adjustment 

model. Here we provide a modified version of their model. The firm's net 

returns in period t are 

where Pt• wt and rt are prices of output Ot, labor input nt and capital kt, 
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and ~ is the first difference operator. The production technology is 

quadratic, 

(2) 

where Et is a shock to technology, a, e ) 0; Y1, Y2 ( 0; and lY1Y2 - 1;) ( 0. 

These conditions ensure that the technology is concave. The expression in 

parentheses represents costs of adjustment in terms of the effects of input 

changes on output. 

The firm's objective function at time 0 is 

CD 

(3) max Eo l: ot'T!t• 
{nt,kt} t•O 

Since 'Tit is quadratic in nt and kt, the resulting factor demand equations are 

linear. For our purposes, several features of this formulation are notable. 

First, the only nonlinearities in the model are introduced through the 

quadratic adjustment cost technology. Second, dynamics are generated through 

lagged inputs in the production function. Lagged outputs play no role in the 

model. 

1.2 Time to Build 

Kydland and Prescott (1982) propose an aggregate production technology 

without adjustment costs but with a "time to build" requirement for investment 

projects. The production function is 

(4) 

where Ot, nt, kt, and Et are as defined above and Yt is inventories at time t. 

Dynamics are introduced by assuming J time periods are required to build new 

capital. Define Sjt as the number of projects j periods from completion, 
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j•l, ••• , J-1. nten sit is the actual addition to the capital stock int, 

and capital evolves according to 

Due to the time to build assumption, sit represents the completed investment 

projects initiated at time t-J. Combining (5) and (4) shows that the time to 

build assumption induces a lag structure on the investment inputs sjt in the 

production technology. 

1.3 Multiple-Use Commodity Model 

Long and Plosser (1983) use a simple dynamic Cobb-Douglas technology to 

model real business cycles. In the model outputs are either consumed in 

period t or are combined with labor in period t to produce period t+l output. 

The model is 

(6) 01,t+l -
N aij 
lI X E it j=l ij t 

where the 1th output in t+l, Oi,t+l' is a function of labor nit and commodity 

inputs Xijt• If we let Pijt be the proportion of commodity j used to produce 

commodity i in period t, then 

bi N aij 
0i,t+l - nit n lPijtQit) Eit j•l 

bi N bj N ajk aij 
• n n lPijtnjt-1 n Xjkt-lEjt-1) it j=l k•l 

and so forth. This model is different from those above in one very important 

respect: dynamics enter production through lagged outputs. Oi•t+l is 

therefore a function of past inputs and past production shocks Eit• The 
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implicit presence of past production shocks in (6) marks a fundamental 

difference from examples 1.1 and 1.2. 

1.4 Production Stages and Sequential Decision Making 

Antle (1983b) uses a multistage Cobb-Douglas production model to 

investigate the implications of sequential decision making for production 

function estimation. The simple two-stage crop production model is com.posed 

of first and second stage production functions 

(7) 

where i indexes the observation, Ai is acreage planted in the crop, nil is 

planting and cultivation labor input in the first stage, Eil is a random 

shock, and the unharvested crop is Oil; ni2 is harvest labor and £i2 a random 

shock, giving harvested output Oi2• As in example 1.3, this model generates 

dynamics because outputs are interrelated over time. Substituting Oil into 

Qi2 shows that oi2 depends on both lagged inputs and production shocks. 

1.5 Technological Change and Learning by Doing 

Arrow (1961) postulated that a firm's rate of productivity growth using 

technological innovations is a function of its learning about efficient use 

of the new technology. He hypothesized that learning could be measured in 

terms of cumulative output produced with the new technology, so define 

learning as 
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where the new technology is adopted at t 0 • Then the production function is 

assumed to depend on Lt 

and hence, Ot implicity depends on past outputs. Feder and O'Mara (1982) have 

shown that a Bayesian learning model implies that technological adoption is a 

function of cumulative past adoption, which may be equivalent to cumulative 

output as hypothesized by Arrow. 

2. The General Structure of Dynamic Production Models 

In all of the above examples, dynamic relations enter production 

processes in two ways. A process with input dynamics is of the moving average 

(MA) form 

where Otis (observable) output in period t, xt-j is the input chosen in t-j, 

and Et is the random shock to production in period t realized after xt is 

chosen; ft is a production function satisfying standard regularity conditions. 

