
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


VCD 

I 

Department 
"6t Agricultural Economics 

GIANNINI FOUNDJtWN OF 
.!\GRJCULTURAL0~NOMICS 

Ll~'RY 
~-<.. 

Ft'"b ::; 1983 

WORKING PAPER SERIES 



University of California, Davis 
Department of Agricultural Economics 

Working papers are circulated by the author without 
formal review. They should not be quoted without 
his permission. All inquiries should be addressed 
to the author, Department of Agricultural Economics, 
University of California, Davis, California 95616. 

MEASURING STOCHASTIC TECHNOLOGY: 
THE CASE OF TULARE MILK PRODUCTION 

by 

John M. Antle and William A. Goodger 

Working Paper No. 83-4 



1. Measuring Stochastic Technology: 
The Case of Tulare Milk Production 

Research in production economics has increasingly focused on the role of 

production uncertainty in farm management (see, e.g., Hazell, Pope, Robison). 

It has been shown in theory that if farm managers are risk averse their 

production decisions should depend on the relationship between input use and 

the probability distribution of output. Thus, knowledge of the relationship 

between inputs and the stochastic structure of production is important to farm 

managers as well as production economists, extension specialists, and policy 

makers. 

Despite the potential importance of the relationship between production 

decisions and the stochastic structure of production processes, it seems 

reasonable to say that production economists, farm management specialists, and 

farmers all have difficulty assessing these relationships, and in fact very 

little research has been aimed at their measurement. For example, consider 

the effect on milk production of an increase in a dairy's milking capacity. 

Most production economists and dairymen would agree that the effect on average 

output would be nonnegative. But how many economists or farmers would be 

willing to wager what the effect of an increase in milking capacity would be 

on the "riskiness" of output due, for example, to the effects of new milking 

machines on the herd's health? It is safe to say that few would be confident 

of their answer, especially if we were to ask more specifically for the 

effects on the variance and skewness of the probability distribution of 

output. Yet, many of these individuals would probably agree that production 

risk or uncertainty is important to farm decision making. 
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Perhaps our state of ignorance concerning the stochastic structure of 

production processes stems from the lack of reliable statistical methods for 

measuring and testing the relevant relationships with actual production data. 

The methods that have been used to study stochastic production range from the 

elicitation of subjective output distributions (e.g., Bessler, Herath ~al.), 

to the "method of moments" applied to experimental data (Day, Anderson, 

Roumassett) and econometric production function models (de Janvry, Moscardi 

and de Janvry, and Just and Pope). Each of these approaches has severe 

limitations for estimating and testing the stochastic structure of production 

with actual production data. 

In this paper an alternative moment-based approach to specifying, 

estimating, and testing stochastic production models is used to measure the 

stochastic structure of large-scale dairy production. This approach, recently 

developed by Antle (1983b), provides a statistical framework for estimating 

the functional relationship between inputs and the moments of the probability 

distribution of output. It is hypothesized that factors such as capital 

equipment, herd size and quality, management ability, veterinary services, and 

herd health affect not only the "mean" or "average" rate of milk production, 

as would be done in usual production function studies, but also the dispersion 

and skewness of the probability distribution of milk production are 

hypothesized to be functions of inputs and production practices. 

Our empirical analysis is based on a data sample from nine Tulare County, 

California, dairies. We find that the mean output as well as second and third 

moments about the mean of milk production are statistically significant 

functions of inputs. We use the empirical results to answer a series of 

questions concerning the stochastic structure of the production process. 
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First, we test for the validity of the multiplicative error production 

function and the model proposed by Just and Pope (1978, 1979). The milk data 

reject both specifications because they impose untenable restrictions across 

the moments of output. 

Second, we consider the implications for dairy management. Using an 

approximate negative exponential utility function, we find that risk averse 

decision makers who are aware of the stochastic structure of the production 

process would feed their cows more and operate at a lower capital intensity 

than would a risk-neutral decision maker. 

Third, we compare the implications of different utility functions for 

optimal input decisions. We find that there may be substantial differences 

between a mean-variance criterion and a more general criterion which also 

accounts for the effects of inputs on skewness of the output distribution. 

The first section of the paper discusses the theoretical foundations and 

empirical methods for the moment-based approach to the study of stochastic 

technologies. In this section we survey previous studies based on the "method 

of moments" and production function models. The statistical model used in 

this paper is outlined and we show that it overcomes some other models' 

limitations. The second section discusses the empirical specification of the 

model, the milk production data, and the empirical results. 

