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INTRODUCTION 

The traditional mean-variance framework as suggested by Markovitz and Freund 

can be justified in terms of expected utility of income, where utility is 

exponential and prices are normal random variables. This approach takes the 

form of a quadratic program where mean prices and their variance are known 

parameters. The maximization is carried out with respect to quantities of 

commodities subject to a linear technology. The pair of dual problems 

associated with this formulation can be stated as 

(1) Primal 

subject to Ax. < b x > 0 

(2) Dual 

subject to 

where p is a (n x 1) vector of mean prices, Ep is a (n x n) matrix of their 

variances, ~ is a risk aversion coefficient, A is an (m x n) matrix of 

technical coefficients, y is an (m x 1) vector of dual variables and b is an 

(m x 1) vector of resources. The conventional interpretation of the two 

problems can be briefly outlined as follows. In problem (1) the economic 

agent maximizes the difference between expected revenue and the risk premium, 

subject to technological constraints. In problem (2), a competitor will want 

' to minimize the cost of buying the firm's resources (b y) as well as the risk 

premium associated with the operation. The dual constraints stipulate that an 

I 
equilibrium is obtained when marginal activity costs (A y), adjusted by a 

marginal risk premium ($Epx), are greater or equal to mean prices. 

In problem (1) p'x is the expected money value (EMV) of the risky 

revenue, while ($/2)x'Epx is the risk premium (RP). Hence, the primal 
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objective function can be reinterpreted as the maximization of the certainty 

equivalent (CE), or the amount of sure money which makes the entrepreneur 

indifferent between accepting such an amount and undertaking the risky 

prospect of operating his firm under uncertain conditions. Formally, this 

proposition is stated as U(CE) = EU(p'x), where U(•) is a suitable utility 

function, implying that the certainty equivalent is equal to the expected 

money value of the risky prospect minus the risk premium, or CE = EMV - RP. 

At an optimal solution, therefore, the dual objective function minimizes the 

imputed value of resources (IVR) as well as the risk premium. Imputed value 

of resources can thus be expressed as IVR = CE - RP. In other words, the 

imputed value of resources is equal to the difference between the certainty 

equivalent and the risk premium. 

AN EXPECTATION AND ADJUSTMENT MODEL 

The conventional formulation outlined above can be extended in a number 

of directions. In a planning context, for example, the economic agent nrust 

fornrulate expectations about prices as well as adjust quantities to those 

expectations. Obviously, the process of expectation formation can take many 

forms. One which is appealing in the present context suggests that, when 

prices and quantities are uncertain, an economic agent generates his 

expectations by solving a quadratic program (representing his utility of 

money) subject to the relevant technological and market constraints. 

To formalize the above discussion, suppose p = (pl, P2• ••• Pn) and 

x = (x1, x2 ••• Xu) are IIUltivariate normally distributed random vectors of 

prices and quantities, that is, p ~ N(P, Lp) and x ~ N(X, Lx), where P and X 

are expected prices and quantities, respectively, while Lp and Lx are their 

associated covariance matrices. The two distributions are subjective 
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distributions developed by the economic agent. Prices and quantities are not 

necessarily independent. 

I 
Given this set-up, revenue, R = p x, is also a random variable with 

expectation 

(3) E(R) 
I I = P X + u Lpxu 

where Epx is the covariance matrix between p and x and u = (1,1, ••• 1) is a 

vector of ones. The variance of revenue (Bohrnstedt and Goldberger) is 

(4) 

In a planning context and under a mean-variance approach, we assume that 

an economic agent will want to maximize U[E(R), Var(R)] subject to a linear 

technology. More explicity, the relevant primal problem is that of 

subject to AX < b , P > 0 , X > O. 