Examples 1.1 and 1.2 are special cases of input dynamics. In contrast, a 

process with output dynamics is of the autoregressive (AR) form 

where ft is regular with respect to xt and the Ot-j• Examples 1.3, 1.4, and 

1.5 are special cases of (9). Repeated substitutions show that (9) can be 

expressed as 
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. . , 
(10) 

• ht l xt ' xt - 1 ' • • • ' e: t ' e: t- 1 ' • • • ] • 

Both (8) and (10) show Ot as a function of past xt's, but (10) also depends on 

past Et's. This difference has important consequences for formulating and 

estimating the DPM. 

2.1 Multistage Versus Multiperiod 

Dynamic production may involve two types of decision problems classified 

by the timing of output sales. In the case of a multistage production 

process, a sequence of inputs is applied over time to a sequence of 

intermediate production stages which produce only intermediate products, not 

saleable final output. (To be distinguished from single stage production, 

multistage processes must exhibit output dynamics, although they may have both 

input and output dynamics.) The multistage criterion is 

(11) 

where ct is a discount factor, wt is the unit input cost, and PT is the price 

of final output Qor, and there are T production stages. 

The other type of decision problem corresponds to the case in which 

inputs are chosen to produce output that is sold in each period. With this 

multiperiod decision problem, the objective is to 

T 
(12) E[ ~ 0 tlPt0t - wtxt)]. 

t•l 

Note that multiperiod problems may involve either input dynamics or output 

dynamics or both. 
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2.2 General Solution 

The general solution to DPM's is given by the dynamic programming 

as the parameter vector of the decision maker's subjective joint probability 

distribution function of Pt• ••• , Pr• wt+l• ••• , wT, and Qt, ••• , Or• 

conditioned on information available at time t. Then the (optimal) factor 

demands implied by the multiperiod decision problem (12) are 

* *l t-1 t-1 ] (13) xt • xt x , Q , µt, wt t•l, ••• ,T. 

showing that the input decision in t depends on the price of Xt which is known 

at time t, past inputs and outputs, and the subjective expectations of future 

outputs and prices. Note that at the beginning of the tth production period, 

the output Ot and output price Pt are unknown. The solution of the multistage 

problem (11) is analogously obtained by redefining µt to include only period T 

output price and future input prices. Thus, the DPM generally is composed of 

a recursive system of production functions and input demand equations. 

The assumptions made about the information set used by the decision maker 

to solve dynamic optimization problems have important effects on the 

properties of the resulting structural model. Antle (1983b) shows that there 

are important differences between the open loop solution, which implies the 

decision maker does not sequentially update the information set, and solutions 

such as open loop feedback and closed loop which do imply the information set 

is sequentially updated. We can expect decision makers to use feedback 

solutions when feasible. In terms of equation (13), the open loop solution 

would have EilOt-j] in place of Ot-j• where E1 denotes the expectation 

operator conditioned on the information available at the beginning of 
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period 1. Below, we show that the dependence of input decisions on past 

output has important consequences for econometric properties of the DPM. 

Note, however, that this difference appears only in models with output 

dynamics. 

The T input demands (13) are the result of the individual optimization of 

expected profits [either (11) or (12)], and thus are not stochastic at the 

level of the decision maker; with appropriate (individual) data these 

functions would fit exactly. Frequently, however, the observer/econometrician 

does not have access to data this specific, so that there are individual 

factors observed by the decision maker but unknown to the observer that can be 

meaningfully represented as random disturbances--in many cases the Central 

Limit Theorem would suggest normality. [For example, Hansen and 

Sargent (1980) use this information-based argument.] In the following 

discussion we sometimes assume the existence of this observer/decision maker 

dichotomy, writing the input demand equations with random error terms. 

3. Functional Forms for the DPM 

Control theorists have long known that closed form solutions to the 

general nonlinear optimal stochastic control problem do not exist (Aoki 1967). 

This problem arises for two reasons. First, the fully optimal closed loop 

solution must account for the fact that decision makers know they will 

sequentially update their information sets and decisions. This "closing" of 

the information loop requires specification of the updating rules for the 

joint probability distribution functions in each time period, a problem that 

is tractable only for certain distribution functions. One simplification is 

to approximate the control solution by the open loop feedback solution, thus 
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preserving the sequential updating of the information set. ntis solution is 

obtained by applying the open loop solution in each period conditional on the 

information available at that time; the possibility of future updating is 

ignored.I Thus, the open loop feedback solution implies decision makers use 

currently available inf onnation but ignore the fact that they will be able to 

revise their information set in the future. We use the open loop feedback 

solution in our following discussions of the DPM. 

The second difficulty in solving control problems is that they generally 

are highly nonlinear systems of equations that do not admit analytical 

solutions. ntis has led researchers to resort to the quadratic control model, 

which is tractable. The quadratic production function also has the desirable 

property of self-duality, but is restrictive in other respects, e.g., it gives 

linear input demand functions which imply unusual demand elasticity behavior. 

