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MULTIPLE SOLUTIONS OF COMPLEMENTARITY PROBLEMS 

Introduction 

The importance of not overlooking multiple optimal solutions in empirical 

studies based on linear programming (LP) models was discussed by Paris in a 

recent article. In the last decade, however, quadratic programming (QP) 

models have been used at an increasing rate for analyzing problems of choice 

under market and general equilibria as well as under risky environments. 

While conditions leading to alternate optimal solutions in LP have been 

known for a long time, knowledge of the structural causes underlying multiple 

optimal solutions in QP, and of criteria for their detection is rather 

limited. The study of this subject is of recent vintage. The results 

obtained so far are confined either to specialized journals or unpublished 

papers. 

The existence of either unique or multiple optimal solutions in QP models 

has significant consequences in the formulation of policy recommendations. 

Unfortunately, commercial computer programs for solving QP problems are 

completely silent about this aspect and leave it entirely to the enterprising 

researcher to find convenient ways for assessing the number of optimal 

solutions and their values. 

The Linear Complementarity Problem 

One promising way to gain insight into this rather complex problem is to 

regard the quadratic program as a linear complementarity (LC) problem. 

Consider the following symmetric QP problem 

(1) max {c'x - kxx'Dx/2 - kyy'Ey/2} 

subject to Ax - kyEY ~ b, x 2 O, y 2 O, 
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where A is an (mxn) matrix, D and E are symmetric positive semi-definite 

(PSD) matrices of order n and m, respectively. Parameters kx and ky are 

nonnegative scalars suitable for representing various economic scenarios, 

from perfect and imperfect market equilibria to risk and uncertainty 

problems. It can be easily shown that the necessary and sufficient 

Kuhn-Tucker conditions corresponding to (1) can be written in the form of the 

following LC problem: find a [Cn+m)xl] vector z such that 

(2) w = Mz + q ~ 0, z > 0 

and z'w 0, 

where w is a [Cn+m)xl] vector of slack variables, q' = [-c', b'] , 

A' 
z' [x', y'] and M is an A [Cm+n)x(m+n)] PSD matrix (for any A). 

-A kyE 

It should be apparent that when E is the null matrix, problem (1) represents 

the traditional asymmetric quadratic program, and when both D and E are null 

a LP problem is obtained. 

It is well known that when multiple optimal solutions exist in a LP 

problem, their set constitutes a face of the convex polytope of all feasible 

solutions. This property can be extended to the LC problem (2). First of 

all, notice that the linear inequalities of problem (2) form a convex set of 

feasible solutions. Of course, we are not merely interested in the set of 

feasible solutions but in the set of feasible as well as complementary 

solutions, that is those solutions (w, z) which satisfy the feasibility 

conditions w ~ 0, z ~ 0 and also the complementarity condition w'z = O. All 

complementary solutions to (2) are optimal solutions for the QP problem (1). 

In LP problems, the set of optimal solutions is convex. This well known 

fact implies that a convex combination of any two optimal solutions is itself 

an optimal solution. From an empirical viewpoint this is an important result 
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because it admits that the number of positive components of an optimal 

solution be greater than the number of independent constraints. Hence, when 

multiple optimal solutions exist, one can select a more diversified solution 

for policy recommendation. It turns out that, as in LP, the set of optimal 

solutions in QP problems is convex. To demonstrate this less known 

proposition it is sufficient to prove that the set of complementary solutions 

of problem (2) is convex. The proof requires the results of the following 

Lemma: Suppose(~, w,) and (z, w) are complementary solutions to problem (2). 

then, ~'; -= w'z 

Proof: According to (2), the definition of thew and w vectors is w = Mz + q 

(3) 

and ~ = M~ + q. Subtracting w from~: (~ - ;) = M(~ z). 

Premultiplying by(~ - ;)' the above result gives 

(~ - ;)'(; - ;) = (~ - ;)'M(~ - z) > 0 because Mis PSD 

~'w < o. 

The simplification in the second row of (3) is obtained because, by 

assumption, (~, w) and (;, ;) are complementary solutions. Furthermore, the 

inequality is established in the direction of nonpositivity because ~. ~. z, 

and w are nonnegative. Hence, the two inequalities in (3) establish the 

conclusion of the lemma. 

We can now demonstrate the following important: 

Theorem: The set of all complementary solutions in a PSD-LC problem is 

convex. 