The Moment-Based Approach to Production Economics 

Theoretical Foundations 

A number of studies have used the moments of the probability distribution 

of output to represent the stochastic structure of an agricultural production 

process, but little attention has been paid to the theoretical foundations of 

this approach. In this section we discuss why stochastic production 
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technologies can be meaningfully represented in terms of the moments of the 

probability distribution of output, and how these moments relate to the 

production decisions of farm managers. 

The theoretical foundations for the moment-based approach to production 

economics have been provided by Antle (1983b). It can be shown that output 

distributions are unique functions of their moments, and it follows that the 

behavior of rational farm managers can always be defined in terms of the 

moments of the output distribution. Thus, the moments of the output 

distribution can be used both to uniquely identify, and to approximate to the 

desired degree, the stochastic structure of technology. 

The moments of the probability distribution of output are related to the 

farm manager's decisions. To see this, define the probability density of 

output as f(Qlx), where Q is output and xis a vector of decision variables. 

The density function is defined for a given set of decision variables, and 

therefore the moments of the distribution can be written in general form as 

functions: 

(1) 
µ1(x) = fQf(Qlx)dQ 

µi(x) = f(Q-µ1)i f(Qjx)dQ, i)2. 

Thus, the moments are functions of x, and express the functional relationship 

between the stochastic structure of the production process and input 

decisions. 

Consider a model of farm decision making in which inputs are chosen to 

maximize the mathematical expectation of utility, and utility is a function of 

profit. Assume that the distribution of profit can be expressed as a function 

of the mean and the first m-1 moments about the mean. Following Anderson, 

Dillon, and Hardaker, we can write expected utility as a function of the 
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moments of profit. To illustrate, consider a third-order approximation to the 

negative exponential utility function. Assuming utility is a function of 

profit n the utility function is 

U(n) = a - be-en, a,b,c ) O. 

We assume output price is nonrandom, as is the case with milk price supports. 

Letting normalized input prices be ri (input price divided by output price) we 
n 

can write normalized profit as n = Q - E rixi. Letting E(•) denote the 
i=l 

mathematical expectation operator, 

n 
n _ E(n) = µ1 - E rixi. 

i=l 

Expanding U(n) in an mth order Taylor series about n and taking 

expectations we obtain: 

EU( n) 
-en = a - be 

-en 
be 

m 
E 

i=2 

(-c) . 
-- µi, 

i! 

where the µi are defined in equation (1). Letting m = 3 we obtain the 

following first-order condition for expected utility maximization: 

2 
oµ 1 + ~-1 (-c) oµ2 + -1 (-c) 0µ3 _ 

u o ____ - rk, k=l, ••• ,n, 
oxk -2- oxk 6 oxk 

2 3 
~ = 1 + (-c) + (-c) 
u 2 µ2 -6- µ3 • 

The above equation can be written in elasticity form as: 

(2) 

where 

(3) 
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We use equation (2) to analyze decision-making under uncertainty as 

follows. The first term on the left-hand side represents the expected 

production elasticity which, under risk-neutrality (or under a first-order 

appoximation to the utility function), equal the input cost share in 

equilibrium. If the decision maker uses a mean-variance criterion 

(second-order approximation to the utility function) the first two terms on 

the left-hand side measure the expected marginal benefit of the input in 

percentage terms and equal the factor cost share. However, if the 

decision maker also takes the skewness of the distribution into account, i.e., 

if he is "downside risk averse" (see Menezes et al. 1980), then all three 

terms on the left-hand side represent the marginal benefit of the input. Thus 

equation (2) can be used to compare the marginal value of an input under risk 

neutral (RN) preferences, and under mean-variance (MV) and 

mean-variance-skewness (MVS) decision criteria. By specifying the single 

parameter c, which is the Arrow-Pratt risk aversion coefficient, the moment 

function estimates can be used to compute these marginal values. 

We conclude that moments of the probability distribution of output can be 

used to provide a meaningful representation of stochastic technologies. These 

moments can be interpreted in terms of statistical decision theory. 