Another major limitation of the quadratic is that it is parameter-intensive. 

This is not a serious limitation in highly aggregated models with few inputs, 

but is a very serious problem when micro data with many inputs is used. In 

this section, we first consider other restrictive properties of the quadratic 

DPM and then discuss the properties of the Cobb-Douglas DPM. 

3.1 Quadratic 

A simple example is sufficient to illustrate the properties of the 

quadratic production function which are important to dynamic models. Let 

lThe standard linear-quadratic-gaussian equivalence between deterministic 
closed loop solutions and open loop with feedback solutions (see Norman) can 
be utilized when the model exhibits only input dynamics, as in the Hansen and 
Sargent model (example 1.1). More generally, this result will not apply with 
output dynamics since the production is not usually linear in Q. (Even in the 
Cobb-Douglas case analyzed below, Q enters the criterion while the logarithm 
of Q appears in the constraint.) 
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(14) 

which is a production function with output dynamics. Ot is quadratic in xt 

and Ot-l• but recursive substitution shows that it is not quadratic in 

Xt-1• xt-2• •••• Rather, it is a higher degree polynomial in the inputs 

beyond the first period. Moreover, (14) implies that the distribution of Ot 

is evolving over time as a higher degree polynomial in Et, Et-l• • • • • This 

means that the distribution of Ot evolves as a complex nonlinear convolution 

of the error distributions. The only conditions under which (14) is quadratic 

in all inputs and linear in Et, Et-1• ••• is when Otis linear in past 

outputs, i.e., when a4 = a5 = 0 for all t in (14). This amounts to imposing 

additive separability across each period's inputs and past outputs. 

Replacing Ot-1 with xt-l in (14) shows input dynamics are generally 

admissible with quadratic production functions. Therefore, we can conclude 

that only processes with input dynamics alone can be used to construct a 

control model in which profit is a quadratic function of inputs and the output 

distribution evolves in a tractable form. 

3.2 Cobb-Douglas 

Since output dynamics characterize many production processes (see the 

examples above), a tractable alternative to the quadratic functional form is 

desirable. We shall find that a dynamic Cobb-Douglas production function, 

though nonlinear and nonquadratic, admits a closed form solution which is a 

loglinear analog of the well known static Cobb-Douglas model. Thus it 

provides a dynamic linear equation system for estimation. Although the 

Cobb-Douglas model restricts elasticities of substitution to unity, it has the 

attractive properties of constant demand elasticities, self duality, and 
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parameter parsimony, making it an attractive alternative to the quadratic 

for applied research, especially when micro data are used. 

To illustrate, define the production functions as 

(15) 'Yl • 0, t • 1, 2, ••• , T. 

Assume ~t is N(O, o~) and that input and output prices are independently 

distributed. For simplicity (without loss), we also do not update with 

respect to prices, e.g., EtPt+j • Pt+j for all t, j > O. Consider the 

multistage problem (i.e., only terminal output is sold) given in (11). In the 

Tth period, the firm solves the decision problem 

T 
max Er [crPrOr - E otwtxtlxT-1, oT-1]. 

t==l 

The Cobb-Douglas model has the optimal solution (see Antle 1983b) 

* 1 ln x_ • -
1
--

T - Sr 

(16) 

In period T-1 the decision problem is 

max 
xr-1 

The first-order condition for Xr-1 is 
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a~-l [OT Ix 
T-2 T-2 * • 0 • x - xT] 

0TPT 
T 

- 0T-lwT-l oxT-1 

a ET 1 (w x Ix t-2 T-2 * • 0 • XT - x ] 
- 0 

- t t T .. 0 
T oxT-1 

Using (15) and (16), and simplifying, we obtain 

* ln xT-1 s ~0,T-1 + ~l,T-1 ln OT-2 
WT 1 WT 

+ 11T-l,T-l ln(-::=-) + nT,T-1 ln(-) 
PT PT 

with the ~'sand n's defined as the implied combinations of individual stage 

production function parameters. Further application of the dynamic algorithm 

using the open loop feedback solution shows the general solution in t is 

* ln xt = ~Ot + ~lt ln Ot-1 

(17) 

+ • • • + 11 Tt 
WT 

ln(-), 
PT 

t • 1, 2, ••• , T, 

where the forward relative price terms (wt/PT, t•l, 2, ••• , T) are unrevised 

(in this case) forecasts based on the parameter vector Vt• Combining (15) in 

logarithmic form with the system (17) results in a recursive system of 

loglinear equations. An analogus result holds in the multiperiod problem. 

