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A TEST OF NUTRIENT NONSUBSTITUTION 
IN CROP RESPONSE AND FERTILITY CARRYOVER 

Introduction 

For many years agricultural economists have clung to the idea that the 

best form of crop response might be a second degree polynomial function. As 

can be verified from the literature, they even succeeded in convincing many 

agronomists to adopt it, although few of them would ever subscribe to its 

implications. A critical one concerns the possibility that macronutrients 

such as phosphorus (P), potassium (K) and nitrogen (N) substitute for each 

other in the process of plant growth. Although this idea was denied as early 

as 1840 by von Liebig in his "law of the minimum," it was propounded by Iowa 

scientists during a series of renowned seminars in the 1950's. A second 

degree polynomial was proposed then as a function capable to measure 

substitution coefficients. No doubt, a second degree polynomial with 

cross-product variables provides the framework for nutrient substitution. 

What it cannot provide is the possibility of nutrient nonsubstitution. In 

other words, a second degree polynomial function builds in substitution simply 

by the form of its structure. The cross-product variable terms, which in 

general represent interaction effects, have been interpreted almost 

exclusively as substitution terms. It is important to realize that 

substitution implies interaction while the converse does not. Surprisingly, 

the assumption whether or not macronutrients can and do substitute for each 

other in crop production was never put to a rigorous statistical test. 

Another crucial aspect of a second degree polynomial function is its 

symmetric shape which prevents the possibility of representing with sufficient 

accuracy a rather generalized phenomenon in crop response: the yield plateau 

maximum. Many crop response experiments, including that one analyzed by Iowa 
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scientists in their original proposal, reveal by simple inspection an extended 

yield plateau maximum which contrasts sharply with the point maximum of a 

second degree polynomial. As a consequence, the adoption of such a function 

for representing crop responses results in an overestimate of the yield 

maximum and, perhaps more importantly, produces a serious overestimate of the 

optimal dose of fertilizer. 

Recently, a functional form has been proposed for crop response analysis 

which allows the representation of von Liebig's "law of the minimum" and a 

yield plateau maximum (Anderson and Nelson; Waggoner and Norvell; Lanzer, 

Paris, and Williams). Therefore, the objective of this study is to conduct a 

rigorous statistical test of the nutrient nonsubstitution hypothesis in crop 

response. Specifically, second degree polynomial functions will be contrasted 

with a minimum and plateau function in their ability to represent the 

principal aspects of crop response. The test is a complex one for at least 

two reasons. First of all, it involves non-nested hypothesis procedures. 

Secondly, the estimation of the minimum function requires a mathematical 

programming approach. Finally, the complete specification of a crop response 

model requires the accounting of residual fertility by means of a carryover 

function expressed as a difference equation of soil test levels of nutrients. 

The Response and the Carryover Functions 

Numerous soil and weather variables affect crop response together with 

fertilizers' levels. To avoid the necessity of explicitly accounting for the 

multitude of soil type and weather variables (rarely available), we follow 

Lanzer, Paris, and Williams in their assumptions of weak separability between 

these variables and fertilizer nutrients. In this way, the general form of 

the response function can be specified as 
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(1) Y = g(s, w)f(b + x) = Awsf(b + x) 

where b represents a vector of nutrient levels initially available in the 

soil, x is a vector of fertilizer levels added to the soil, Y represents 

yield levels, while s and w are vectors of soil and weather variables. When 

knowledge of w and s is unavailable, the parameter Aws can be thought of as 

representing the yield plateau in a given set of experimental data determined 

by soil type and weather conditions at that site. In this way, soil and 

weather variables at the site do not need to be measured. The maximum yield 

for a given experiment can be used to measure the parameter Asw• leaving only 

the problem of specifying the form of the function f(b + x). 

The specification of the crop response model is incomplete without the 

carryover function of residual fertility. The ith component of the b vector 

in equation (1) is interpreted as the amount of the ith nutrient already in 

the soil. It is the flow component of the stock of the ith nutrient carried 

forward from past growing seasons. No direct measure of this variable is 

possible. Chemical soil analyses (soil tests) at the beginning of the season 

are used as an index of the potential amount of available nutrient in the 

soil, a part of which may be made available to the current crop. Soil tests 

have been traditionally assumed to be proportional to the actual level of 

* * nutrient available to the crop, that is bi= Aibi, where bi is the soil test 

for the ith nutrient and Ai is the corresponding factor of proportionality. 

Assuming furthermore that the A-values are stable over time, a fertility 

carryover function for the ith nutrient can, therefore, be specified as a 

difference equation such as 

(2) * bit = 
* -1 

g(bit-1 +Ai Xit-1• Yt-1) 
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where Yt-l is the crop yield of the preceding period prior to soil sampling, 
• 

and i = P, K. Where nutrient losses through either leaching or oxidation are 

insignificant, or alternatively, for immobile nutrients such as phosphorus and 

potassium, crop yields represent a major source of nutrient loss for the 

soil. 

The Rival Empirical Response Functions 

The empirical analysis of this study has attempted to contrast, by means 

of a rigorous statistical test, two families of mathematical specifications of 

crop response functions. Among the polynomial family, the quadratic and 

square root functions were considered in particular. With the available data 

resulting from an experiment with P and K, the quadratic polynomial function 

can be indicated as 

(3) 

where Y is the crop yield, Aws is the experiment's maximum yield, XpT and XKT 

are, respectively, the total amount of adsorbable phosphorus and potassirnn 

* * * * available in the soil, that is, XpT = Apbp + Xp and XKT = AK~ + xK. 

The square root specification is 

The only difference between these two specifications is that the square root 

function is flatter than the quadratic formulation. These two functions have 

been regarded for many years as the most flexible and suitable response 

functions to fit the data from fertilizer experiments. Functions of the type 

(3) and (4) can be readily estimated by ordinary least squares if the 

appropriate assumptions can be made about the associated error term, E. 
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As a rival specification the following nonsubstitution and plateau 

response function will be analyzed: 

where the fp and fK are linear splines with plateau in P and K, respectively. 

Specifically 

where t=l, ••• N, is the observation index, Zp0t = AwsXPOt' ZPjt = Aws(XPTt -

XpTj)Dpj for j=l, ••• Ip, XPTj is the jth knot, and Dpj is set to 1 if 

Aws<XPTt - XPTj) > 0 and is zero otherwise. The knots XPTj are fixed and 

known. A similar spline is specified for the potassium function fK(ZKT). The 

parameters Spt and SKt are slacks which must satisfy the constraint SptSKt 

0, t=l, N. Finally, the following constraints on the ~ coefficients ~PO> 0, 
Ip 

~Pj i 0, j > 1 and E ~Pj = 0 are imposed to assure the concavity and the 
j=O 

plateau of the response spline function. The estimation of the function (5) 

requires the use of mathematical programming methods as outlined below. 

Equation (5) can be estimated directly by maximum likelihood techniques 

if a particular probability distribution is assumed for the error term E. 

Assuming that E(Et) = 0, E(yt) is given by Min{fPt' fKt} which will be denoted 

by µt. Equation (5) may then be written as 

( 6) Yt = µt + Et 

where (i) µt = fp(ZpTt) = ZPTt~p - Spt 

(ii) µt = fK(ZKTt) = ZKTt~K - SKt 

(iii) 0 = SptSKt; all t=l, n 

and (iv) SPt ~ 0, SKt ~ O. 
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The symbols Spt and SKt represent slack variables, and because they are 

restricted to be nonnegative, the mean yield, ~t. will be equal to fPTt 

whenever ZPTt is limiting response. For instance, when ZPTt is the limiting 

nutrient, Spt = 0 and µt = ZPTt~P· 

With the additional asst.nnption that Et~ N(O, o2), equation (6) may be 

viewed as the standard regression model to which the technique of maximum 

likelihood estimation (MLE) could be applied in a straightforward manner. The 

only distinction is that in this case, there are the nonlinear and inequality 

restrictions stated in (i) through (iv) above. These restrictions together 

with the joint density functions of E = (E1,••••EN)' could be used to 

construct a Lagrangean objective function whose first-order conditions could 

then be used to obtain estimates of the parameters of (6). 