Measuring Moment Functions: Literature Review 

The studies involving the estimation of output distribution moments as 

functions of inputs are of two types, those based on the statistical procedure 

known as the "method of moments" (Kendall and Stuart, Ch. 18) and those based 

on econometric production function models. We briefly consider each of these 

and discuss their methodological limitations. 
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The first attempt to explicitly characterize the agricultural production 

process in terms of a probability distribution appears to be Day's study of 

yield distributions of field crops. Day used experimental data on yields and 

fertilizer applications, and the method of moments, to estimate the moments of 

yield distributions for different levels of nitrogen application. While Day 

did find that the yield distributions changed systematically with the level of 

fertilizer applications, and that these distributions were skewed, he did not 

develop a statistical model to explain such functional relationships or 

subject them to statistical test. The method of moments procedure requires 

many observations per individual production unit and thus requires a long time 

series of cross-section data. Experimental data is sometimes available with 

enough observations of each production unit over time to make the method of 

moments reliable, but such survey data are nonexistent. 

Anderson (1973) proposed a technique which would allow the method of 

moments to be utilized with "sparse data," that is, with only a few 

observations per production unit. If successful, this technique would reduce 

the demanding data requirements of the method of moments. However, the 

reliability of this "sparse data" technique is questionable, because it 

involves an ad hoc, subjective method of approximating moments. However, 

Anderson made an important contribution by hypothesizing that the output 

distribution's moments are explicit functions of inputs. He postulated 

linear relationships between moments and inputs, and regressed mean, variance, 

and standardized measures of skewness and kurtosis of experimental crop yields 

on nitrogen and phosphorous inputs. While this approach has appeal as a 

descriptive tool, Anderson did not provide justification for attributing 

desirable statistical properties to the parameter estimates. In fact, the 
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discussion below shows that such moment regressions are heteroscedastic, so 

that standard errors of parameter estimates computed with least squares 

fornrulae are biased. 

Roumasset (1976) employed a method similar to Anderson's to study the 

role of risk in rice production. Using survey data from the Philippines, 

Roumasset stratified the data by input use levels and found no apparent 

relationship between the moments and nitrogen fertilizer input. This finding 

led Roumasset to conclude that survey data with few time-series observations 

are not adequate for studying output distributions. He also used experimental 

data to compute moments and regressed them on inputs, and found that the first 

four moments of the output distribution vary systematically with nitrogen 

fertilizer input. 

The method of moments has been successfully used to study the 

relationship between output distribution moments and production inputs only 

with experimental data on yield as a function of fertilizer input. This 

approach has serious limitations: it requires many observations per 

individual production unit to estimate a probability distribution for each 

unit; the regression of sample moments on inputs does not produce parameter 

estimates with desirable statistical properties, so that valid statistical 

tests of hypotheses are not possible; and results from experimental trials 

must be used to draw inferences about actual production conditions. 

The second class of models which can be used to estimate output 

distributions is econometric production function models. The models in the 

literature impose ad hoc restrictions on the relationship between inputs and 

moments of output. Just and Pope showed that the conventional multiplicative 

error model of the form: 
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(4) Q = f(x,~)u, 

where f(x,~) is a deterministic production function and u is a random error, 

forces the variance of output to be increasing in x if marginal products are 

positive. Just and Pope propose a more general model with an additive 

heteroscedastic error of the form 

(5) Q = f(x,~) + h(x,y)e 

where E is independently and identically distributed with zero mean. Just and 

Pope show that this model allows inputs to have distinct effects on the mean 

f(x,~) and the variance h2(x,y)E(e2) of output and is thus more general than 

(4). 

Antle (1983b) shows that when higher moments of output are considered, 

both (4) and (5) impose arbitrary restrictions on the relationship between 

inputs and moments. Defining the elasticities of moments with respect to 

inputs as in equation (3), Antle shows that model (4) implies, for µi * 0, 

(6) 

and that model (5) implies 

(7) 

There is no theoretical justification for the existence of such restrictions. 

For example, (6) implies that the input elasticities of µ2 and µ3 are 2 and 3 

times the mean production elasticity; (7) implies that the percentage effect 

of an input on µ3 is 1.5 times its effect on µ2• Referring to equation (2), 

these arbitrary restrictions on moments clearly impose arbitrary restrictions 

on the firm's behavior under uncertainty. 

Rather than employing models which embody restrictions on higher moments, 

it would be preferrable, on both theoretical and methodological grounds, to 

utilize a model which imposes fewer restrictions and which allows the 
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researcher to test for restrictions on the stochastic structure of the 

production process. 