It is an open question whether or not other nonlinear models also have 

closed form solutions. We speculate that there may well exist a more general 

class of functions that do. The important Cobb-Douglas case shows that the 

quadratic model is not the only functional form commonly used in production 

analysis with an analytical solution. 
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4. Estimating Dynamic Production Models 

Research objectives, data availability, and data aggregation all play 

important roles in guiding the researcher in model formulation. While many 

hypotheses of interest require estimates of both the production function 

parameters and the input demand equation parameters, only one or the other 

parameter set may be directly involved in hypothesis tests. For example, the 

research objective may be to test the productivity effects of some exogenous 

variable, requiring estimates only of the production function parameters and 

not estimates of the factor demand functions. Similarly, alternative 

hypotheses may directly involve only the parameters of the factor demands. 

Under some conditions, these parameter sets can be separately estimated, while 

in other cases both the production function and input demand system must be 

jointly specified and estimated due to indirect requirements stemming from the 

unique nature of the problem. In this section, we investigate a number of 

special cases of the DPM and show how the appropriate econometric procedures 

depend both on the formulation of the model and the research objectives. 

Some general properties of DPM's can be identified which are important 

to estimation. First, as shown in section 2 above, DPM's generally are 

composed of a recursive system of production function and input demand 

functions, i.e., there is no feedback from dependent variables to regressors. 

It follows that DPM's are not, and cannot be, true simultaneous equations 

systems with jointly dependent endogenous variables. 111.is fundamental 

property has important implications for estimation. 

Second, at least at the decision maker level (although perhaps not to the 

observing econometrician), since the input demand functions are the solutions 

to an optimization problem they are exact, nonstochastic equations, as in 

(13). 111.is is especially important when the research objectives require 
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estimation of the production function only, because it implies that the system 

of input demand functions may not be required for consistent and efficient 

estimation. 

A third and related point concerns the use of duality. In a 

deterministic model, it is well known from duality that knowledge of the 

production function parameters is sufficient to infer the cost or profit 

function, and hence, input demand equations. However, under uncertainty 

this duality result does not follow. Equation (13) shows that with 

uncertainty the input demand functions depend on the parameters of future 

prices and output distributions. Therefore, estimation of the production 

functions generally is not adequate to identify the input demand functions. 

Fourth, because the firm's decision problem is modeled as a stochastic 

control problem, there may not be an analytical solution for the input demand 

equations. Therefore, the issue of whether or not the input demand functions 

need be estimated is again important. It is unnecessary to solve the control 

problem to derive the input demand equations if the research objectives 

require only production function estimates and these estimates can be obtained 

separately. When the input demand functions are required, either to test 

hypotheses or, in some cases, to obtain parameter estimates of the production 

function with desirable properties, models without analytical solutions pose a 

special estimation problem that cannot be solved using conventional 

econometric procedures. The Generalized Method of Moments (GMM) procedure 

devised by Hansen (1982) can be adapted to estimate the parameters of a 

dynamic model using the first order conditions ("stochastic Euler equations") 

of the model, as in Hansen and Singleton (1983). Another approach, suggested 

by Fair and Taylor (1983), uses a numerical solution to the control problem in 

conjunction with maximum likelihood estimation. 
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A fifth issue concerns the type of data used and the level of 

aggregation. Using firm-level data, multistage models are often appropriate, 

as the examples of section 1 show. However, it is uncommon to have data on 

intermediate products, raising the problem of identification and estimation of 

multistage models with only final output observed by the econometrician. 

Aggregate production relations, on the other hand, need not satisfy the 

structure of a firm's optimization problem, even though this assumption is 

often used in the literature to derive aggregate structural models. 

Nevertheless, the structure of firm-level production systems can be used to 

deduce the statistical properties of aggregate variables. 

When the various dimensions of the DPM are considered, we obtain a 

general classification of models according to the headings of Table 1. The 

research objective may involve estimating production functions or input 

demands; the objective function may be multiperiod or multistage; and the 

production process may exhibit input dynamics or output dynamics (it will 

become apparent that estimators valid for output dynamics also are valid for 

combined input and output dynamics); intermediate outputs may not be observed; 

the model may have across-equation restrictions or correlated errors; and the 

model may or may not have an analytical solution. Table 1 summarizes the 

results of this variety of combinations. In the sections below we consider 

estimation of production functions or input demands for three major cases: 

models with (i) input dynamics; (ii) output dynamics and observable 

intermediate products; (iii) output dynamics with unobservable intermediate 

products. The discussion first assumes firm-level data in the form of pooled 

time series of cross-sections of observations (in which the time-dated 

variable is a vector of cross-sectional observations), with specializations to 

unpooled cases where appropriate. 
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4.1 Input Dynamics 