The residuals (Et) are asst.nned to be independently and identically 

distributed with a common mean and variance. Thus, directly minimizing the 

error smn of squares, S(E), from (6) subject to the given restrictions is 

equivalent to maximizing the log likelihood function of E subject to the same 

restrictions. 

Let Zi 
T 

(Zio••••,ZiI.) i=P,K, be an N x(I1 + 1) matrix of the x1 vector 
1 

transformed as indicated in (6). Also let ~i = (~iO•····~iI) be the vector 
i 

of spline coefficients. In compact form, µ, the vector of expected yields, is 

now given by Zi~i· If µ is the estimate of µ and e, the estimate of E, the 

vector of residuals from (6), then S(e), the error sum of squares, is given by 

e'e = (Y - µ)'(Y - µ)where Y is the N x 1 vector of yields. The problem of 

estimating ~i for i = P, K therefore becomes 



• (7) Min _h '£ 
2 

where 
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0 all t=l ,N 

i = P ,K 

£ unrestricted 

0 11 
0 01; 

-I OI 

~iO ~ 0; ~ij ~ O, j ~ 1, Ii and i = P, K. 

The problem in (7) has a nonlinear objective function and one set of 

nonlinear constraints, SptSKt = 0 for all t, in addition to linear and 

inequality constraints. The problem is solved by employing a nonlinear 

programming algorithm developed by Murtagh and Saunders. The algorithm is 

code named MINOS/AUGMENTED and is designed to solve large-scale optimization 

problems involving sparse linear and nonlinear constraints. 
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A Test of the Nutrient Nonsubstitution Hypothesis 

The use of quadratic and square root polynomials for crop response 

analysis gained popularity largely on grounds of simplicity and ease of 

computation. They also seem to fit the data on crop production rather well. 

Hence, they appear attractive whenever measures of relative performance are 

the only means for discriminating among competing mathematical forms. 

The most common measure of relative performance of models is the 

coefficient of multiple determination R
2 The R2, however, is not a 

powerful tool for selecting the best specification particularly when the 

competing forms are performing equally well. It may also be an ambiguous 

statistic when the models are estimated under unequal transformations. 

Selection procedures employing measures of relative performance are 

generally concerned with the subject of discrimination. There are times, 

however, when the interest is in hypothesis testing rather than 

discrimination. In the former case, the null hypothesis (Ho) is tested 

against an alternative (Hi). Ho is either rejected or not rejected at a 

prescribed probability level of a type I error (significance level). The 

decision process is restricted to only two possibilities since the truth of 

one hypothesis implies falsity of the other. The researcher nn.ist, therefore, 

be willing to be committed to one of the models being tested. Such a 

commitment implies that (only) one of the models is the true specification in 

terms of obeying prescribed assumptions. 

In the regression case, a test of Ho : fo(YjZ, ~' eo) against an 

alternative Hi : f1(YjX, y, e1) can employ the classical F-statistic based on 

the Neyman-Pearson likelihood ratio method if either X is orthogonal to Z or 

MxZ = O. The symbols X and Z refer to the sets of regressors, ~ and y are the 
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associated parameter vectors and EQ and £ 1 are the error terms of the 

respective models. Mx is the principal idempotent matrix under the 

alternative hypothesis and is given by I - X(X'X)-lx 1
• Given that all the 

classical assumptions of the regression model are obeyed under the respective 

models, the two hypotheses are said to be nested. This means that one can be 

obtained as a limiting case of the other. 

When the above conditions are not met, as in the case when X is not a 

subset of Z (or vice versa) or Z = logX, the hypotheses are said to be 

non-nested and the classical F-test is inappropriate [Cox, Pesaran]. 

In this study the interest is in testing the nonsubstitution 

specification presented in equation (5) against an alternative such as the 

quadratic or square root polynomial specification. 

Polynomials have been used in many studies intended for comparing the 

performance of different mathematical formulations. This tradition of 

comparing polynomial approximations with models based on biological principles 

of plant growth will be upheld here. In the present case, the thesis is that 

polynomials are used to approximate a biological relationship which is better 

explained, at least theoretically, in terms of the law of the minimum. The 

polynomials allow substitution among the essential nutrients P and K contrary 

to theory of plant nutrition. Equation (5), which is a generalization of the 

law of the minimum, does not allow substitution among nutrients. A polynomial 

portrays a symmetrical surface around a unique maximum yield. It would, 

therefore, fail to capture sharp bends and plateaux in a crop response 

surf ace. A polynomial fitted to a set of data showing a significant plateau 

can lead to overstated optimal yields and costly positive biases in fertilizer 

recommendations to producers. 
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The problem at hand is to statistically test the nonsubstitution model 

against a polynomial formulation. The null and alternative hypotheses are, 

therefore, given as 

0, all t; 

Sp~ O; SK> O; ~iO ~ O; ~ij ~ 0, j ~ 1, i=P,K. 

The symbols in (8) represent variables already defined in the preceding 

T T T TT T T 
equations and X y = Y1X1 + Y2<X1) 112 + y3(X1X2) 112 + y4(X2) 112 + y5X2 for the 

square root formulation. In the case of the quadratic forll1.llation, 
T T T TT T T 

X Y = YlXl + Y2(X1) 2 + y3X1X2 + y4(X2) 2 + y5X2• 

The null and alternative hypotheses in (8) are non-nested and, hence, the 

classical F-test is invalid. The literature on fertilizer use presents 

numerous comparisons of polynomials and other mathematical forms, but no 

empirical study in which the non-nested nature of hypotheses such as those in 

(8) was statistically recognized. 

Studies have shown that simplicity and performance of polynomials can be 

matched by models whose parameters are readily interpreted in biological 

terms. Waggoner and Norvell, for example, stated that "In fact, the law of 

the minimum fits these yields as well or better than any of the empirical 

functions used by Heady et al., (Table 1)." Only the R2 was used as the 

criterion for comparison between the law of the minimum and those used by 

Heady et al. Obviously, the authors' concern was whether their model was 

better or worse than the empirical alternatives previously suggested. The 

selection procedure was restricted to the models at hand. There was no room 

for the possibility that an alternative not considered together with the data 

could be used to reject all the hypotheses tested. 
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The problem of testing the hypotheses in (8) can be tackled by first 

constructing a comprehensive model. For the sake of brevity, the following 

notation will be adopted: fi (i = 0, 1) are to be viewed as probability 

density functions (pdf's), fo = f 0(z, ~)and f0 = f 0 (z, ~)while f 1 = f 1Cx1y) 

and f1 = f1(X, y). 

Linear nesting of models was discussed by Quandt. The comprehensive 

model is obtained as 

(9) feCYI~, y) = c1 - e)f0 + ef1 

where y is the dependent variable and e is the nesting parameter to be tested 

for zero and unity. In (9) parametric identification may fail but tests on e 

may still determine departures from the null hypothesis in the direction of 

the alternative or away from it. The identification problem can be 

circumvented in a number of ways, some of which will be mentioned shortly. A 

major weakness of the comprehensive model shown above is that it may not in 

itself constitute a viable theory regarding crop response. The two functions 

fo and f 1 may be such that the comprehensive model constructed from them does 

not make sense. Yet the latter acts as a third alternative whenever e is 

significantly different from zero and lies somewhere between zero and one. 

Another problem that may arise from (9) is that of multicollinearity. 

An alternative way of overcoming the identification problem is by using 

prior information. If, for instance,~ and y are known, then e in (9) becomes 

both a nesting as well as a testing parameter. The null hypothesis is 

rejected if e is significantly greater than zero but less than one, while the 

alternative hypothesis is rejected when e is less than zero. Values of e 

outside [O, l] are interpreted as a movement beyond H1 if e ) 1 and away from 

both Ho and H1 if e < 0 [Fisher and McAleer]. The possibility of ending up 

with an artificial model such as (9) still exists even with prior knowledge 
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of p and y. Furthermore, such prior information is hardly available. One 

may, therefore, have to employ ntnnerical techniques of identification 

mentioned below. 