Proof: Consider any two distinct pairs of complementary solutions to problem 

(2), say(~, w) and(~, w). We need to show that (z, w) defined as a 
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convex combination of (~, ;) and (~, ~) is also a complementary solution. Let 

z = az + (1 - a)~ and w =aw+ (1 - a)~ for 0 ~a> 1. Then, (z, w) is a 

feasible solution to (2) since z > 0, w > 0 and 

Mz + q = M[a~ + (1 - a)~] + q 

= aM~ + (1 - a)Mi + q 

= a(; - q) + (1 a)(~ - q) + q 

= a; + (1 - a)~ = w. 

To show that (z, w) is a complementary solution 

w1 z [a;+ (1 - a)~] 1 [a; + (1 - a)~] 

= a2; 1 ~ + (1 - ~)2~ 1 ~ + a(l - a); 1 ~ + a(l - a)w 1
; = o 

since ;i~ and ~ 1 ~ are equal to zero for being complementary solutions, while 

;i~ and ~ 1 ; are zero according to the lemma. 

An important corollary to this theorem is that the number of solutions 

to a PSD-LC problem is either 0, 1, or~. This is so because either the 

problem has no solution, or has a unique solution, or if it has more than one 

solution, by convexity it has an infinite number of them. 

Determining the Number of Solutions 

Judging from the empirical literature, almost never it has been a 

concern of authors to state whether a QP problem possesses either a unique or 

multiple optimal solutions.1 It is difficult, however, to downplay the 

importance of this aspect in empirical studies. To turn the tide around, 

referees and journal editors ought to make it a definite point to require 

information about uniqueness of the solution in all mathematical programming 

analyses submitted to them. Admittedly, this additional piece of information 
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requires additional computations over and above those necessary to obtain an 

optimal solution. In econometrics, computational requirements have rarely 

been regarded as a deterrent for achieving a correct and complete analysis. 

There is no reason to suppose that they should deter a mathematical 

programmer. 

To reduce as much as possible these additional computations a two-stage 

procedure seems convenient. After achieving any optimal solution of the QP 

(LC) problem, determine the number of solutions by means of a recent 

suggestion presented by Kaneko. If the results of the algorithm indicate that 

the solution is unique, stop. If the number of solutions is infinite, it is 

possible to proceed to find all the extrme point optimal solutions (finite in 

number) of the QP problem through the combination of results obtained by Adler 

and Gale and by Mattheiss. 

The algorithm suggested by Kaneko is simple. As already stated, its 

objective is to determine the number of solutions of the PSD-LC problem, not 

to find those solutions. The first step is to solve the LC problem 

(corresponding to the QP problem) by means of any suitable algorithm, for 

example, Lemke's complementary pivot algorithm. At this point, let p = {J,} 

be the set of all the j indexes for which wj = Zj = O, j = 1, ••• m+n, 

where (z, w) is a solution to (2). In other words, consider all the 

degenerate components of the complementary solution. If p is empty, p = j{, 

stop because the solution is unique. Otherwise, let M be the transformation 

of Min the final tableau of the Lemke's algorithm and solve the following 

PSD-QP problem. 

(4) minimize R = u'Mppu/2 

subject to s'u ~ 1, u > 0 
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where s is a vector of ones. This QP problem corresponds to the following 

PSD-LC problem 

(5) Lv + d ~ 0, v > 0 

v'(Lv+ d) = 0 

where L • rjjpp -~ , d • [ O 

L·· ~ -! 

Kaneko has demonstrated that 

and v = u l . 
2RJ 

f no solut on exists or if a solution is found 

such that R > 0, then the solution to the original QP (LC) problem is unique. 

On the contrary, if a solution exists such that R = 0, then the number of 

solutions to the original QP (LC) problem is infinite. In other words, the 

matrix Mpp must be positive semi-definite. Notice that the dimensions of the 

Mpp matrix depend on the number of degeneracies present in the first optimal 

solution found in step 1. In many instances Mpp is a very small matrix and 

problem (4) is easy to solve. 