4.1.l Production function estimation 

Consider a model in the form of equation (1), incorporating only input 

dynamics with output observable every period, i.e., 

0} • f1(xl, XO• EJ) 

02 g f2(x2, xl, xo, E2) 
(18) 

These input dynamics are in a "growing" moving average form in which the 

production function in period t is an MA(t), as would be appropriate when, 

e.g., xt's represent investments in new technology begun at t•O and continuing 

over time. Input dynamics might also take the form of a moving average of 

fixed order in each period, as might be appropriate for an aggregate 

production model. Observe that all inputs are predetermined relative to the 

corresponding output in each production function in (18). Tilerefore, the 

production functions can be directly estimated as a system of equations 

without estimating the input demand equations. If there are restrictions 

across equations (e.g., f 1 • f2 • ••• • fT) or correlated errors, there are 

efficiency gains from pooling. Otherwise, with multiple cross-sections, each 

production function can be estimated separately, or, if the functions are 

identical or their differences can be parameterized, time series observations 

alone are sufficient. It is perhaps worth noting that the frequency of 

observation of the inputs need not match the output frequency, or even each 

other when there are multiple inputs; each input in each time period is 

logically a different input (the model may be thought of as being in 

state-space form), so there is no missing observation problem. 
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The case of input dynamics is the dynamic analogue of the Zellner, 

Kmenta, Dreze (1966) estimation procedure for static models. Since the input 

demand equations are unnecesssary for production function estimation, any 

linear or nonlinear functional form may be used with an appropriate linear or 

nonlinear estimator. 

4.1.2 Factor demand estimation 

If an analytic solution exists, each factor demand as observed is of the 

form 

where the stochastic error Ut represents the randomly distributed differences 

* between the observed input quantity Xt and the theoretical decision rule xt. 

We assume ut and the production function errors Et are independent. It is 

not necessary to jointly estimate the input demands and the production 

functions in this case, but the input demand functions are often of interest 

themselves. 

The parameter vector of the decision maker's subjective probability 

distribution of future outputs and prices, µt, appears in each factor demand, 

requiring its prediction. Since these estimates affect the system (19) and 

are not affected by it (under the usual atomism assumptions), they are 

predetermined variables to the factor demand block. Thus, so long as their 

values are available for estimation of (19), it is irrelevant whether they 

were generated by, for example, an (unspecified) econometric model, or a 

vector time series process, or even a survey. One obvious set of forecast 

estimates is the actual values, although with these estimates--as well as with -----
estimates from any other scheme--errors of observation will enter to the 

extent that they are not the values actually used by the individual decision 

maker. 
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When the decision problem does not have an analytic solution, the input 

demand functions (19) cannot be derived explicitly. The Hansen GMM or Fair 

and Taylor maximum likelihood procedures can be utilized in this case. It is 

useful to consider the Cobb-Douglas case to gain insight into the structure of 

these models. 

For the multiperiod,2 growing moving average Cobb-Douglas function, 

e.g., ot ., a 
t 

. . . ' eto ee:t x
0 

the factor demands take the specific 

form 

(20) ln xt • ~ + ~ 1 ln x 1 + • • • + ~O ln x0 t t t- , t t- 't 

t• 1 , 2,. • • , T, 

with the appropriate relative price ratios substituted for µt• Even though 

the T inputs are all determined within the system, the equations are recursive 

so that Xt-l is predetermined to all later demand equations, and thus should 

not be treated as jointly dependent. (Whenever the forecasts are revised in 

succeeding time periods, i.e., Et-IPt * EtPt• estimation efficiency is lost if 

the equations determining Xt-l• xt_2 , ••• , are substituted for these values, 

since additional parameters--on the expectations--are unnecessarily 

introduced.) If the observer errors Ut are serially uncorrelated, so that 

there is no correlation across the errors of the T equations of (19), and.!.!_ 

there were no across-equation restrictions implied by the production function 

parameters inbedded in the ~'s and n's, then the factor demands could be 

2This section (4.1) is concerned with input dynamics only. Recall that 
single and multistage models are observationally equivalent in the absence of 
output dynamics. 
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efficiently estimated one at a time. When the errors Ut are not serially 

independent, the lagged inputs and the equation errors are necessarily 

correlated; in this case, with the error covariances unknown and thus 

requiring estimation, the Zellner-Aitken seemingly unrelated regressions 

estimator must be iterated to convergence (and thus equivalence with the 

maximum likelihood estimator) to obtain even consistent estimates. 