An estimate of e may be obtained by estimating a comprehensive model in 

which p and y are substituted for p and y giving Y = (1 - 9)fo + 9f1 + £. 

Using the notation of (9) this would imply estimating 

<10) Y - µ = e(xTy - µ) + e. 

Ho is then tested on the basis of the t-ratio statistic fore, not on the 

basis of its absolute value. The estimate of e is conditional on those of p 

and y, and, hence, Davidson and MacKinnon referred to the test based on (10) 

as the C-test. The C-test is a simple way of testing the nonsubstitution 

hypothesis. Davidson and MacKinnon stated that the t-statistic from (10) 

provides a test the asymptotic size of which is smaller than its nominal size. 

The C-test, therefore, has a higher probability of type I error. It follows 

that if Ho is rejected by H1 , this would be strong evidence against the 

hypothesis under test. 

Other alternative procedures for testing non-nested hypotheses are 

available. Such procedures will not be discussed here in detail. A good 

swnmary can be found in Gaver and Geisel, who also present Bayesian 

techniques. 

The procedure to be discussed next was first proposed by Cox and has 

since been elaborated by Pesaran for linear regression models and Pesaran and 

Deaton for nonlinear regression models. The procedure will simply be referred 

to as CP. The test statistic derived from the CP procedure is given by 

(11) To 1 01 - N[Plim (101 /N)] 
~~ ~p 
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which is shown by Cox to be asymptotically normally distributed with zero mean 

and variance v0CT0), given that the null hypothesis is true. L01 =Lo(~) 

L1(y) where Lo(~) and L1(y) are the log likelihood functions of samples of 

size N under the null and alternative hypotheses. ~ and y are MLE of~ and y, 

respectively. It follows that 

is a standardized normal variate that can be used in conjunction with regular 

statistical tables of the normal distribution to test the truth of H0 • 

Pesaran demonstrated that the statistic in (11) for linear regression 

models is given by 

A2 A2 
(13) T0 = ~ log (o1/o 10) 

A2 A2 
~ log[o1/Co0 + ~ e 10

1 e 10)] 

2 A2 
where 010 is the asymptotic expectation of 01 under Ho• The respective sample 

A2 
variances Oi for i = 0, 1 are given by eiei/N, ei being the residual vector of 

the ith hypothesis. In the case of the hypothesis testing problem in (13), 

the vector e10 is obtained from the following regression: 

whereµ, the estimate of E(y) = µ for the nonsubstitution model, is obtained 

from (7) and xT is the set of regressors for the polynomial model. 

The variance of To is given by 
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where the vector e100 is obtained from the following regression: 

(16) e10 = µ + £100 

To test the truth of Ho using Do in (12), one would, therefore, require the 

auxiliary regressions in (14) and (16). The regression in (14) simply 

requires substituting µ on the left hand side of the program package used for 

estimating the polynomial model. This regression yields e1o which is then 

used as the right hand side column vector in the MINOS/AUGMENTED program 

employed in estimating (7). 

-2 
substituting oo = eo'eo/(N -

The final estimate of Do in (12) is obtained by 
-2 I A 2 A 2 

Ko) and 01 = e1e1/(N - K1) for oo and o1 , where 

N - Ko and N - K1 are the respective degrees of freedom under Ho and H1• This 

final value of Do will be referred to as Do to distinguish it from the one 

defined in (12). 

Since the parameter spaces for the two models being tested are 

disjointed, a two-tailed test will be employed. For a given level of 

significance, a, if the tabulated value of the statistic is given by Da, then 

Ho is not rejected if !Doi < !Dal. Ho is rejected in favor of H1 if l'Dol > 

!Dal and Do is negative. Finally, if l'Dol > !Dal and Do is positive, the null 

hypothesis is rejected but in favor of some alternative H2 differing from Ho 

in some sense opposite to that in which Hi differs from Ho· 

The statistic Do is only valid for testing the truth of H0 • In order to 

test the truth of H1 the roles of the hypotheses are reversed in (8). A new 

statistic is then computed estimating two more auxiliary regressions. The new 

statistic will be referred to as D1• The regression which corresponds to (14) 

is now given by 

(17) xTy = µ + EOl• 

Equation (17) provides the residuals eo1• It requires replacing the right 
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hand side of (7) by xTy. Next, the residuals are substituted on the left hand 

side of the program package used for estimating the polynomial model to obtain 

the equation 

Equation (18) provides the residuals eOll• The new statistic which tests the 

truth of the polynomial specification is then computed as originally done for 

Equation (11) can be written alternatively as 

(19) To - T0(r) (Lo 

A2 
where r = (y' 01)• This leads to the relationship in (13). Lo - L0(~) = N/2 

A2 
log (2Iloo) - N/2 is independent of r. It does not matter, therefore, what 

value is assigned tor, provided it is consistent for r. In (19) MLE r is 

used. One may, however, replace r with a consistent estimate of ro, the 

asymptotic expectation of r under Ho· This leads to a different numerator for 

Do and is given by 

Atkinson shows that TAo and To are asymptotically equivalent under H0 • Fisher 

and McAleer derived TAo as 

A2 A2 A2 

(21) TAO=~ {(01/010) - l} + l/2olO{(Y - f1o)'(Y - flO) - elel} 

A2 2 
where f 1o = f 1(y 0 , 0 10) and Yo and 0 10 are the asymptotic expectations of y 

A2 
and o1 under H0 , respectively. 
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Since the expression of To in (13) is approximated by 

"2 "2 
(22) TL0 = ~ {(o1/o 10 ) - l} 

"2 "2 
~~log (0/010) 

the following relationships must hold: 

(23) TA > TL > T • 
0 = 0 = 0 

All three variations of the Cox-Pesaran statistic are asymptotically 

equivalent under H0 , and if a common variance v0(T0) in (15) is assumed, the 

relationship in (23) implies that 

(24) DA > DL > D 
0 = 0 = 0 

Fisher and McAleer concluded that "When the alternative, H1, is fitting much 

better (worse) than it ought, relying solely on Do (DAo) will more likely lead 

to rejection of Ho than would otherwise be the case." The linearized 

statistic DLo is more conservative at rejecting Ho than is Do (DA0) when H1 is 

fitting much better (worse) than might be expected. 

Since DLo requires only a slight modification of the numerator for n0 , it 

will also be computed. Thus, to recap, the techniques to be employed are the 

C-test as a preliminary test of Ho and the two variations (Do and DL0) of the 

CP procedure. It is also worth noting that CP procedures involve computing 

the test statistic under only one of the hypotheses, and, hence, there is no 

choice involving an artificial (comprehensive) model. The test, however, 

indicates whether there is a more appropriate specification beyond H1 or away 

from both Ho and H1 • The test may, therefore, reject both hypotheses while 

indicating a direction in which to search for alternatives. 
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The Empirical Datal 

The experiment considered in this study was started in I952 on the 

Agronomy Farm at Purdue University on a Raub silt loam, an imperfectly drained 

prairie soil. The crops initially used were corn (Zea mays L.), soybean 

(Glycine max L.), wheat (Triticum vulgare L.) and hay (a mixture of alfalfa 

(Medicago sativa L.), red clover (Trifolium pratense L.), and brome grass 

(Bromus sp.)). The applied nutrients were phosphorous (P) and potassium (K) 

in the form of superphosphate and potassium chloride, respectively. 

There were 22 treatments of P and K randomized within each of the eight 

blocks representing two replicates. Crops were randomized within each 

replicate. The rotation sequence was corn-I-soybean-wheat-hay. In I963 the 

hay crop was replaced by a second crop of corn designated here as corn-2. 