The Flexible Moment-Based Approach 

In this section we outline the flexible moment-based approach, introduced 

by Antle (1983b), for estimating and testing the moment functions defined in 

equation (1). The model is based on the hypothesis that a 

linear-in-parameters relationship exists between moments of the output 

distribution and the farm manager's decision variables. This approach has the 

advantage of being flexible in the sense that distinct parameters can be 

estimated for each moment-input relationship, thus avoiding the restrictions 

imposed by the econometric production function models discussed above. In 

addition, this approach can be used with a single cross section (or time 

series) of data, and the parameter estimates have known asymptotic 

distributions which can be used to construct tests of hypotheses about the 

structure of the technology. Thus, the flexible moment-based approach also 

overcomes the limitations of the method of moments identified above. 

For the jth observation define Qj as output and xj = (xlj, ••• , Xuj) as 

the input vector. The moment functions given in equation (1) are written in 

linear form as 

µlj(xj) = xjYl 

µij(xj) = xjyi, i)2. 

Below we apply a quadratic parameterization of the moment functions. In 

general, the moment functions can be specified as any linear-in-parameters 

functional form (see Fuss, McFadden, and Mundlak). Output is random and 

E(Qj) = µ 1j, so we can write the~ production function or first moment 

function as the regression equation 
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(8) 

where uj is assumed to be independently distributed. Similarly, noting that 

E(Qj - µIj)i = E(uji) : µijt i>2, 

we write the ith moment function as the regression equation 

(9) 

The goal is to estimate the Yi parameters which relate inputs to moments. 

It is well known that the least squares estimate YI of YI is consistent. In 

addition, it can be shown that with the residual uj = Qj - XjYI• the least 

squares regression of ~ji on Xj produces a consistent estimate Yi of Yi• i)2. 

However, the least squares formulae for the standard errors of the Yi are not 

valid because (8) and (9) are heteroscedastic. To see this, observe that the 

variance of Oj is 

2 
E(uj) = µ2j = XjY2 

and the variance of uji is 

E(vij2) 

Since Yi is a consistent estimator of Yi it follows that wij2 = XjY2 is a 

consistent estimator of µ2j and in general 

wij2 = XjY2i - (xjyi)2, i)2, 

is a consistent estimator of E(vij 2). Therefore, a feasible GLS estimator for 

YI can be obtained by the weighted regression 

and a feasible GLS estimator for any Yi, i)2, can be obtained by the weighted 

regression 
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~ji/wij = XjYi/wij + vij/wij• 

It can be shown that the estimators thus obtained are asymptotically 

equivalent to the true GLS estimators. In large samples, under the 

statistical assumptions required for the central limit theorem, the parameter 

estimates obtained from this procedure are asymptotically normally 

distributed. Therefore, standard large-sample test statistics can be used. 

In applications of the above estimation procedure, another problem must 
2 

be taken into account. When estimates of the regression variances wij are 

computed it is possible, if not likely, that some will be negative. Variances 

are positive, by definition, but either sampling error or small sample bias in 

the parameter estimates may cause negative variance estimates. Fortunately, 

this problem can be solved using standard nonlinear programming techniques and 

existing computer software. To consistently estimate Y2 subject to the 

2 constraint that the estimated variance w1j XjY2 ~ 0, solve the problem 

N " 2 2 min L [u· - XjY2l subject to XjY2 ~ O. 
Y2 j=l J 

Similarly, to estimate any Y2i' i ~ 2, choose Y2i to solve 

" where Yi has been obtained from a previous regression. The latter inequality 

constraint simultaneously forces Y2i to satisfy the requirement that µ2i'j~O 
2 

as well as the requirement that the variance Wij is nonnegative. In the 

following section we use this procedure, with the MINOS nonlinear optimization 

program developed by Murtaugh and Saunders, to estimate the linear moment 

model. 
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The Stochastic Structure of Milk Production 

In this section we use the flexible moment-based approach to study the 

stochastic structure of milk production in Tulare County, California. Besides 

its importance as an agricultural commodity, the milk production process is 

especially suited for our analysis of the stochastic structure of production. 

One useful attribute is that milk production is a true single-product 

process.I In addition, all of the inputs are chosen before the production 

process begins (except perhaps veterinary services), can therefore be treated 

as exogenous variables, and are not subject to simultaneous equation bias as 

would be the case with sequential decision making (see Antle 1983a). 

Data Sample 

The Tulare milkshed is located in Tulare County of the central valley of 

California. Dairy operations are characterized by large scale, the 

predominance of Holstein stock, and a relatively high enrollment in a Dairy 

Herd Improvement (DHI) program. In 1978 the average herd size was 440 cows. 