It is easily demonstrated that for the growing MA(t) Cobb-Douglas case 

(equation 18) there are necessarily across-equation restrictions on the ~'s 

and n's due to fewer underlying production function parameters. Observe that 

in (20) the tth equation contains t+l parameters ~ij and T-t+l parameters nij• 

giving T+2 total parameters per equation and thus T(T+2) parameters in the 

system (20). But the system of production functions contains fewer 

parameters, only t+2 in the tth equation (for the Cobb-Douglas form) for a 

total of 3 + 4 + ••• + T + (T+l) + (T+2) < T(T+2) parameters. Since the 

factor demand parameters are derived from fewer elementary production 

parameters, they are not free; efficient estimation requires specification of 

the production function and imposition of the implied side relations between 

the factor demand parameters. Thus the factor demand equations cannot be 

efficiently estimated independent of the production function. 

Similarly, if the input dynamics in (18) are specified as a fixed length, 

moving average process over 1 periods [MA(1)], then each Cobb-Douglas 

production function contains 1+2 parameters and it is readily verified that 

the input demand equations contain 1 + 2 + h parameters, where the planning 

horizon extends h periods into the future. There are then h restrictions to 

be imposed for efficient estimation. 

Whenever the number of elementary (production) parameters equals or 

exceeds the number of factor demand parameters, demand equation estimation can 
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be separated from (further) knowledge of the production process. In the 

Cobb-Douglas case this occurs under static expectations, i.e., when all the 

expected relative prices in (20) are the same. Also, other production 

functions may have ~ elementary parameters than input demand parameters. 

For example, in the quadratic model with input dynamics of order MA(1), each 

production function has (12+1)/2 parameters, while the input demand functions 

are known to be linear with 1 + 2 + h parameters. In general, however, 

efficient estimation of the parameters of factor demand equations cannot be 

separated from a complete specification of the production process. 

4.2 Output Dynamics, Observable Intermediate Products 

Production functions of the growing autoregressive [AR(t)] form 

01 • f1(x1, Oo, E1) 

02 = f2(x2, 01, Oo, E2) 
(21) 

. 
Or· frlxr, Or-1• Or-2• • • ·, Oo, Er) 

as well as systems of a fixed AR form constitute a recursive system with the 

related estimation considerations discussed in the previous section. Although 

some of the regressors (01 ••• Or-i) are determined within the system, none 

are jointly dependent,3 and each equation is in fact already in reduced form. 

[Again, replacing the regressor 01 in the 02 equation with f 1(x1, Oo, 0-1• 

El), for example, is inefficient since it introduces additional coefficients 

to estimate unnecessarily.] If there are no restrictions across the functions 

f1, f2• ••• , fr and if the errors are serially uncorrelated (so there are no 

3since each affects the dependent variables below it but is not affected 
by them, there is no simultaneity. 
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covariances between the errors El• E2• ••• , ET), then pooling is not 

necessary for efficiency and the equations can be estimated separately from 

multiple cross-sections in each period. With uncorrelated errors, estimation 

is possible from time-series observations alone with the variations in f 1 , f 2 , 

••• , fr parameterized. When the errors are serially correlated, the 

intermediate output regressors are correlated with the equation errors so that 

ordinary least squares estimates are biased and inconsistent. In this case, 

the Zellner-Aitken estimator iterated to convergence gives consistent and 

asymptotically ef ficent estimates. 

With output dynamics and analytic solutions the input demand equations 

are generally 

(22) 

When the research objectives require their estimation, the discussions of 

identification and estimation in the preceding section are valid. If the 

errors are independent, there are no across-equation parameter restrictions, 

and an expectations model is assumed, the input demands can be efficiently 

estimated singly using least squares. However, if the input demand function 

errors and the production function errors are contemporaneously or serially 

correlated, the iterated GLS estimator is required for consistency and 

efficiency, as discussed in section 4.1 above. Similarly, if the production 

function parameters impose restrictions across equations, multiple equation 

estimators are required for efficiency. 

4.3 Output Dynamics, Unobservable Intermediate Products 

It is frequently the case that observations on intermediate outputs are 

not available for use in estimation despite being utilized by the decision 
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maker. Since the (observed) optimal input demands depend on these 

intermediate outputs, the system of input demand relations (when analytic) can 

be used in place of the unobserved quantities. In a multistage model like 

equation (9) above, terminal output Qor depends on intermediate outputs oT-1 

observable to the decision maker but not to the econometrician. 1llese 

intermediate outputs can be written as a function of the inputs used in the 

different periods, which, for profit maximizers, take the general form (13). 