All the straw was plowed back into the field and soil samples were taken 

only from the hay plots prior to broadcasting P and K in fall. Corn-I was 

planted on these same plots in May of the following year. This means that for 

a given block, both soil sampling and broadcasting of P and K took place only 

once in four years. Soybean, wheat, and hay did not receive direct broadcast 

applications of P and K. Only corn-I and wheat received row applications of 

fertilizer. Nitrogen was plowed under for corn-I plots and top-dressed to the 

wheat plots at nonlimiting levels. The soil Ph was adjusted to 6.5 by 

applying suitable amounts of lime. 

Experimentation continued through 1980. The soil sampling and 

fertilization procedures are presented schematically on Table I. Application 

rates for P and K are those indicated by Barber. 

Table 1 is only a stylization of the operations involved in the 

experiment. Some essential details such as how and specifically when 

fertilizer was braodcast have been omitted. The important fact to remember is 
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the sequence in the rotation as it relates to soil sampling and the 

fertilization routines. This fact is crucial to the development and 

interpretation of subsequent mathematical formulations. 

The soil sampling procedure involved taking 15 cores in the plow layer, 

0-15 cm, from the central portion of each of the hay plots. The plots 

measured 4.3 m wide and 19.8 m long. 

The available phosphorous and potassium was extracted at the Purdue Soil 

Testing Laboratory by shaking 5 g of soil with 15 ml of 0.7 HCl in a shaker 

for two minutes. In 1968, the phosphorous extraction procedure was changed to 

Bray Pl. At a soil Ph of about 5.8, the average initial soil tests, before P 

and K applications in 1952, were 18 and 45 µg/g, respectively. 

The Estimation of the Phosphorous Carryover Function 

The fertility carryover function (2) for P and K was given a distributed 

lag specification resulting in the following autoregressive form: 

* (25) Bij 

* where Bij 

k 
Xij 

h 
Yj 

Pi 

Yi 

* * * -1 c c 
PiBij-1 + Yi(Bij-1 - PiBij-2) + Yi"-i4(Xij-l - PiXij-2) 

= soil test level of the ith nutrient in the jth rotation; 

= total fertilizer (row and broadcast) applied to kth crop in 
the jth rotation; k = corn-1 (C), wheat (W); 

=yield level of the hth crop in the jth rotation, h = H, W, 
S, Cl for hay, wheat, soybeans, and corn; 

= autoregressive coefficient; 

= geometric declining coefficient of the Koyck lag 
distribution; 
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constants of proportionality between soil nutrient levels and 
soil tests; Ai4 refers to fertilizer applied four periods 
back and Ai2 to fertilizer applied two periods before soil 
sampling; 

N(O, a2r), i P, K. 

The estimated phosphorus equation assumed the following specific form 

(26) SPj 

where j refers to a rotation and the dependent variable SP is the soil test 

phosphorus measured in µg/g by Bray Pl. The error term is assumed to be white 

noise with a distribution Wj ~ N(O, 021) for all j. 

Soil sampling was not done for the years 1970, 1971, and 1972. 

Estimation of both P and K carryover functions was, therefore, restricted to 

the period 1953-1969. The period consists of four complete rotations and one 

quarter of the fifth rotation (1969). During this period of experimentation, 

the application rates for P in wheat (WP) and corn-1 (CP) were constant. WPj 

and WPj-l are, therefore, identical and so are CPj-l and CPj_ 2• The term 

(1 - p) in equation (26) arises from collection of like terms on the basis of 

this fact as can be deduced from equation (25). 

The block dummy variables denoted by bi (i = 1, 4) were included in 

equation (26) to account for the influences of the different blocks. Such 

differences may be due to block to block variations in seasonal availability 

of P. The inclusion of the dummy variables (all the four since there was no 

natural constant in the equation) led to a significant improvement in the fit 

as judged from the residual sum of squares (SSR). 
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Except for the soil test, the values for all the other variables were 

transformed to kg/ha. The results are given in column (a) of Table 2. 

The primary purpose for estimating the carryover function in (26) is to 

obtain a consistent estimate of the parameter A· This is the proportionality 

constant required in the calibration of soil test values. Subsequent 

estimations leading to the test of the nonsubstitution hypothesis will be 

concentrating on the response of corn-1 to total nutrient supply. The 

objective here is to derive the relevant value of A to be used for 

constructing total P for the response function. The total P, PT, available 

for the corn-1 crop is given by (ApSP + CP) where the soil test variable SP is 

in µg/g and CP is in kg/ha of applied P. 

The basic time framework in equation (26) is the rotation which consisted 

of four growing seasons. The coefficient estimate in Table 2, therefore, 

refer to four seasons. The response function for corn-1 will, however, be 

estimated using a single growing season as the basic time framework. It 

follows that the relevant A-value for P must be extrapolated from those given 

in column (a) of Table 2. 

The estimate of the proportionality constant A4 given in Table 2 is 

relevant for P applied four seasons back while the value for A2 refers to P 

applied two seasons prior to soil sampling. The (linear) extrapolation of a 

single season A-value denoted by Ap from A4 33.11 and A2 = 20.16 resulted in 

a value of Ap = 12.26. Recall that Ap is the amount of applied P required to 

raise the soil test level by one unit. Barber reported, for the same set of 

data used here, that Bray Pl levels increased by one µg/g for every 17.0 kg/ha 

of P added. He obtained this figure as the reciprocal of a slope coefficient 

of the regression of Bray Pl analyses on calculated net change in P over a 

period of 25 years. There are many differences, both statistical and 
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technical, between Barber's approach and that used in this study, hence, it is 

not surprising that the two results differ. The estimated A-values are, 

however, of the same magnitude. 

The advantage of the carryover function over other techniques of 

estimating total nutrient supply is that it provides useful additional 

information. Table 2, column (a), for example, presents estimates of the 

autoregressive and distributed lag parameters p and y. The reported values 

are on the basis of four period rotations. Single period estimates of the 

absolute values of these parameters are obtained as IPpl = 4/TP;f = 0.6068 and 

lrpl = 4/i"Y;T = o.9113. 

The autoregressive coefficient Pp is negative implying a negative 

influence of a given season on the contiguous seasons. The estimate of the 

distributed lag parameter is positive and has an absolute value less than one 

as required. The results show that for the Indiana soil investigated here, 

only about 10 percent of the applied P is taken up by the crop in a single 

season, the remainder being carried over. This would explain the high soil 

test values recorded in the plots which received high doses of applied P. 

Finally, results for the estimation of the carryover function show the 

influence of the various crops on soil phosphorus buildup, information which 

may prove to be useful in designing a rotation sequence. Soybean did not seem 

to have any significant effect on the carryover of P from one growing season 

to the other. Wheat had an unexpected but insignificant positive coefficient 

as can be seen from column (a) of Table 2. Hay/corn-2, the crop harvested 

just prior to the soil sampling period, had a significant negative effect on 

phosphorus carryover; the higher the yield the lower is the succeeding soil 

test value. Corn-1 planted four seasons prior to the soil sampling had a 

significant positive effect on the soil test value. 



22 

The Potassium Carryover Function 

In estimating the phosphorus carryover function, equation (26), it was 

assumed that Wj was white noise. There was no indication for the need to 

simplify the estimated equation on the basis of an assumption that y = p. In 

the case of potassium, there was no clear-cut distinction between these two 

hypotheses. 

The alternative assumption that y = p appeared to be more plausible, 

especially in terms of t-ratios and the proportion of the applied K carried 

over from one season to the next. The latter information is obtained as the 

seasonal estimate of the distributed lag parameter (y). The values of y 

reported in column (b) of Table 2 are not the seasonal values since the basic 

time framework in the analysis was a rotation consisting of four growing 

seasons. The seasonal value is obtained as Yk = 4/TYf which turns out to be 

about 77 percent. The single season value of Ak was extrapolated to be equal 

to 1.60. 