The rationale of Kaneko's algorithm is based on the fact that a 

degenerate solution of the LC problem opens the way for the linear dependence 

of the vectors in a submatrix, MPP' of the final optimal tableau of problem 

(2). The constraint of problem (4) defines a convex combination, while the 

objective function tests the linear dependence (or independence) of the subset 

of vectors associated with the degenerate components of the original optimal 

solution to problem (1). Hence, degeneracy of an optimal solution is a 

necessary but not sufficient condition for tlllltiple optimal solutions: 

degeneracy and linear dependence of the associated submatrix are necessary and 

sufficient. 

To illustrate this point and the working of Kaneko's algorithm, two 

numerical examples of asymmetric quadratic programs will be discussed. 

Example 1 illustrates the necessary aspect of degeneracy (but not its 
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sufficiency) for the existence of multiple optimal solutions. Example 2 shows 

that degeneracy of an optimal solution nrost be accompanied by linear 

dependence of the submatrix, MPP' for the existence of multiple optimal 

solutions. Familiarity with the complementarity pivot algorithm of Lemke will 

be assumed throughout. 

Example _!_ 

max {c'x - x'Dx/2} 

subject to Ax ~ b, x > 0 

where c' = [12 8 11/2], b' = [18 12] 

A=[6 4 2] 
4 3 1 

3 2 3/2 

4/3 1 
D = 

2 

3/2 1 3/2 

The matrix D is PSD of rank 2. To formulate and solve this QP problem as a 

LC problem we must set up a tableau following Lemke's instructions and having 

the structure (Iw - Mz - szo; q), wheres is a vector of ones and z0 is the 

associated artificial variable. All the other components of the problem are 

defined as in (2). The layout of Example 1 is given in Tableau 1. The final 

Tableau exhibiting a complementary solution is given in Tableau 2. The 

complementary solution of Tableau 2 translates into an optimal QP solution as 

z1 = x1 = 3, z4 = YI = 1/2 while all the other x and y variables are zero. 

The optimal value of the QP objective function is 22.5. 

Degeneracy appears in three pairs of complementary variables Wj = zj = 0 

for j = 2, 3, 5. Hence, Kaneko's index set is p = {2, 3, 5}. This index set 

corresponds to the following -Mpp matrix 
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Tableau 1. Initial Tableau of Example 1 

Basic 
w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 zo q Variables 

1 -3 -2 -3/2 -6 -4 -1 -12 w1 

1 -2 -4/3 -1 -4 -3 -1 -8 w2 

1 -3/2 -1 -3/2 -2 -1 -1 -11/2 w3 

1 6 4 2 0 0 -1 18 w4 

1 4 3 1 0 0 -1 12 w5 

Tableau 2. Final Tableau of Example 1 (after reordering 
of rows and columns) 

Basic 
z1 w2 w3 z4 w5 w1 z2 z3 w4 zs q Variables 

1 0 2/3 1/3 1/6 0 3 z1 

1 -2/3 0 0 0 -1/3 0 w2 

1 -1/3 0 -5/6 1/12 1/3 0 w3 

1 -1/6 0 1/12 -1/12 2/3 1/2 z4 

1 0 1/3 -1/3 -2/3 0 0 w5 
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0 0 -1/3 

-M = PP 0 -5/6 1/3 

1/3 -1/3 0 

To determine the uniqueness or the nultiplicity of solutions according to 

Kaneko one must solve problem (4), alternatively problem (5). We choose 

problem (5) and Tableaux 3 and 4 give the corresponding initial and final 

layouts. 

From Tableau 4 it can be observed that v4 = 2R = 2/15 ) 0, and hence, in 

spite of its extended degeneracy, the problem in Example 1 has one 

complementary solution, the one presented in Tableau 2. Correspondingly, it 

can be observed that the matrix Mpp is positive definite. Of course, with a 

small matrix it may be easier to determine its definiteness directly by means 

of evaluating its minors and determinant. But as soon as the dimensions of 

Mpp become respectable, say greater than 6 or 7, solving Kaneko's problem (5) 

is definitely easier. 