The result is a recursive system of input demands culminating in a production 

function in terms of observables in the form of equation (10). 

4.3.1 ! simplified version 

Let us first consider the particularly tractable multistage Cobb-Douglas 

production of (15) and its optimal factor demands, with two additional 

simplifications: (i) we shall ignore any relationships between the factor 

demand parameters (~'sand n's) and the more basic production parameters 

(u, S, and y), and (ii) we shall again [as we did in deriving equation (17)] 

assume that the predicted relative prices are not revised, so that 

Et(wt+j/p1 ) • Et+l<wt+j/PT) for j > 1, for example. Under these conditions, 

the factor demand equations and the production function, after substituting 

for the unobserved intermediate products, 

ln x 1 • ~Ol + n 11 ln(w1/p 1) + ••• + nTl ln(wT/pT) 

ln x2 • ~02 + ~12 lnxl + ~12El + n22 ln(w2fP2) + • • • + nT2 ln(wT/pT) 

ln x3 • ~03 + ~13 lnxl + ~23 lnx2 + ~13 El+ ~23 Ez 

+ n 33 ln(w3/p 3) + ••• + nT3 ln(wT/pT) 
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(23) ln xt - "'ot + ~lt lnx1 + "'2t lnx2 + • • • + ~t-1,t lnxt-1 

ln xr - ~OT + ijllT lnx1 + "'2r lnx2 + • . • + ijlT-1, T lni.r_ 1 

+ <111r e:1 + . • . + «PT-1,t ET-1 + 'lrTT lnlwrfPr) 

ln o.r - "'oq + "'lq lnx1 + "'2q lnx2 + • • • + "'rq lnxr 

+ cjllq El+ • • • cjlT-1,T-l ET-1 +ET, 

where the predetermined variables have been identified with an overbar and the 

jointly dependent variables with a hat.4 Note that the joint dependency of 

the regressors marked with hats does not arise from equation simultaneity 

(since x2 , x3 , ••• , xt-l are predetermined when xt is to be set, i.e., the 

system is recursive) but rather from the increasing string of production 

function disturbances e:2, e:3, ••• , Et-1 that result from the intermediate 

outputs being unobservable, akin to an errors-in-measurement model. We shall 

see that the unique structure of the system (23) permits use of simultaneous 

equations estimators to obtain consistent and asymptotically efficient 

parameter estimates, however. 

Even if the production function--the last equation in the system (23)--is 

the only equation of interest, direct estimation using observed inputs as 

4rhe overbars and hats are simply indicators (and not newly defined 
quantities) designed to aid in the discussion that follows. 
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regressors results in biased and inconsistent parameter estimates since ln xt, 

t • 2, ••• , T, contains £1, Ez, ••• , Et-1 which are also included in the 

production function disturbance ~lq£1 + ••• + ~Tq£T• A set of instruments 

correlated with inputs but uncorrelated with the equation disturbance is 

required, and the logical choice is of course the set of sample predictions of 

the input demand functions. 

The identity determining ln x1 is irrelevant to estimation except that it 

establishes ln x1 as predetermined, permitting consistent estimation of the 

ln xz equation by ordinary least squares. Then the sample prediction of 

/'.. 
ln xz, denoted ln xz, is orthogonal to El (by the property of least squares) 

~ 
and to all later Et's so that ln xz is a suitable instrument for all equations 

below it in the recursive triangle. Then the ln x3 equation can be estimated 

..A. /'.... 
using ln xz as an instrument, resulting in predictions ln x3 suitable for all 

equations further down the recursive system, and so on until, finally, 

instruments are available for all of the jointly dependent variables in the 

production function and its parameters can be estimated. 

Further, since there is always just one more excluded predetermined 

variable and one more included jointly dependent variable in each successive 

equationS--e.g., the ln x3 equation includes ln xz but excludes ln (w1/p 1), 

the ln x4 equation includes ln i 3 in addition to ln i 2 but excludes ln lw2/pzJ 

as well as ln lw1fP1), and so forth--the system is just identified. Thus, the 

sample forecasts from the instrumental variable technique described above are 

SWhen there is more than one input in each period, the system remains 
just identified as multiple included jointly dependent and excluded 
predetermined variables are added, given the two simplifications noted at the 
beginning of this section. -- -- - -
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identical to those resulting from the reduced form equations (obtained by 

substituting the ln x2 equation into the ln x3 demand, etc., to the ln xr 

equation): the instrumental variable estimator is equivalent to the two-stage 

least squares estimator and hence to the three-stage least squares estimator, 

the iterated three-stage least squares estimator, the limited information 

maximum likelihood estimator, and the full information maximum likelihood 

estimator, among others. Estimates obtained in this manner thus enjoy the 

properties of the full system estimators, in particular, consistency, 

asymptotic efficiency, and asymptotic normality under the usual assumptions. 