The Polynomial Crop Response Functions 

Among the family of polynomials, the two commonly employed for analyzing 

crop response to fertilizer are the square root and the quadratic forms. Over 

the last three decades the application of these two functions for analyzing 

fertilizer experiments has been extensive. 

The crop selected for the response analysis was the first crop of corn 

designated earlier as corn-1 but which will now be referred to simply as corn. 

The corn crop was planted in May and harvested in October or November. 

The results discussed below are based on relationships in which the 

response of corn was considered to be a function of total P and total K. 

These variables should be viewed as the total supplies of the respective 
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nutrients available to the corn crop during the growing season. In either 

case, the total nutrient supply was computed as the sum of the applied and 

residual (carryover) amounts. For each nutrient the carryover was obtained by 

multiplying the soil test index by the A-value derived from Table 2. The 

yield and applied fertilizer observations have been converted to quintals/ha 

and the soil tests are in µg/g. Due to the presence of gaps in the soil test 

data, only the observations for six years were used in analyzing the response 

of the corn crop. The corn data span the years 1960 through 1966. The 

corresponding soil test values are for the years 1959 through 1965. 

As in the case of the carryover functions, the effects of the different 

blocks were accounted for by four dummy variables Si (i = 1, 4). The 

estimated square root function was of the form 

(27) CORN= S1 + s2 + S3 + S4 + y PT+ y (PT)l/2 + y (PTKT)l/2 
1 2 3 

+ y (KT)ll 2 + y KT+ El 
4 5 

where PT is total supply of P given by 0.1226 SP + CP and KT is the total 

supply of K given by 0.016 SK + CK. SP and SK are the soil test values for P 

and K whereas CP and CK are the applied amounts for the respective nutrients. 

The observations used in estimating equation (27) were the 44 treatment 

values for one growing season (22 for each replicate). The individual error 

terms Elt (t denoting treatment) were assumed to be identically and 

2 
independently distributed with zero mean and a common variance 01· 

Table 3 summarizes the results for the estimation of the square root 

response functions for the years 1960 through 1966. The table is 

self-explanatory but a few comments are in order. First of all, no 

interaction effects between P and K were significantly different from zero 

during the years of investigation. Secondly, the coefficients of the linear 
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and the square root terms had the expected signs. Thirdly, the table reveals 

a variation in response of corn from year to year. Of particular interest is 

the fact that although the linear and the square root terms for PT had 

significant coefficients in the pooled function, phosphorus had a significant 

contribution in only three out of the seven years reported in Table 3. The 

t-ratios for the coefficients of the linear and the square root terms for 

potassium on the other hand suggest that this nutrient had a significant 

contribution to the response of corn in each of the seven years investigated. 

The results for the estimation of the quadratic polynomial summarized in 

Table 4 indicate a seasonal response pattern similar to that obtained from the 

square root formulation. The quadratic equation estimated can be obtained 

from equation (27) by replacing the square root terms with the quadratic terms 

(PT)2, PTKT and (KT)2. The symbols used for the block dummy variables are Qi 

(i = 1, 4) in the case of the quadratic function. As in the square root form, 

the estimated coefficients for the block dummy variables were highly 

significant at any reasonable level of probability for a type I error. 

In terms of data "fit," as judged from the R2 and the residual variance 

estimate, the square root specification appears to have a slight edge over the 

quadratic form. No definitive statements can be made on the subject of 

discrimination between these two specifications without carrying out proper 

statistical tests. 

The Nutrient Nonsubstitution Model 

The nutrient nonsubstitution model was estimated in the form given in 

(7). Before doing so, however, estimates of the yield plateaux for the 

individual years had to be provided. In addition, the knots needed in 
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estimating the spline functions had to be estimated. The realized yield 

plateau or maximum, Aws' for a given crop variety and location depends, among 

other things, on the prevailing weather. Under idealized conditions, the 

biological maximum yield, M, for a given crop variety will be a constant 

depending on the variety's genetic potential. In this study, the realized 

maximum was estimated as the average of the top five corn yields. 

The nonsubstitution model was estimated by a maximum likelihood procedure 

subject to a set of linear and nonlinear constraints. The cbmputer program 

used was MINOS/AUGMENTED written by Murtagh and Saunders, which will be 

referred to simply as MINOS. The knots were treated essentially as unknown 

and had to be searched for by repeated estimations of the model. 

The requirement of a plateau surface implies the following restriction on 

the spline coefficients 

j 
(28) ~i = E ~i• = 0 

•=0 

where i represents the two nutrients and j+l is the total number of knots. 

The summation in (28) gives the slope of the spline function at the last 

knot. 

For the spline function approximations to the single nutrient response 

curves, only one knot was used. This amounted to estimating simple models of 

the linear and plateau type and the spline function approximations had only 

two segments. The knot was considered as an unknown variable to be chosen so 

as to minimize the value of the objective function given in model (7). The 

simplistic nature of the linear and plateau type approximations adopted here 

made this task rather easy. First, the scatter diagrams were used to select 
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initial ranges of the knots for PT and KT. For example, the range for the 

1960 data for both nutrients was taken as 100-350 kg/ha. Values of the 

objective function corresponding to these extreme points were computed and 

then different knots falling within that range were tried. The points which 

miniminized the error sum of squares were taken as the final knots. The final 

knots for the 1960 data were 198 kg/ha of PT and 196 kg/ha of KT. 

The estimated spline function parameters for the year 1960 are summarized 

in Table 5 and the estimated nutrient nonsubstitution model for corn response 

is, therefore, given by 

(29) CORN= 103.0 Min {0.6829 + 0.1615KT, 0.8197 + 0.0909PT}: 

KT < 1.96, Pt < 1.98 quintals/ha 

= 103.0: KT> 1.96, PT> 1.98 quintals/ha 

where KT and PT represent total nutrient supply for Kand P, respectively, and 

the estimate of the maximum yield (A) is given as 103 quintals/ha. 

In spite of its simplicity, equation (29) contains the basic information 

that may be required by most farmers. The estimated model can be used to 

derive long term optimal fertilization strategies. Such optimization 

techniques tailored to specific soils and weather conditions may be beyond the 

budget of most agricultural extension systems, especially in the less 

developed economies. All that an extension agent may need, therefore, are the 

soil test results and a simple formula such as (29) relevant for a given soil 

type while remembering that KT= K + 0.0159SK and PT= P + 0.1226SP where K 

and P are the required application rates and SK and SP are in soil test units 

of potassium and phosphorus, respectively. The knots given at 1.96 and 1.98 

quintals/ha of Kor P, respectively, mark the critical level of total supply 

of these nutrients. Supplies beyond the critical level are considered as 

overfertilization of the crop and, hence, a waste. 
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From the point of view of calculating optimal fertilizer applications, 

the basic differences between the polynomials and the simple model in (29) are 

the more unfamiliar computations encountered in the linear and plateau 

function and the risk that polynomial functions overestimate the critical 

level of nutrient supply corresponding to the maximum possible yield. The 

estimated square root function for 1960, for example, gives the levels of K 

and P corresponding to the maximum yield at 6.319 quintals/ha and 5.509 

quintals/ha, respectively. The corresponding figures for the quadratic 

function are 5.727 and 5.368. These two sets of figures are for all practical 

purposes, similar and are more than two times the optimal levels of Kand P in 

the nonsubstitution model. The estimated maximum yields for the two 

polynomial models are, however, not of the same magnitude. The quadratic tops 

at a yield level of 121.487 quintals/ha whereas the square root form is 

flatter, reaching its peak at 101.083 quintals/ha. The largest recorded corn 

yield for the 1960 data was 105.34 quintals/ha. It is, therefore, easy to see 

that, in comparison to the estimated nonsubstitution model and the information 

on actual crop yield, the quadratic has a tendency to overstate not only the 

region of positive response to total nutrient supply, but also the 

corresponding yield. The yield maximum estimated by the quadratic was more 

than four standard deviations in excess of the yield maximum (A) used in the 

nonsubstitution model and more than three standard deviations above the 

maximum recorded yield of corn in 1960. 