In Tulare County 57 percent of the dairies are enrolled in the electronic data 

processing system of Agri-Tech Analytics for DHI production records. The 

computerized records formed the basis for the data used. The DHI program 

dairies have more investment, larger labor forces, higher gross receipts and 

expenditures, larger farm incomes, more milk production, and are otherwise 

larger than most dairies in Tulare County. 

In Goodger's study of the determinants of herd health, for which these 

data were originally collected, the emphasis was given to precise, valid data 

on a few dairies in order to isolate the relatively small and certainly 

complex influences of veterinary services. By concentrating on a small sample 

of high-quality data, it was believed that more credible, although less 
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generalizable results could be obtained. This "clean" data would then provide 

a testing ground for methodological advances and a starting place for further 

data collection. 

A four-year cost study conducted under the auspices of Agri-Tech 

Analytics provided detailed, precise data for the preliminary sampling frame. 

Dairymen on 20 dairies were trained to collect and record feed, labor and 

capital costs accurately. Of the 20 dairies, nine had data that came closest 

to satisfying the objectives of the overall research program of which this 

paper reports a part. The nine dairies had 5,052 Holstein cows, representing 

5.6 percent of the milking cows in Tulare County. All nine dairies received 

veterinary services. The data on mastitis and days open were collected for 

the nine dairies monthly for the period of July 1976 through December 1978 

along with data on production inputs. 

The Role of Veterinary Services and Herd Health 

In the past, the effects of veterinary services could be seen in reduced 

mortality and morbidity associated with infectious diseases. A number of such 

diseases are caused by single agents, allowing them to be controlled 

efficiently and in a clearly economical way. These diseases are now largely 

under control, and standard well-known treatments exist to deal with 

outbreaks. However, as management increased production efficiency of each 

cow, a new group of diseases, called "production diseases," began to emerge. 

These diseases affect the profits of the dairy enterprise by reducing 

production efficiency rather than causing mortality. 

Production diseases typically are not well understood and have multiple 

interacting determinants related to management, genetic, technological, and 

environmental factors. In today's high producing dairy cows, production 
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disease may be aggravated. These animals are subjected to a considerable 

amount of stress because management systems are designed to increase output 

per animal resulting in higher milk yields. Stress can result in breeding 

problems such as lowered fertility at first heat or service, a longer interval 

to first heat and postpartum ovulations without observed heat. The most 

important of the production diseases in dairying are mastitis and 

infertility. 

Description of the Variables 

A detailed discussion of the data is in Goodger. Here we briefly 

describe the variables used to estimate the moments of milk production. 

The output variable is average monthly pounds of milk per dairy, based on 

daily milk shipments. Feed (F) is pounds of roughages and concentrates fed to 

the herd. Allowance was made for evaporation. 

The herd (H) variable measures the quality-adjusted stock of animal 

capital. H is the product of the herd size and an animal capital index. This 

index was obtained by weighting the cows in each lactation by factors derived 

from the relative milk production that would be expected in each lactation and 

a maturity factor that corrects for the cow's age and month of the year at 

calving. The index adjusts the herd size to represent its potential for milk 

production relative to a "standard" Holstein herd of the same size in Tulare 

County in which all cows calve at a mature age, in an average month, with all 

cows in the third lactation. 

Equipment capital (C) is represented by the type of milking parlor and 

its degree of mechanization. Throughput in cows per hour was derived from 

performance standards of manufacturers and the expert opinion of suppliers. 
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Performance standards depended on parlor design (e.g., herring bone, polygon) 

and extent of mechanization. 

An index of management performance (M) was developed based on the expert 

opinion. Twelve management practice categories and a total of 48 indicators 

were defined in an iterative process with experts, and the experts then rated 

each of the nine dairies. Examination of summary statistics on the dairy 

scores and management practice categories indicate that the resulting 

management score is a valid measure of overall management performance. 

The veterinary service variable (V) represents an attempt to account for 

two types of services, emergency and scheduled. For the period over which a 

dairy had each type of services the monthly expenditures on the service were 

averaged. Whereas monthly values of V are likely to be endogenous in the 

production system due to sequential decision making this averaged variable can 

be interpreted as a measure of each dairy's long-term policy towards 

veterinary services. Thus, V is assumed exogenous to monthly milk 

production. 