Example 1 

In this example another QP problem is considered with the following 

coefficients 

c' = [12 8 4], b' = [18 12] 

[: :] 
3 2 1 

4 
A= D = 2 4/3 2/3 

3 
1 2/3 1/3 

The matrix D is PSD of rank 1. The initial and final Tableaux corresponding 

to this problem are presented in Tableaux 5 and 6, respectively. 
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Tableau 3. Initial Tableau for Problem 5, Example 1 

Basic 
w1 w2 w3 w4 v1 v2 v3 v4 vo q Variables 

1 0 0 -1/3 1 -1 0 w1 

1 0 -5/6 1/3 1 -1 0 w2 

1 1/3 -1/3 0 1 -1 0 w3 

1 -1 -1 -1 0 -1 -1 w4 

Tableau 4. Final Tableau for Problem 5, Example 1 (reordered) 

Basic 
w1 v2 v3 v4 V1 w2 w3 w4 q Variables 

1 -8/15 4/5 -9/5 -1/15 1/15 w1 

1 4/5 -6/5 6/5 -2/5 2/5 v2 

1 1/5 6/5 -6/5 -3/5 3/5 v3 

1 3/5 -2/5 7/5 -2/15 2/15 v4 
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Tableau 5. Initial Tableau of Example 2 

Basic 
w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 zo q Variables 

1 -3 -2 -1 -6 -4 -1 -12 w1 

1 -2 -4/3 -2/3 -4 -3 -1 8 w2 

1 -1 -2/3 -1/3 -2 -1 -1 -4 w3 

1 6 4 2 0 0 -1 18 w4 

1 4 3 1 0 0 -1 12 w5 

Tableau 6. Final Tableau of Example 2 (reordered) 

Basic 
z1 'W2 'W3 z4 'W5 'W1 z2 z3 'W4 z5 1T Variables 

1 0 2/3 1/3 1/6 0 3 z1 

1 -2/3 0 0 0 -1/3 0 w2 

1 -1/3 0 0 0 1/3 0 w3 

1 -1/6 0 0 -1/12 2/3 1/2 z4 

1 0 1/3 -1/3 -2/3 0 0 w5 
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The index set of degenerate complementary variables is again p 

{2, 3, 5} and the corresponding -Mpp matrix is 

0 0 -1/3 

-MPP = 0 0 1/3 

1/3 -1/3 0 

The matrix Mpp is, obvioulsy, PSD. Hence, we can conclude that the QP in 

Example 2 has multiple optimal solutions. However, for sake of completeness 

and for familiarizing with Kaneko's algorithm and its interpretation the full 

computations are presented in Tableaux 7 and 8. 

Tableau 8 shows that v4 = 2R = 0 and we conclude that the QP problem of 

Example 2 possesses an infinite number of multiple optimal solutions. 

Determining All Basic Complementary Solutions 

Once it has been determined that the number of solutions of a given QP 

(LC) problem is ~, it is of interest to find all the basic complementary 

solutions associated with the vertices of the corresponding convex set. 

Recall that such a set constitutes a face of the convex set of feasible 

solutions of the given LC problem. Adler and Gale have demonstrated that this 

face is defined by the following systems of inequalities and equations 

0 

where M is the complementary transform of the given LC problem obtained in 

the final Tableau of the Lemke's algorithm; p is the index set of subscripts 

corresponding to degenerate complementary pairs of variables; M.p is the 

submatrix of M with the columns defined by the index set p; Mpp is the 



13 

Tableau 7. Initial Tableau for Problem 5, Example 2 

Basic 
w1 w2 w3 w4 v1 v2 v3 v4 vo q Variables 

1 0 0 -1/3 1 -1 0 w1 

1 0 0 1/3 1 -1 0 w2 

l 1/3 -1/3 0 1 -1 0 w3 

1 -1 -1 -1 0 -1 -1 w4 

Tableau 8. Final Tableau of Problem 5, Example 2 (reordered) 

Basic 
w1 v2 v3 V4 v1 W2 W3 V4 q Variables 

1 0 -3/2 +3/2 -1/2 1/2 v1 

1 3/2 0 -3/2 -1/2 1/2 v2 

1 -3/2 3/2 0 0 0 v3 

l 1/2 1/2 0 0 0 v4 
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submatrix of M with both rows and columns defined by p; q is the transform of 

q in the final Tableau. 

Any solution to (6) and (7) constitutes a complementary solution to the 

original LC problem. At this point an algorithm is required for enumerating 

all vertices of problem (6) and (7). The work of Mattheiss provides such an 

algorithm that is both elegant and efficient. 