The square root formulation, in comparison to the nonsubstitution model, 

exaggerated the region of positive crop response, but otherwise had a yield 

maximum close to the A approximation used in the latter specification. 

As can be deduced from Table 5, the standard deviation for corn yield 

estimated by the nutrient nonsubstitution model was 428.9 kg/ha which, using a 



• 

28 

conversion factor of 25.4 kg for every bushel of shelled corn, is equivalent 

to 16.9 bu/ha. The corresponding figures for the square root and quadratic 

polynomials were 17.2 bu/ha and 17.6 bu/ha, respectively. These figures show 

that, purely on the basis of the standard error of the regression, the simple 

linear and plateau model performed no worse than the popular polynomials. 

In spite of the apparent similarity as judged from data fitting, the 

three models imply different fertilization strategies in view of the 

differences already mentioned above. Economic criteria as a basis of 

discriminating among these models should, therefore, be precluded not only 

because of the pervasive manner in which the biases inherent in the models 

under comparison are manifested in such criteria, but also because such a 

procedure is not statistically appropriate. It would not be statistically 

appropriate because the models are not different transformations of a more 

general specification and, hence, do not lend themselves easily to direct 

comparison. Furthermore, as with the case of using RVE and R2, there is the 

presumption that the real specification is known. In crop response analysis, 

comparisons which presuppose knowledge of the actual functional relationship 

may not be justified. 

In this study, each model is viewed as constituting a hypothesis, the 

validity of which has to be tested against specified alternatives. A priori, 

there will be no maintained hypothesis. However, there will be a special 

interest on the performance of the nutrient nonsubstitution hypothesis in view 

of its conformity to conventional theories of plant growth. Hence, this 

hypothesis will be tested against the polynomial approximations. The latter 

will in turn be tested against the nutrient nonsubstitution hypothesis. Tests 

will be done not only for the models estimated from the 1960 data, but also 

for those derived from the years 1963 and 1965. Non-nested hypothesis testing 

procedures will be employed. Three different test statistics will be used: 
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the Cox-Pesaran (CP) statistic, the linearized CP statistic and the 

C-statistic, whose descriptions are given in a previous section. 

The estimated spline functions for the other selected years are presented 

in Tables 6 and 7. In terms of RVE, the 1963 and 1965 results indicated that 

the nonsubstitution model fitted the data better than either the square root 

or the quadratic specifications. This reinforces the 1960 results which 

indicated only a marginal advantage of the nonsubstitution model over the 

other specifications. 

Results and Discussion of Hypothesis Tests 

Three specifications were tested: the nonsubstitution model and the 

square root and the quadratic polynomials. The polynomials were not tested 

against each other since the basic interest was to test them against the 

nonsubstitution formulation. Therefore, the results presented in this section 

are for the following hypothesis tests, abbreviated as indicated: 

H0 Tested Against H1 

Nonsubstitution (NS) against Square Root (SR) 

Square root against Nonsubstitution 

Nonsubstitution against Quadratic (Q) 

Quadratic against Nonsubstitution 

Abbreviation 

NS/SR 

SR/NS 

NS/O 

Q/NS 

For the three years studied, this gives 12 tests; 6 against the polynomial 

specifications (NS maintained) and 6 against the nonsubstitution specification 

(either SR or Q maintained). Only the abbreviations are used in subsequent 

tables. 
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As stated in a previous section, the linearized CP statistic is more 

conservative at rejecting the null hypothesis than the CP statistic when the 

alternative is fitting nruch better than expected. It is, therefore, used as 

an adjustment to the CP statistic to counteract the unexpected superiority of 

the alternative hypothesis. 

The results discussed first are for the C-test. For a pair of 

hypotheses, the desired statistics were obtained by estimating the two 

equations: 

(30i) y - µ = e0cxTA - µ) + £0 
y 

(30ii) y - XTA 01(µ - xTA) + £1· 
y y 

The first equation is a reproduction of equation (10) and is used to test the 

nonsubstitution model against a polynomial fornrulation. All the symbols in 

(30i) are vector valued and retain the same interpretation given in previous 

sections. It is, however, worth noting that while µ is the expected yield 

estimated by the nonsubstitution model, xTA symbolizes the expected yield as 
y 

estimated by either the square root or the quadratic, depending on which is in 

the alternative hypothesis. 

When the nonsubstitution hypothesis is maintained, as in (30i), the 

interest is on an estimate of e0 and its standard error. These two estimates 

give the t-ratio which is the C-statistic used to test the validity of the 

maintained hypothesis. 

The second equation (30ii) tests the polynomial approximations (SR or Q) 

with the nutrient nonsubstitution hypothesis as an alternative. 
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The expected yield estimated by the nonsubstitution model was given by 

µ = ZK~K or µ = ZP~p depending on whether potassium (K) or phosphorus (P) was 

the growth limiting nutrient and where the right-hand expressions are the 

estimated spline functions. In (30i), 9o is a nesting parameter, this role 

being obvious when the equation is written OUt aS y = (1 - 9o)µ + 9oXTA. 
y 

Substituting~' = (~K ~p) for~' = (~K ~p) and y for y is just one way of 

parametric identification of the resulting comprehensive model. Any other 

estimators could have been used provided they were consistent for ~ and y. 

The resulting estimate of 90 is, therefore, conditional on~ and, hence, not 

unique. Its t-ratio is, however, unique and can thus be used to test the 

validity of the tested hypotheses. 

Asymptotically, the estimate of 9o in (30i) will converge to unity when 

the polynomial specification is valid. Alternatively, it will converge to 

zero when the tested hypothesis is true. These facts may be used to conclude 

that if 9o is significantly different from one then the alternative 

hypothesis, in this case the polynomial, is not supported by the data. 

However, in view of the foregoing discussion about the estimated (absolute) 

value of 9o, it was necessary to reverse the roles of the hypotheses under 

test and, hence, the need for the second equation in (30). The tests were 

then based on the estimated t-statistics for 9o and 91· 

The C-tests are easy to perform and the resulting statistics will be used 

in this study both as preliminary crude tests and also for the purposes of 

comparison with the Cox-Pesaran procedure. The results for the C-tests are 

given in Table 8. The abbreviations in the table are those explained at the 

beginning of this section. The first element in each group of entries in 
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the table is the estimate of the nesting parameter, e. The second element is 

the standard of error of e and the C-statistic appears last. 

Due to the fact that the concepts used in the tests are true only 

asymptotically and they are applied here to a relatively small sample size 

(N =44), a relatively large probability of type I error (a) will be allowed. 

The selected level is a = 0.025 corresponding to a critical level of 

Za/2 = 2.24 for a two-tailed test. The two-tailed tests will be used because 

interest is on hypothesis tests rather than discrimination and because of the 

disjointed nature of the parameter spaces of the hypotheses under test. 

Looking at the columns of Table 8 labeled NS/SR and NS/Q which give the 

results of testing the nutrient nonsubstitution hypothesis against the 

polynomial formulations, it can be seen that the estimated C-statistic is 

lower than the critical value of 2.24 for all the three years. Even when the 

significance level is increased to a = 0.05, the nonsubstitution hypothesis 

cannot be rejected at the resulting critical level of 1.96. 

The estimate of the variance of IN eo is given by 
A2 

No0(x' x)-l where 

(XTA 
A2 2 

x = - µ) and oo is the consistent estimator of oo in (30i). This 
y 

variance estimate for IN eo can be shown to be asymptotically biased upwards 

(Davidson and MacKinnon, p. 787). The resulting t-statistic used in the 

C-test will, therefore, have a tendency of not rejecting the null hypothesis 

more often than the CP statistic. This may explain why the nonsubstitution 

hypothesis could not be rejected in all the three years studied. However, a 

look at the results for the tests in which the polynomial formulations were 

tested against the nonsubstitution hypothesis (columns labeled SR/NS and 

Q/NS), reveals that using a critical level of 2.24 leads to the rejection of 

the polynomial formulations 1n five out of six cases. 
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The quadratic formulation was rejected in all the three years, whereas 

the square root could not be rejected in 1960. When the significance level is 

increased from 2.5 percent to 5 percent, the estimated C-statistics indicate 

that both the square root and the quadratic formulations should be rejected in 

all the three years. 