The constant K does not depend on either P or X but only on the variances and 

covariances of p and x; $ is a risk aversion coefficient. Problem (5) can be 

interpreted as the process of searching for those expectations about prices 

and the associated quantities which will maximize revenue under risk while 

satisfying the relevant technological constraints. With knowledge of Ep, Ex, 

Epx• A and b, the problem corresponds to finding the location parameter of the 

subjective distributions of prices and quantities. In more conventional 

terms, the objective function of (5) is the maximum difference between 

expected revenue and the approximate risk premium (Pratt). This objective 

I 
function is neither concave nor convex because the term P X makes the 

relevant quadratic form indefinite. The problem, however, can be solved by 

means of an algorithm such as MINOS, written by Murtagh and Saunders. 
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The dual problem corresponding to (5) can be stated as 

subject to ' P - $EpX - $Expp - A y ~ 0 

X - $Epx?C - $ExP < 0 

X~O,P~O,y~O 

where y is the vector of dual variables corresponding to the primal 

constraints. The objective function of the dual problem stipulates the 

' minimization of the total imputed value of resources (y b) minus the 

(approximate) certainty equivalent corresponding to the risky primal problem. 

This implies that the imputed value of the resources is equal to twice the 

approximate certainty equivalent. In the dual objective function, the 

certainty equivalent is approximated because the constant K does not appear 

in it and higher moments of the distribution of revenue are disregarded. 

' The first set of dual constraints, rewritten as P ~A y + $EpX + $Expp 

for convenience, indicates that an equilibrium solution is achieved when 

' marginal activity costs (A y) adjusted for uncertain prices and quantities by 

marginal risk premia are greater or equal to expected prices. Except for the 

covariance term $ExpP, this set of constraints is similar to the traditional 

quadratic programming formulation. 

The second set of dual constraints constitutes a novel relation which 

places an upper bound on the expected equilibrium quantities. This upper 

bound can be explicitly formulated as 
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Because of the risky price environment, the range of the expected equilibrium 

quantities is no longer the positive orthant but a subset of it, as 

determined by (7). It is of interest to notice that the dual variables 

associated with the dual constraints of (6) are quantities and prices, 

respectively (see Appendix.) This important criterion may be used to verify 

the correct formulation of the problem and the accuracy of computations. 

Problems (5) and (6) are of interest because of their generality. Solution 

of this formulation was obtained for a number of numerical examples using the 

MINOS package. 

ALTERNATIVE FORMULATIONS 

Two alternative formulations are possible if one assumes knowledge of 

either the expected prices or quantities. 

Suppose, in fact, that one is willing to assume that the subjective 

expected prices are equal to the actual mean prices, say P = p. In this case, 

problem (5) can be reformulated as 

subject to AX < b , X > O. 

This problem is now a concave quadratic program. It retains, however, some 

features of the more general formulation via the covariance matrix ~px of 

prices and quantities which appears in the linear part of the objective 

function. For the rest, problem (8) resembles a conventional quadratic 

program. The constant K does not depend on X. 

A more interesting formulation is obtained if one assumes knowledge of 

long-run equilibrium quantities and solves for the expected equilibrium 

prices. This programming version is not unusual when considered in a planning 
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context. The planning board may wish to choose ~ priori the expected quantity 

targets and find out the associated expected prices. In this case, letting 

X : d, the appropriate specification obtained from problem (6) is as follows: 

{ ' ' ' ' } (9) Min y b + [($d Exp - d )P + ($/2)P ExP] + K 

subject to ' P - $Expp - A y ~ $Lpd 

-$ExP ~ ($Epx - I)d 

P~O, y~O. 

Problem (9) is also a concave program and follows from problem (6) after 

replacing the expected quantities X with the known levels d. The constant K 

does not depend on P. This version can give, indirectly, a measure of the 

wisdom of fixing~ priori the expected quantity targets. In fact, dual 

variables for the two sets of constraints in problem (9) are to be regarded as 

expected quantities and prices, respectively (as in problem (6)). Dual 

quantities which are very different from the pre-assigned levels of 

quantities, X, correspond to an inefficient allocation that inevitably will 

manifest itself also in a difference between expected prices and dual prices. 

Economic problems formulated according to the structure of model (9) are very 

useful for analyzing the impacts of administered prices within a sector, a 

region, or the entire economy. Since prices appear explicitly in the 

constraints, they can be further restricted to the range desired by the 

administering board. 

A RATIONAL EXPECTATION MODEL 

The above discussion has allowed the gradual introduction and analysis of 

a novel quadratic programming model incorporating expectations about prices 

and long-run adjustments of quantities. Following Muth, one can define as 
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rational expectations those processes of expectation formation which are based 

on the relevant economic theory and the most complete information set. 