Days open (DO) is computed as the number of days between calving and a 

breeding that is followed by a declaration of pregnancy. DO is averaged over 

all pregnant cows in the current and preceding lactation and is usually 

between 90 and 120 days. Longer DO is generally presumed to be an indication 

of infertility. Although this variable has certain limitations (Goodger, 

pp. 148-150), according to a number of sources days open is the best 

available summary measure of reproductive efficiency. 

The California Mastitis Test was developed to measure the leukocyte 

content of milk as an indication of subclinical mastitis. Using the data, the 

mastitis score for each cow tested was weighted to create "trace-equivalent 
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cows. The CMTA variable is the trace-equivalent cows as a proportion of the 

cows tested. As the value of CMTA decreases, udder health improves. 

Temperature (T) is a measure of the mean monthly temperature at the 

weather station nearest to each dairy. 

Model Specification 

To test the general hypothesis that the mean, variance, and third moment 

are functions of inputs, we employed the following quadratic representation of 

the moment functions: 

n n n 
(10) µi = aiO + E aik~ +_!_ E E aik~xkx~, i=l,2,3. 

k=l 2 k=l ~=l 

This function has the feature that the derivatives are linear functions: 

(11) 

The standard errors of these derivatives can be calculated at any data point. 

We calculated the derivatives at the sample means of the data. The 

elasticities of moments are also linear functions of the parameters when 

calculated at the sample means of µi and xk. 

One problem encountered with the quadratic function is that a large 

number of parameters must be estimated if there are very many inputs. To help 

overcome this problem we specified the moment functions as quadratic in F, C, 

H, and M, and linear in the herd health variables V, DO, and CMTA. In 

principle, there may be interactions between production inputs and herd health 

variables, as well as interactions among the herd health variables themselves. 

We found this specification explains milk production as well as a full 
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quadratic expansion while limiting the parameters to a manageable 

number. 

Empirical Results 

The data are monthly time series for nine dairies so the problem of 

autocorrelation was suspected. Thirty or fewer complete observations were 

available for each dairy, and it was not judged that a sufficient number of 

observations per dairy were available to consistently estimate the 

autocorrelation coefficient. Because the dairies all have similar weather and 

climate, it is reasonable to assume the first order autocorrelation 

coefficient is constant across dairies. After estimating the autocorrelation 

coefficient and transforming the data for the mean regression given in general 

form by equation (8), the estimation procedure proceeded as follows: 

residuals from the autocorrelation-adjusted mean equation were used to obtain 

consistent estimates of the heteroscedastic error variances for the mean, 

variance, and third moment functions, subject to the required inequality 

constraints on variances. These variance estimates were then used to compute 

feasible GLS estimates of the parameters for the mean function using the 

weighted regression method described above. To increase estimation 

efficiency, and to facilitate testing cross-equation restrictions, the second 

and third moments were estimated jointly, as described in Antle (1983b). 

The parameter estimates for the quadratic moment functions, based on the 

GLS estimation scheme, are in Table 1. To test for the significance of the 

regressions we computed x2 statistics (Theil, Ch. 8) for the null hypothesis 

that all slope coefficients equal zero. The x2 statistics for these 

regressions indicate rejection of the hypothesis of zero slope coefficients 

for all three moments at all conventional significance levels. A majority of 
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the parameters of the model are statistically significant. These results 

provide strong empirical support for the hypothesis that higher moments of the 

output distribution are functions of inputs, and strong rejection of the 

hypothesis that output follows a normal or symmetric distribution. 

Table 2 presents the elasticities nik defined above equation (6), 

calculated at the sample means of the data. The first column contains the 

elasticities of mean output with respect to inputs; these can be interpreted 

as conventional production elasticities. The other two columns contain the 

elasticities of the second and third moments (around the mean) with respect to 

the inputs.2 Note that these elasticities do not satisfy restrictions (6) and 

(7) implied by the multiplicative error model and the Just-Pope model, since 

several elasticities of the second and third moments are negative and do not 

satisfy the necessary proportionality. To test these restrictions, we used 

the fact that (6) and (7) both imply n3k = 3n2k/2. This in turn implies, 

using (11), that 

a3k = 3µ3a2k/2µ2 

a3k~ = 3µ3a2k~/2µ2, k,~ = 1, ••• , n. 