Consider the system of linear inequalities Ax ~ b, which must include all 

nonnegative constraints. Let A be a mxn matrix, m ) n. Let K be the n-convex 

set of solutions of the given system of inequalities. K is embedded in a 

one-higher-dimensional space forming the convex (n+l) polytope C, which is the 

set of feasible solutions of the following linear program: 

(8) maximize Z = y 

subject to Ax + ty + Is = b, y ~ o, s ~ 0 

where x is a (nxl) vector variable, y is a scalar variable, s is a (mxl) 

vector of slack variables and t is a (mxl) vector of coefficients defined as 

n 2 1/2 
ti = o::j=l aij) ' i=l, ••• ' m. 

The t vector is regarded as a generalized slack activity whose purpose 

is to define and construct the radius of the largest sphere inscribable in 

the set of feasible solutions K. The idea of embedding K in C is to make the 

convex set K to be a face of the (n+l) polytope c. Then, by starting at the 

vertex of C where (the radius) y is maximum, it is possible to reach every 

vertex of K by simplex pivot operations that, it is well known, lead to 

adjacent vertices. 

Every optimal solution to the linear program (8) is characterized by all 

Xj variables j=l, ••• , n and y as basic variables. Otherwise, the problem is 
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infeasible. Also (m-n-1) slack variables will be basic while the remaining 

(n-1) slacks not in the basis (si=O) identify the set of binding constraints 

Hp where p is the index of the solution. 

The primal tableau of a basic feasible solution has the following 

structure: 

z x y SB SNB B 
z 1 w z 
x I ux BX 
y 1 UY BY 

SB I us BS 

where SB = slack variables in the basis. 

SNB = slack variables not in the basis. 

B = the solution column, BX is a (nxl) block giving the values of x, 

BY is a (lxl) scalar giving the value of y and BS is a 

[(m-n-l)xl] block giving the solution values of the basic slack 

variables SB. 

W = the row of dual variables. 

Z = the current solution value. 

U = the matrix of coefficients of the slack variables not in the basis 

divided in three blocks corresponding to X, Y and S variables. 

To travel from one vertex to another vertex of C requires pivot operations 

according to the feasibility criterion of the primal simplex algorithm. 

However, a pivot in the UX block of coefficient is inadmissible because it 

would remove some Xj from the basis, thus leaving the set of feasible solution 

K. A pivot selected in the US block will exchange slack activities in the 

basis, providing another solution of the linear program. A pivot executed 

in the UY block eliminates y from the basis and projects C onto some vertex 

of cnK, one of the desired vertices. 
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The description of the algorithm provided by Mattheiss is complete but 

also rather elaborate. Some numerical examples should be of help in following 

and understanding the thread of reasoning and the required computations which 

generate all the complementary solutions to a given LC problem. Of course, a 

careful reading of Mattheiss' paper will provide valuable insights and 

indispensible details. 

Two numerical examples will be discussed. The first example is a linear 

program with multiple optimal solutions. We desire to enumerate all the basic 

optimal solutions using Adler and Gale and Mattheiss results. Since it is 

possible to obtain, rather simply, all the basic optimal solutions by other 

more traditional procedures, this example will help in understanding Adler, 

Gale and Mattheiss' algorithm in a way that is useful for more complex 

problems. The second example is Example 2 of the previous section where a QP 

problem was detected to possess multiple optimal solutions. 

Example l_ 

Consider the following LP problem: 

max {53/22)x1 + (39/22)x2 + 5x3 + 2x4} 

subject to 

x· ) 0 
J -

< 4 

j=l, ••• ,4. 

Although Lemke's algorithm is not the most indicated computational procedure 

to solve a LP problem, we choose this method to maintain uniformity throughout 

the paper. Tableaux 9 and 10 present the initial and the optimal Tableaux of 

the above LP Example 3. 

The first primal optimal solution is z3 = x3 = 8/11, z4 = x4 = 4/11 

x1 = x2 = 0. The dual optimal solution is z5 = Yl = 12/11, z6 = Y2 = 5/22. 
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Tableau 9. Initial Tableau of Example 3 

Basic 
w1 w2 w3 w4 w5 w6 z1 z2 z3 z4 z5 z6 zo q Variables 

1 0 0 0 0 -2 -1 -1 -53/22 w1 

1 0 0 0 0 -1 -3 -1 l-39/22 w2 
I 

1 0 0 0 0 -5 2 -1 I -5 w3 

1 0 0 0 0 -1 -4 -1 I -2 w4 

1 2 1 5 1 0 0 -1 I 4 w5 
I 

1 1 3 -2 4 0 0 -1 I 0 W6 

Tableau 10. Final Tableau of Example 3 (reordered) 