Accordingly, an expectation model which incorporates supply and demand 

conditions and technological relations as well as information about the risky 

prospects can be regarded as a rational expectation model. To this purpose, 

let Xn and x5 represent expected long-run demand and supply quantities. Then, 

the following model is a rational expectation model in the form of a quadratic 

program. 

{ ' ' ' ' 1} (10) Max P Xn - (~/2)[Xn I~n + P IxP + 2X nixpP 

subject to AX5 ~ b 

Xs - SP • f 

Production technology 

Supply functions 

Xn + DP = c Demand functions 

Xn - Xs + v+ - V- • O Market clearing conditions. 

P ~ o, Xn ~ o, x5 ~ o, v+ ~ o, v- ~ o, 

where v+ and v- are nonnegative slack vectors. 

The objective function has the same meaning as in problem (5). The first 

set of constraints characterize the production technology. The second set 

represents a system of a linear supply functions with S being the matrix of 

slopes and f the vector of intercepts. The third set of constraints 

represents a system of linear demand functions. The corresponding slopes are 

grouped into the D matrix while the intercepts are the elements of the 

c vector. Notice that this formulation allows for either excess demand or 

excess supply or for equality between the two quantities. The empirical 

implementation of a model such as (10) would require the econometric 

estimation of the demand and supply systems. The inclusion of technological 

constraints is optional. In general, supply functions incorporate 
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(implicitly) the relevant technological information. It is suggested that 

while the supply functions are aggregate relations, the production technology 

expressed by the A matrix is a detailed, regional description of the 

production processes capable of transmitting at the local level the impacts of 

administered prices and general market equilibria. 

AN ADAPTIVE EXPECTATION MODEL 

When price expectations are assumed to be adaptive, their analytical 

expression can be stated as 

where B is a diagonal matric of known expectation coefficients bounded by zero 

and unity, PAt-1 is the vector of actual equilibrium prices at time t-1, and 

Pt is the vector of expected prices in period t. The coefficients in B can be 

estimated econometrically. Prices PAt-l are known since, at time t, markets 

have revealed prices at time t-1. Furthermore, when the interest is to use 

model (5) and scheme (11) for a period of years, it is convenient to consider 

the vector of expected prices Pt-1 as unknown. This implies that the first 

time model (5) is solved, Pt-1 will appear explicitly as a variable while in 

subsequent periods the corresponding price expectations will be computed 

according to (11). The "first-period" adaptive expectation model can readily 

be obtained by substituting relation (11) into model (5) and rearranging 

terms. This substitution results in the following model 
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where C't-1 : (P'At-lB - ~PAt-l~px), D't-1 - ~ P'At-1(! - B)~xB, 

Q = (I - B)Lx(I - B), R = Lxp<r - B). 
\ 

In subsequent periods, the problem of finding expected long-run 

quantities is 

(13) Max {[c't - ~P'tR']Xt+l - (~/2)X't+l~pXt+1} 

subject to AXt+l ~ bt+l , Xt+l ~ O. 

The recursive nature of this expectation model is well suited for forecasting 

optimal quantities one step ahead since it incorporates all the available 

information on expected and actual prices as it becomes available. 

A LONG-RUN ADJUSTMENT MODEL 

Nerlove has suggested that a long-run adjustment model can be stated as 

where Xt is the vector of long-run equilibrium outputs, XAt is the vector of 

short-run equilibrium outputs, and r is a (n x n) diagonal matrix of known 

adjustment coefficients bounded by zero and unity, 0 <Yi~ 1, i = l, ••• n. 

From (14), expected long-run equilibrium quantities can be expressed as 

(15) Xt = GXAt + (I - G)XAt-1 

where G = r-1. The Nerlovian adjustment hypothesis expresses the long-run 

adjustment quantities as a weighted average of short-run equilibrium 

quantities in the two most recent periods. 