To test these cross-equation restrictions, the second and third moment 

functions were jointly estimated. The resulting test statistic x2(18) = 76.84 

clearly indicates rejection of the restrictions (5 percent critical value is 

28.67). Therefore, both the multiplicative error model and the Just-Pope 

model were rejected by the data. Note that rejection of (6) means that the 

conventional lognormal error model is inconsistent with the data. 

Several features of the individual parameter estimates are worth noting. 

One is the role capital and management play in the dairy production process. 

Table 1 shows C and M interact strongly and significantly in each moment. 
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This result supports the hypothesis that high-quality management is especially 

important to capital-intensive dairies, as suggested by Matulich. Moreover, 

the elasticities in table 2 show that both C and M have positive effects on 

the mean, and negative effects on the variance and third moment (see 

footnote 1). We discuss below the implications of these effects for dairy 

management. 

Also notable are the effects of the health variables. If we were to 

consider only the mean production function, we would find only V has a 

marginally significant effect on milk production. However, considering the 

higher moments dramatically alters the picture. While V has a positive mean 

effect, it also increases the variance of milk production. Days open reduces 

not only mean production but also variance and skewness. The mastitis index 

CMTA has an anomalous positive (but insignificant) effect on mean production, 

and also a highly significant positive effect on the variance of production. 

However, these results for the health variables should be interpreted 

with caution. There is evidence from other studies that different types of 

veterinary services have different productivity effects. There is also the 

possibility that health variables are endogenous to output because the 

decision to use veterinary services is often made sequentially in response to 

randomly occurring health problems. Some questions also have been raised 

about the use of days open to represent udder health (Goodger and Kushm.an). 

To evaluate the implications for dairy management we used equation (2) 

which was derived from the approximate negative exponential utility function. 

Table 3 presents the marginal values of the inputs and health variables in 

percentage terms using first, second, and third-order approximations to the 

utility function (i.e., the first, first plus second, and all three terms on 
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the left-hand side of equation (2). The risk aversion coefficient is set at 

0.01, a reasonable value according to utility function estimates (French and 

Buccola, Moscardi and de Janvry, Nikiphoroff). Two remarkable results emerge 

from table 3. 

First, the marginal values based on risk-neutral (RN) and mean-variance 

(MV) criteria are almost identical. Even though the variance is a significant 

function of inputs, the magnitude of the marginal effects of inputs on 

variance is small. However, this is not true for the third moment; indeed, 

the RN and mean-variance-skewness (MVS) criteria produce very different 

marginal values. The marginal effects of inputs on the third moment are 

relatively large. An important implication, for the general analysis of 

decision making under uncertainty, is that use of the MV criterion indicates 

that the effects of uncertainty are not important, whereas incorporating 

skewness and downside risk aversion with the MVS criterion shows uncertainty 

has a large effect on optimal decisions. 

The second implication of table 3 concerns dairy management. It is clear 

that the risk-averse dairyman would feed much more intensively and utilize 

less of all other inputs, especially capital and management, than would the RN 

dairyman. Thus, it appears that intensive feeding is risk-reducing when its 

effect on skewness is accounted for. We can rationalize this result in terms 

of the health problems that capital-intensive dairies may have. The physical 

capital variable measures milking capacity in terms of cows per hour. High 

speed, mechanized milking operations are known to aggravate udder health 

problems. In addition, if "good" managers who scored high on the management 

scale tend to increase milk production by using practices which stress the 

animals, the result may well be an output distribution which has a higher mean 
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but also is more risky. Thus, these results suggest that production diseases 

may be manifested in increased production risk. 

Conclusion 

We have discussed limitations of the method of moments and econometric 

production functions for measuement of the relationship between inputs and the 

moments of the output distribution. After discussing the more flexible linear 

moment model, which overcomes these limitations, we applied it to data from 

the Tulare milk shed. The parameter estimates support the general hypothesis 

that higher moments are functions of inputs, and they reject the restrictions 

implied by the multiplicative error model and the Just-Pope model. Using a 

Taylor series approximation to the negative exponential utility function we 

found that the implied behavior of a risk averse dairy manager changes 

dramatically when effects of inputs on the skewness of the distribution are 

included. 

Our findings suggest that more detailed research is needed to identify 

the effects of individual production and health practices. We feel it would 

be unwise to generalize about the effects of such broad categories as 

"management," "capital," and "veterinary services." What these results do · 

show, however, is that there may be important tradeoffs between higher mean 

productivity and the riskiness of the production process. To confidently 

answer the kind of question we raised at the outset of this paper, more 

studies are needed to establish empirical regularities about the stochastic 

structure of agricultural technologies. 

pl 1/31/83 JH7 
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Footnotes 

!The literature on estimation of milk response functions, based on 

experimental data, shows there are important differences in the components of 

raw milk (Paris~ al.). In this analysis we do not consider these 

differences. 