Basic 
w1 w2 Z-3 Z-4 Z-5 z-6 z1 z2 w3 V4 V5 v6 q Variables 

1 0 0 -7/22 -9/22 0 0 0 w1 

1 0 0 -1/22 -17/22 0 0 0 w2 

1 7/22 1/22 0 0 -2/ 11 -1/22 8/11 z3 

1 9/22 17 /22 0 0 1/11 5/22 4/11 z4 

1 0 0 -2/11 -1/11 0 0 12/11 z5 

1 0 0 1/22 -5/22 0 0 5/22 Z6 
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The index set of degenerate pairs of complementary variables is p = {l, 2}. 

The systems of inequalities and equalities corresponding to the face of the 

convex set of multiple optimal solutions and given by (6) and (7) are, 

respectively, 

0 0 

G:J 
0 0 

0 0 0 0 

[:J 
-7/22 -1/22 8/11 0 

[::] ( 6) I + > > 
-9/22 -17/22 4/ 11 0 

0 0 12/11 0 

0 0 5/22 0 

(7) I 

[: ~ ~J = [:] 
Hence, system (7)' is vacuous, while system (6)' can be reduced to the two 

central inequalities. Mattheiss' algorithm can thus be applied to the 

following reduced system expressed in the Ax < b form: 

7/22 1/22 

[:~ 
8/11 

< 
9/22 17/22 4/11 

(8) 
-1 0 

-1 0 

Prior to analyzing system (8) algebraically, and proceed with Mattheiss' 

algorithm, it is convenient to graph it. Figure l indicates that the convex 

polytope K of feasible solutions to (8), whose vertices are sought, possesses 

three extreme points (0, 0), (O.O, 0.89) and (0.47, 0.0) and that constraint l 

is redundant. It also shows that the largest sphere inscribable in the convex 

set of feasible solutions, K, has a radius y = 0.177. 
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Figure 1. The set of solutions, K, to system (8). 
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The initial and the final Tableaux of Mattheiss' set up are presented in 

Tableaux 11 and 12, respectively. The primal simplex algorithm is used for 

solving this part of the problem. 

Tableau 12 shows that, at this stage the basic variables are z1, z2, y 

and s1• The nonbasic variables are s2, s3 and s4 which have been starred to 

indicate that the corresponding constraints are binding. The values of z 1 and 

z2 (as well as y) are all equal to .1769. They are to be interpreted as the 

coordinates of the center of the maximum circumference (sphere, in higher 

dimensions) inscribed in the K-polytope, as illustrated in Figure 1. 

Mattheiss' algorithm requires a thorough analysis of Tableau 12. First 

of all H1 = {2, 3, 4} defines the set of binding constraints for this Tableau. 

A record R1 is defined by the value of the linear objective function (the 

radius of the largest sphere) and by the set of binding constraints, that is, 

R1 = {.1769, (2, 3, 4)}. In the process of analyzing a record, either a new 

record or a set of vertices of K are obtained. A list is a set of records. 

When all the records have been analyzed and eliminated from the list, the 

algorithm terminates. 

The analysis of a record is performed through a set of pivot operations. 

Recall that it is legal to pivot only in the rows corresponding to either y or 

slack variables. Choose a pivot in each column of the nonbasic variables s* 

such that it maintains the feasibility of the solution. A pivot executed in 

a slack row generates a new record. A pivot executed in the y row generates a 

vertex of K. 

Let us proceed to the analysis of Tableau 12, (R1)• 

Step 1. H1 = {2, 3, 4}. 