Substituting relation (15) into model (6), a quantity-price adjustment 

model is obtained which exploits the recursive nature of (15): 
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subject to Pt - $Lxppt - $LpGXAt ~ $Lp(I - B)XAt-1 

- $~xpt + (G - $LpxG)XAt ~ [$Lpx(I - G) - (I - G)]XAt-l 

pt ~ 0 , XAt ~ O. 

where f't: $x'At-1(l - G)LpG and g't: [$X'At-1(l - G)Lxp - X'At-1(1 - G)]. 

In model (16) the quantity vector XAt-1 is presumed known. The unknowns, 

therefore, are the expected prices Pt and the short-term equilibrium 

quantities XAt• To the extent that the level of XAt obtained by solving 

problem (16) differs from the levels of quantities realized in the economy, 

the expectations about prices, Pt, will not be exactly those desired. 

However, the recursive character of the model allows for the updating of the 

information in the vectors g and f as soon as it becomes available. Also in 

this case, a one-period-ahead prediction of equilibrium prices and quantities 

is conveniently formulated. 

CONCLUSIONS 

Traditional quadratic programming models can be extended to include the 

determination of expectations about prices and quantities. This requires 

casting the empirical problem in a planning framework. Several versions of 

the expectation model were discussed. The most satisfactory seem those which 

incorporate the maximum amount of technological and economic information about 

production and marketing conditions. 

From a planning viewpoint, the price expectation model has the distinct 

advantage of allowing the explicit imposition of constraints on prices. This 



11 

practice may be very useful when prices are administered as in many 

agricultural and infant industry situations. 

An interesting perspective is the poss}bility of using the adjustment and 

the adaptive expectation models in tandem to minimize the inconsistency of 

estimated price and quantity levels over a period of years. The price vector, 

Pt, estimated from model (16) can be substituted into model (13) to obtain the 

expected quantity levels Xt+l which, in turn, can be used in the adjustment 

equation (14) to derive an estimate of the actual quantity levels XAt+l to be 

used again in model (16), and so on. This procedure has the advantage of 

using all the price and quantity information as produced by the economy to 

verify and correct the prediction of expected prices and long-run equilibrium 

quantities. 

jh 1/4/83 JW6 
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APPENDIX 

To obtain the dual of problem (5) it is necessary to set up the relevant 

Lagrangean function, to derive the appropriate Khun-Tucker conditions and, 

then, to simplify the dual function. That is, the Lagrangean function is 

(A.l) L = P
1
X - ($/2)[P

1
ExP + X

1
EpX + 2X

1

ExpP] + y
1

(b - AX). 

The Khun-Tucker conditions are 

(A.2) 

(A.3) 
I I I I I I 

x (oL/oX) = x p - $X EpX - $X ExpP - x A y = 0 

(A.4) 

(A.5) 
I I I I 

p (oL/oP) = p x - $P ExP - $P EpxX = 0 

(A.6) (oL/oy) = b - AX > 0 

(A.7) 
I I I 

y (oL/oy) = y b - y AX = o. 

The objective function of the dual problem, represented by the minimization of 

Lagrangean function, can be simplified using conditions (A.3) and (A.5) as 

follows: 

using (A.3) 

using (A.5). 

The constraints of the dual problem are relations (A.2) and (A.4). 



13 

REFERENCES 

Bohrnstedt, G. W. and A. S. Goldberger. "On The Exact Covariance of Products of 

Random Variables." J. Am. Stat. Ass. 64(1969): 1439-43. 

Freund, R.J. "The Introduction of Risk into a Programming Model." 

Econometrica 24(1956):253-63. 

Markowitz, H.M. Portfolio Selection: Efficient Diversification of 

Investments. Cowles Foundation Monograph 16, New Haven, Conn. (1959). 

Murtagh, B. A. and M. A. Saunders. MINOS, A Large-scale Nonlinear 

Programming System. User's Guide. Technical Report Sol 77-9, Dept. of 

Operations Research. Stanford University (1977). 

Muth, J. F. "Rational Expectations and the Theory of Price Movements." 

Econometrica 29(1961):315-35. 

Nerlove, M. The Dynamic of Supply: Estimation of Farmers' Response To Price. 

The Johns Hopkins Press. Baltimore (1958). 

Pratt, J. W. "Risk Aversion in the Small and in the Large." 

Econometrica 32(1964):122-36. 




	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016