2Because the mean value of the third moment is negative, the reader 

should note that the signs of the derivatives given in (9) are opposite of the 

signs of the elasticities in Table 2. 
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Table 1 

GLS Estimates of Quadratic Moment Functions 

Moment 
First Second Third 

Intercept 3.523 -4.787 47.565 
(12.145) (22. 846) (89.100) 

F 19. 282*** 26. 459*** 10.221 
(7. 308) (7. 966) (50. 793) 

c -128. 360*** 29. 686* 381.570*** 
(43.878) (17.563) (104. 320) 

H 107.420*** -76. 526*** -233.150 
(40.881) (24. 425) (143.560) 

M 81. 647 -19.058 -512. 770* 
(188. 800) (76. 243) (294.180) 

F2 -3. 633** -8. 219*** -7.559 
(1. 508) (1.939) (15.793) 

c2 -8.821 .342 29. 775 
(10.197) (5.279) (18. 469) 

H2 -31. 789* -76.572*** 29.981 
(18. 536) (19.148) (122. 560) 

M2 -215.070 47.371 815. 790*** 
(141.880) (61.007) (268. 430) 

F•C -3.257 -21.366*** 29. 970 
(3. 709) (5.246) (28. 604) 

F•H 21. 559** 51. 736*** 46.178 
(8.740) (11.967) (81.268) 

F•M -22. 233** -7. 505 -59.455 
(10. 703) (9.005) (54. 355) 

C•H .594 52. 005*** -123. 770 
(25.151) (12. 977) (79.275) 

C•M 234. 660*** -49. 959* -664. 190* ** 
(71.223) (27.133) (177.170) 

H•M -71.529 40.490 410.000*** 
(57.206) (32. 200) (171.780) 

v .015* • 034** -.041 
(. 008) (.015) (.047) 

DO -2.607 -2.109* -14. 483** 
(1. 681) (1.242) (6.576) 

CMTA .141 .482*** 2.522 
(.176) (.172) (1.914) 

T 4.308*** 1. 871** -9.107** 
(.878) (.835) (4.132) 

x2(18) 7130*** 855.5*** 67.7*** 

Note: Standard errors in parentheses. 
*Significant at 10 percent level. 
**Significant at 5 percent level. 
***Significant at 1 percent level. 
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Table 2 

Mean Elasticities of Moments with Respect to Inputs 

Elasticity With Respect to: First 

Feed (F) .059** 
(. 027) 

Physical Capital (C) .678*** 
(.311) 

Animal Capital (H) .877*** 
(. 065) 

Management (M) .230 
(.291) 

Veterinary Services (V) .010** 
(. 005) 

Days Open (DO) -.096 
(. 062) 

Mastitis (CMTA) .008 
(.010) 

Temperature (T) .091*** 
(.018) 

Note: Standard errors in parentheses. 
*Significant at 10 percent level. 
**Significant at 5 percent level. 
***Significant at 1 percent level. 

Moment 
Second 

.448 
(.779) 

-4. 051*** 
(1. 580) 
1.057 
(. 992) 

-1.557 
(2.241) 

.471** 
(.208) 

-1. 682* 
(. 991) 

.56 7*** 
(. 202) 

.863** 
(.379) 

Third 

-33.276*** 
(12. 238) 
153.102*** 
(44.584) 

8.414 
(16.727) 
7 5. 269*** 

(32. 726) 
1.729 

(1. 982) 
35.170** 

(15.968) 
-9.031 
(6.854) 
12. 585** 
(5. 710) 



Table 3 

Marginal Value of Inputs for Risk Neutral and Risk Averse Decision Criteria 
(in percent) 

Input 
Physical Animal Veterinary 

Decision Criterion Feed Capital Capital Management Services 

Risk Neutral 5.9 67.8 87.7 23.0 1. 0 

Mean-Variance 5.8 68.6 87. 5 23.3 0.9 

Mean-Variance-Skewness 13.1 34. 9 85.6 6.7 0.5 

Note: Based on equation (11) with c = .01 

Days 
Open 

- 9.6 

- 9.3 

-17.0 

CMTA 

.8 

.7 

2.7 

N 

°' 
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