The unique structure of the system (23), with different time periods 

resulting in different equations, means that estimates with and without 

serially correlated errors are observationally equivalent. When the 

disturbances are serially correlated, there is an additional source of 

correlation between the T + 1 equation errors besides that due to the 

elimination of unobserved intermediate products; since the system is just 

identified, however, any form of across-equation error covariance is 

irrelevant. 

4.3.2 The general Cobb-Douglas system 

Estimation without the two simplifications--regarding the basic parameters 

and the forecast updates--underlying the above discussion is slightly more 

complicated, resulting in an overidentified system (requiring utilization of 

error covariances for efficiency) that is nonlinear in the parameters to be 

estimated. Nevertheless, the estimation problem remains manageable. 

Dropping the last simplifying assumption first, when the price forecasts 

are revised (typically each period), the forecast relative price terms in (23) 
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reflect this with time-dated expectations. Thus a typical factor demand 

becomes 

ln Xt • ~Ot + ~It lnx1 + ~2t lnx2 + • • • + ~t-1,t lnxt-1 

rather than the comparable (tth) equation in (23). Since the set of 

predetermined variables is now vastly augmented (the expectations are different 

for each period), the equations are all overidentified, with all the implied 

ramifications (e.g., for full asymptotic efficiency, error covariance 

information must be explicitly incorporated, perhaps by three stage least 

squares or full information maximum likelihood techniques). 

Dropping the other simplification, i.e., recognizing the dependence of the 

factor demand parameters on the elementary production function parameters, adds 

parameter nonlinearity to the considerations above. The form of the production 

function usually implies a set of nonlinear restrictions on the parameters of 

the factor demand equations. For example, in the Cobb-Douglas case, the ~'s 

and n's of (23) are composed of more basic production parameters analogous to 

those of equation (16). When there are fewer production parameters than input 

demand parameters, efficient estimation requires imposition of these (typically 

nonlinear) restrictions. This can be accomplished by carrying these parameters 

through the derivation of the input demands and using a nonlinear estimation 

algorithm that differentiates with respect to these elementary parameters. 
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5. Conclusion 

In this paper we define dynamic stochastic production models in terms of 

the structure of the production functions (input dynamics versus output 

dynamics) and the type of decision problem (multistage versus multiperiod). 

This classification of production models admits a broad spectrum of dynamics 

due to technological phenomena such as "time to build," biological processes, 

and learning, as well as the cost of adjustment phenomenon. Dynamic production 

models are shown generally to be recursive systems of both production functions 

and input demand functions. Although the general solution for optimal input 

demand functions is complicated, the important Cobb-Douglas model is tractable. 

It can be used to represent both input and output dynamics, while the quadratic 

production function model can only be used to represent input dynamics. 

We show that, in general, dynamic production functions can be estimated 

with standard linear or nonlinear ordinary least squares or generalized least 

squares procedures when all outputs are observed. 1be input demand functions 

need not be estimated in this case, and therefore it is not necessary to solve 

the control problem to estimate the production functions. However, when the 

research objective is to analyze input demand behavior, it may be necessary to 

explicitly specify the production functions to obtain efficient input demand 

estimates. This is because the factor demand parameters are composed of 

production function parameters. If there are fewer production function 

parameters than input demand parameters~ the implied restrictions must be 

imposed on the input demand parameters for efficient estimation. 

When outputs are not observed, as is usually the case with firm-level 

multistage models or aggregate multiperiod models, it is necessary to solve 

the multiperiod optimization problem for a set of input demands to provide 
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instnnnents for consistent estimation. Although the resulting equation system 

is recursive, the time-aggregated errors cause an estimation problem identical 

to equation simultaneity. Remarkably, when two simplifications are imposed, 

the Cobb-Douglas model is exactly identified so that single equation 

estimators are equivalent to and thus as efficient as full system estimators. 

In the absence of these simplifying conditions, estimation requires 

simultaneous equation algorithms suitable for problems nonlinear in the 

parameters. 

These results show that researchers must carefully evaluate their 

research objectives, model structure, and data availability in formulating 

dynamic, stochastic production models and in selecting appropriate estimators. 

The prevalence of both input dynamics and output dynamics in production 

systems, combined with the difficulty in observing intermediate products, 

suggest that dynamic, stochastic production systems should be formulated and 

estimated as interrelated recursive systems of production functions and factor 

demand functions. 

pl 10/19/83 PA6 
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