The fact that the C-statistic has a tendency of not rejecting the tested 

hypothesis, further erodes the credibility of the polynomials since, in this 

case, the indications are that they should both be rejected and at a rather 

high level of significance. 

No conclusive statements can be made solely on the basis of the C-tests, 

especially in view of the fact that the small sample size properties of the 

statistic used are unknown. It is also apparent from these results that the 

C-statistic is unable to decisively break the deadlock which existed between 

the nonsubstitution and the square root models for 1960 when comparisons were 

based on RVE. However, when the significance level is increased to 5 percent, 

the tie is broken and the edge goes to the nutrient nonsubstitution 

hypothesis. 

In order to carry out the non-nested hypothesis tests on the basis of the 

Cox-Pesaran procedure, some auxiliary estimations must be done, in addition to 

estimating the pair of models contained in the hypothesis under test. The 

relations to be estimated and the desired residual sums of squares were 

presented in a previous section and will, therefore, not be discussed here 

again. 

Three different formulations were compared and, since the polynomials 

were not tested against each other, only four pairs of hypotheses were tested 

in each year. Using the abbreviations introduced earlier, the four hypotheses 

tested were NS/SR, SR/NS, NS/Q, and Q/NS. The first two were used to test the 
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critical (rejection) points. Large negative values of the estimated statistic 

suggest that the null hypothesis (Ho) should be rejected in favor of the 

alternative (H1)• Large positive values on the other hand suggest that the 

null hypothesis should be rejected but in favor of a third hypothesis (H2) 

differing from Ho in some sense opposite to that in which H1 differs from H0 • 

Once again, since interest is on hypothesis tests as opposed to discrimination 

among a set of specifications, two-tailed tests will be employed. 

When a critical value of 2.24 corresponding to a 2.5 percent significance 

level is used, the estimated CP statistics in Table 9 suggest that both 

polynomial specifications must be summarily rejected in favor of the 

nonsubstitution hypothesis. In fact, the figures for SR and Q tested against 

NS are such that the polynomial approximations cannot be accepted at any 

reasonable level of probability for a type I error. 

Table 9 also reports the estimated linearized CP statistics (figures in 

parentheses). This statistic is supposed to be more conservative at rejecting 

the tested hypothesis when the alternative is performing better than expected. 

This can be seen from the fact that the reported linearized CP statistics are 

slightly smaller than the corresponding CP statistics. The absolute values of 

the latter for SR/NS and Q/NS were, however, such that the linearization 

procedure still left the polynomial hypotheses in the rejection region. 

The CP test results confirm those based on the crude C-statistic 

discussed earlier. The only exception was the 1960 square root form not being 

rejected by the C-statistic at the 2.5 percent significance level. The 

overall picture, however, indicates no inconsistencies between the 

results obtained from the C-tests and those from the CP tests. 
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The C-tests are relatively easy to perform and if the correct asymptotic 

standard error for the estimated nesting parameter (6) is available, may be 

sufficient as a basis for testing non-nested hypotheses. Judging from the 

results discussed above, it does not appear as if the power of the C-statistic 

was significantly diminished by the fact that use was made of a t-statistic 

employing an asymptotically biased estimate for the standard error for e. The 

inability of the statistic to reject the nonsubstitution hypothesis does not 

appear to be due to a problem inherent in the statistic. It may, however, be 

due to the inability of the polynomial hypotheses to reject the 

nonsubstitution hypothesis for the given sets of data. The C-tests may, 

therefore, be preferred to the more complex CP procedure if its power can be 

ascertained. 

The CP statistic is invariant to the relative performance measures such 

as RVE and R2 for the hypotheses under test. This attribute was demonstrated 

here by the fact that it was able to reject the 1960 square root specification 

whereas the C-statistic and the individual RVE's indicated no clear 

superiority of the nonsubstitution model. 

No definite statements can be made about the power (the probability of a 

statistic failing to reject a false hypothesis) of any of the tests discussed 

above, especially for small samples. However, asymptotically, the CP 

statistic will reject the tested hypothesis with a probability of one whenever 

the alternative is true. The same cannot be said of the C-statistic in the 

form used, that is, without adjusting the variance of the estimated nesting 

parameter, e. What can be said, though, is that for the small samples 
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analyzed here, the C-statistic seems to have a performance similar to the CP 

statistic and is, therefore, worthy of consideration in non-nested hypothesis 

tests. 

Conclusions 

The lopsided nature of the outcome of the hypothesis tests discussed 

above is hardly surprising in view of the fact that most crop response 

surfaces display significant plateaux with respect to major nutrients. The 

polynomials, with their intrinsic symmetric nature, are incapable of 

accounting for such plateaux or any sharp bends on the response surf ace. 

For the data analyzed in this study, the presence of plateaux was 

evidenced not only by the fact that the nonsubstitution hypothesis, which 

explicitly accounted for them, could not be rejected in most of the cases, but 

also by the fact that the quadratic hypothesis was rejected at significance 

levels higher than those of the square root hypothesis. 

The nutrient nonsubstitution model differs from the polynomial 

approximations in respects more basic than just accounting for the plateau 

surface. The most important of these differences is that the nutrient 

nonsubstitution model, as the name suggests, does not admit substitution among 

the major nutrients, although it allows for interactions. The fact that the 

major nutrients do not substitute each other in plant nutrition is now widely 

acknowledged. It is also true that the results of this study indicate that 

the nutrient nonsubstitution hypothesis performs better than the alternative 

polynomial approximations for the given data sets. In the absence of 

alternative models with assumptions more suitable for established biological 

principles than those implicit in the nutrient nonsubstitution model, 

advocating its adoption in crop response analysis seems scientifically sound. 
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The polynomial approximations do not seem to be supported by the hypothesis 

test results of this study, and even on the basis of measures of relative fit, 

such as RVE, the nonsubstitution model is highly competitive. 

jh 11/11/82 P44 
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Footnote 

!The data set used in this study was kindly provided by Professor 

S. A. Barber of the Department of Agronomy, Purdue University. Additional 

information regarding experimental procedures can be gleaned from Barber's 

publications. 
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Table 1. Summary of Field Operations at the Purdue Experiment 

Rotation (J) 1 2 3 4 5 

Calendar Year 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

Period ln Rotation (K) 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

B R R B R R B R R B R R B R R B 

Block I Cl s w H Cl s w H Cl s w C2 Cl s w C2 Cl s w C2 

* * * * * * ho b14 b24 b34 b44 b54 

H Cl s w H Cl s w H Cl s w C2 Cl s w C2 Cl s w 
* * * * * * II ho bu b21 b31 b41 b51 

w H Cl s w H Cl s w H Cl s w C2 Cl s w C2 Cl s 
* * * * * * III ho b12 b22 b32 b42 h52 

~ 
....... 

s w H Cl s w H Cl s w H Cl s w C2 Cl s w C2 Cl 

* * * * * * IV ho b13 b23 b33 b43 b53 

R • Row application of P and K shown here only for Block I in order to avoid clutter. 

B •Broadcast application of P and K done after soil sampling from the hay plots, shown here only for Block I. 

* * bjk • Soil sampling, after harvesting hay/corn-2; ho represents initial soil sampling. 