Step 2. The pivot in the first nonbasic column, * is a pivot in the y row, s2 ' 

UY, (pivot is enclosed in parentheses) which generates the vertex 
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Tableau 11. Initial Primal Tableau, Example 3, system (8) 

Basic 
z z1 z2 y s1 s2 s3 s4 B Variables 

1 0 0 -1 0 0 0 0 0 z 

0 7/22 1/22 .3214 1 8/11 s1 

0 9/22 17/22 .8743 1 4/11 s2 

0 -1 0 1.0 1 0 s3 

0 0 -1 1. 0 1 0 s4 

Tableau 12. Final Tableau, Example 3, system (8) (reordered) 

Basic 
z z1 z2 y s1 s2* s3* s4* B Variables 

1 .4863 .1990 .3758 .1 769 z 

1 .4863 -.8010 .3758 .1769 z1 

1 .4863 .1990 -.6242 .1769 z2 

1 ( .4863) ( .1990) ( .3758) .1769 y 
~ 

1 -.3332 .1819 .2120 .6061 s1 
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of K, z1 = (0, O). In fact, the solution column corresponding to this 

pivot execution is 

o.o z 

o.o z1 

o.o z2 

0.3636 * s2 

0.7273 s1 

Step 3. The pivot in column s3* is, again, a UY pivot corresponding to the 

vertex of K, Z2 = (0.8889, 0.0). The solution column corresponding 

to this pivot execution is 

o.o z 

0.8889 z1 

o.o z2 

0.8889 * s3 

0.4444 s1 

Step 4. * The pivot in column s4 is a UY pivot corresponding to the vertex 

of K, Z3 = (O.O, 0.4706). The solution column corresponding to this 

pivot execution is 

o.o z 

o.o z1 

0.4706 z2 

0.4706 * s4 

0.7059 s1 
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The analysis of record R1 is completed. R1 is removed from the list. No 

other record is in the list and the algorithm is terminated. All vertices 

of K have been identified together with the redundant constraint corresponding 

to the slack variable s1 which, for this reason, was not starred. 

Notice that in terms of the original linear programming problem of 

Example 3, the slack variables s1 and s2 of Mattheiss' problem correspond to 

the variables x3 and x4. To summarize the enumeration of all the basic 

optimal solutions of Example 3, we have 

Optimal Solutions 
Variables Vertex 1 Vertex 2 Vertex 

3 I 
p xl o.o 0.8889 o.o 
R 
I x2 I 

o.o o.o 0.4706 
M 
A I x3 I 

0.7273 0.4444 0.7059 I L I x4 0.3636 o.o o.o 

D Yl I 
12/11 12/11 12/11 

I u 

I 

A Y2 I 
5/22 5/22 5/22 

I L 

It can easily be verified that all three primal basic solutions generate 

the same optimal value of the linear objective function in Example 3, that is 

48/11 = 4.3636. 

Example !!... 

To complete the description of the procedure to generate all optimal 

solutions of a QP problem, Example 2 of the previous section will be fully 

analyzed. Consider Tableau 6. 

The Mpp matrix corresponding top= {2, 3, 5} is such that (Mpp + Mpp) 

is a null matrix. Therefore, also in this example, constraints (7) are 
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inoperative. The M.p matrix establishes the following relevant inequalities 

corresponding to (6) 

2/3 1/3 0 z2 3 0 

0 0 -1/3 z3 0 0 z2 0 

0 0 1/3 z5 + 0 > 0 Z3 > 0 

0 0 2/3 1/2 0 z5 0 

1/3 -1/3 0 0 0 

Notice that, by inspection, one can immediately conclude that z5 = O. Thus, 

it is possible to reduce the problem to two inequalities 

(9) 12/3 

G_13 

The initial and optimal tableaux of Mattheiss' algorithm are presented in 

Tableaux 13 and 14, respectively. From Tableau 14, record R1 is R1 = 

{1.35, (1, 2, 3)}. Figure 2 illustrates this record. It shows that the 

three vertices are (0, O), (0, 9), (3, 3), while the radius of the largest 

sphere is 1.35. The distance of the circumference from constraint 4 is the 

slack s4 = 1.92. 

* * * Analysis of Tableau 14 starts with the starring of s1 , s2 , s3 because 

the corresponding constraints are binding. Pivots are in parentheses. 

Step 1. 

Step 2. 

* The selection of pivot in column s1 indicates a tie with pivots in 

both the UY and US block. The pivot executed in the UY row gives the 

vertex of K, z1 = {(Z2 = O, z3 = O}. The pivot executed in the US 

block creates a new record, R2 = {o, (2, 3, 4)} corresponding to 

Tableau 15. The list of records comprises R1 and R2. 

* The pivot executed in column s2 is a UY pivot and gives a vertex 

of K, z2 = (0, 9). 



z2 

. . . . 

Figure 2. The set of solutions to system (9). 
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Tableau 13. Mattheiss' Initial Primal Tableau, Example 4 

Basic 
z z2 z3 y s1 s2 s3 s4 B Variables 

1 0 0 -1 0 z 

2/3 1/3 • 7454 1 3 s1 

1/3 -1/3 .4 714 1 0 sz 

-1 0 1 1 0 s3 

0 -1 1 1 0 s4 

Tableau 14. Mattheiss' Optimal Tableau, Re cord R 1 , Example 4 (reordered). 
Pivots in parentheses. 

Basic 
z z1 z2 y s4 s1* s2* s3* B !Variables 

1 .4511 .4511 .4511 1.3533 I z 

1 .4511 .4511 -.5492 1.3533 II z2 

1 1.0891 -1.9111 .0903 3.2673 I z3 

1 ( .4511) (.4511) ( .4511) 1.3533 I y 

1 ( .6380) -2.3623 -.3606 1.9140 I s4 
I 

Tableau 15. Record R2 of Example 4 

Basic 
z z2 z3 y s1* s2* s3* s4* B Variables 

1 2.1213 .7058 -. 7070 0 z 

1 2.1213 -.2942 -. 7070 0 z2 

1 2.1213 .7058 -1.7070 0 z3 

1 2.1213 .7058 -. 7070 0 y 

1 -3.7026 -.5652 1.5674 3 I * s1 
I 
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Step 3. * The pivot executed in column s3 is a UY pivot and gives a vertex of 

K, Z3 = (3, 3). 

Record Ri is completely analyzed and is discarded from the list. The 

analysis of record R2 indicates that by pivoting in columns s2* and s3* 

vertices already identified are generated. * The pivot of column s4 is in the 

US block and its execution creates a new record R3 = R1, already analyzed. 

Hence, the algorithm terminates successfully, having identified all vertices 

of K. 

Notice that, in this example, slack s1 corresponds to x1 of the original 

QP problem. To summarize, the three optimal solutions of the QP problem in 

Examples 2 and 4 are: 

ComElementarl Solutions 
Variables Vertex 1 Vertex 2 Vertex 3 

p x1 3 0 0 
R 
I x2 0 0 3 
M 
A x3 0 9 3 
L 

It can easily be verified that each of these solutions corresponds to a 

value of the QP objective function of 22.5. Furthermore, any convex 

combination of these three solutions is another optimal solution. Hence, all 

the three activities can be operated efficiently at positive levels. 

Conclusions 

In the 1980s, the determination of the number and the value of multiple 

optimal solutions in OP is a feasible problem. All basic optimal solutions 

can be obtained in a rather efficient way if the computational scheme 

illustrated in this paper is adopted. This applies also to LP problems. 
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There remains the problem of choosing the solution to recommend or to 

implement among all the multiple optimal solutions. Depending on the goals of 

the empirical study, different criteria may be adopted for this task. A 

particularly appealing one is to choose that optimal solution which minimizes 

the squared distance from present practices, as suggested by Paris. This 

procedure requires the identification of all basic optimal solutions first 

and, secondly, the computation of the optimal weights for combining these 

basic solutions into an optimal convex combination. Another possibility is to 

compute first any optimal solution and its corresponding value of the 

objective function, say z*. Then, by extending a suggestion by McCarl and 

Nelson, an optimal solution having the property of minimizing the distance 

from present practices can be computed by solving the following nonlinear 

problem 

minimize (x - x)'(x - x)/2 a a 

subject to c'x - kxx'Dx/2 ~ z* 

Ax~ b, x ~ 0 

where xa is the vector of activity levels actually operated. This problem is 

quadratic both in the objective function and in one crucial constraint. 

Suitable algorithms already exist for solving such a problem. Its main 

advantage lies with the fact that it does not require the enumeration of all 

the basic optimal solutions. Its disadvantage consists in the nonlinear 

constraint. Furthermore, this procedure does not inform of how different 

various optimal basic solutions might be. The computation of all basic 

optimal solutions is more informative because it provides a complete analysis 

of the given QP (LC) problem. 

cfg 12/8/82 C-29 
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Footnote 

lvon Oppen and Scott (p. 440) present a rare passing reference of 

solution uniqueness of their QP model. They do not state, however, whether 

the associated quadratic form is positive definite or semi-definite, nor how 

the uniqueness of the solution was determined. 
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