Other letters represent the four crops: corn-1, soy, wheat, hay, and corn-2. 
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Table 2. Estimates of the Fertility Carryover Function 

Estimate (t-ratio) 
Phosphorus Potassium 

Coefficient (a) (b) p=y 

Block Dummy b1 5. 7 427( 2. 0) 60.1460(7.6) 

b2 3.2865(1.1) 44.5680(5.2) 

b3 6.6034(2.2) 60.2060(7 .2) 

b4 5.3739(1.9) 6 4. 4 9 7 0( 8. 0) 

Autoregressive p -0.1356(2.0) --
Distributed Lag y 0.6898(10.4) 0.3513(5.3) 

Proport. Const. /...4 33.1389(4. 7) 6.3635(4.1) 

"2 20.1593(3.7) 3.1898(2.8) 

Hay/Corn-2 cq -0.0011(7 .4) -0.0030(5.5) 

Wheat 0:2 0.0002(0.5) -o. 0002( 0. 1) 

Soybean a 3 -- -0.0061(2.8) 

Corn-1 0:4 0.0005(2.5) -o. 0001( o. 2) 

Extrapolated Ai 12.26 1.60 

Log Likelihood Fn. -1013.25 -1373.37 

RVE* 18.53 143.36 

Sample Size N 352 352 

*RVE is the residual variance estimate obtained as SSR/N-K where N = 352 is 
the sample size, SSR is the residual sum of squares and K is the number of 
coefficients estimated. 



Table 3. Estimation of the Square Root Response Function 

Year 
Coefficient 1960 196f 1962 1963 1964 1965 1966 Pooled 

S1 48.5102 -- -- -- 52.8821 -- -- 46.5294 
(4.7)a (4.8) (7. 7) 

S2 -- 44.5219 -- -- -- 35.8657 -- 40.1861 
(4.4) (3. 5) (6.6) 

S3 -- -- 43.1531 -- -- -- 25.6395 37.1160 
(2.3) (1.8) (6.1) 

S4 -- -- -- 58.4693 -- -- -- 52.6375 
(7. l) (8.6) 

PT -2. 3631 -1.2786 -4.9496 -6.0523 -3.6345 -6.1185 -7.3137 -5.3055 
(1.2) (0.5) (1.5) (3.4) (1.5) (2.9) (3.2) (4.4) 

(PT) 1/2 14.3080 4.0661 9.6857 21.7762 15. 9070 24.3660 23.1012 18. 7972 
(1.8) (0.4) (0. 7) (3.3) (1.8) (3.0) (2.5) (4 .1) 

(PTKT) 1/2 -1.3446 1.1143 3.6615 0.8623 -0.1284 1.0626 1.2923 0.9978 
~ 
w 

(0.9) (0. 7) (1.4) (0.6) (0 .1) (0. 7) (0.6) (1.1) 

(KT)l/2 30.2544 36.3546 46.7651 21.9894 24.5651 28.5159 30.1458 30.4536 
(3.5) (4.3) (3.3) (3.1) (2.6) (3.2) (2.6) (6.2) 

KT -5. 7149 -8.5847 -12.3266 -5.1114 -5.8625 -6.6167 -6.8904 -7.1355 
(3.0) (4.3) (4.2) (3.1) (2.7) (3.3) (2. 7) (6.4) 

R2 0.5388 0.6097 0.5714 0.6148 0.3522 0.6230 0.5380 0.4828 

RVE 19.1451 32.6245 58. 2853 18.8084 34.0171 23.8852 41.2274 522.1684 

aFigures in parentheses are t-ratios. 



Tabel 4. Estimation of the Quadratic Response Function 

Year 
Coefficient 1960 1961 1962 1963 1964 1965 1966 Pooled 

Q1 74.4564 -- -- -- 73.4647 -- -- 72.1627 
(17.3)a (14.8) (26.4) 

Q2 -- 62.9909 -- -- -- 63.4 734 -- 65.5730 
(12. 6) (13.8) (23.9) 

Q3 -- -- 72. 7921 -- -- -- 53.3757 62. 7 537 
(9.1) (8.8) (22.9) 

Q4 -- -- -- 80.1309 -- -- -- 77 .8333 
(20.8) (27.0) 

PT 3.4964 1.0906 0.8486 4.9988 2.6600 4.6778 4.6047 3.9255 
(2.3) (0.5) (0.3) (3.5) (1.4) (2.7) (2.4) (4.1) 

(PT) 2 -0.2751 -0.1190 -0.2976 -o. 5897 -0.2427 -0.4527 -0.6137 -0.4619 
(1.6) (0.5) (0.9) (3.4) (1.1) (2.4) (3.0) (4.2) 

.i::-

PTKT -0.0948 -0.0614 0.2531 0.0457 -0.0089 0.0271 0.0612 0.0527 .i::-

(l .O) (0.4) (1. 3) (0.4) (O. l) (0.2) (0.4) (0.8) 

(KT)2 -0.5514 -1.0771 -1.2344 -0.5803 -o. 7140 -0.8012 -0.7075 -o. 7660 
(3.2) (4.5) (3.9) (3.3) (3.1) (3.8) (2.8) (6. 7) 

KT 6.8245 10.8524 11.8918 6.1036 6.9921 8.4741 7.7125 8.0087 
(3.6) (4. 7) (3.5) (3.4) (3.0) (4.0) (2.9) (6.8) 

R2 0.5183 0.5537 0.4944 0.5758 o. 3177 0.5705 0.5229 0.4583 

RVE 19.9980 37.3045 68. 7 537 20. 7131 35.8294 27.2166 42.5729 546.9579 

apigures in parentheses are t-ratios. 



Table 5. Estimated Spline Response Function - 1960 

Description of Variable 

. Yield Maximum 

Potassium 

Block dummy variable 

Relative yield function slope for KT • [0-1.96} quintals/ha 

Change in slope at KT= 1.96 quintals/ha 

Phosphorus 

Block dummy variable 

Relative yield function slope for PT = [O-l.98J quintals/ha 

Change in slope at PT = 1.98 quintals/ha 

RESIDUAL VARIANCEb 

aMeasurements are in 100 kg/ha. 

Coefficient 

A 

ZKl 

ZK2( ~KO) 

ZK3( l3Kl) 

ZPl 

ZP2(Ppo) 

ZP3((3p1) 

RVE 

Estimatea 

102.9900 

0.6829 

0.1615 

-0.1615 

0.8197 

0.0909 

-0.0909 

18.3914 

bThe residual variance estimate, RVE = SSR/(N - K). In the nonsubstitution single year 
models, N = 44 and K • 6. 

~ 
Vl 
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Table 6. Estimated Spline Response Function - 1963 

Description of Variable Coefficient Estimate 

Yield Maximum A 105.6600 

Potassium 

Block dummy variable ZKl 0.5409 

Relative yield function slope for KT = [0-0.98) quintals/ha ZK2(~KO) 0.4679 
.;::.. 

Change in slope at KT = 0.98 quintals/ha ZK3( ~Kl) -0.4679 
Ci' 

Phosphorus 

Block dummy variable ZPl 0.6383 

Relative yield function slope for PT= [0-0.77) quintals/ha ZP2(~po) 0.4711 

Change in slope at PT= 0.77 quintals/ha ZP3(~p1) -0.4711 

RESIDUAL VARIANCE RVE 14.1018 



• 
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Table 7. Estimated Spline Response Function - 1965 

Description of Variable Coefficient Estimate 

Yield Maximum A 93.6500 

Potassium 

Block dummy variable ZKl o. 5071 
~ 

Relative yield function slope for KT = (0-1.05) quintals/ha ZK2(PKo) 0.4667 
'-I 

Change in slope at KT • 1.05 quintals/ha ZK3( PK!) -0.4667 

Phosphorus 

Block dummy variable ZP l o. 7 502 

Relative yield function slope for PT • {0-1.64] quintals/ha ZP2(Ppo) 0.1521 

Change in slope at PT• 1.64 quintals/ha ZP3(Pp1) -0.1521 

RESIDUAL VARIANCE RVE 18.4974 
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Table 8. C-Statistic Test Resultsa 

Hypothesis Tested NS7SR SR7NS NS70 Q7NS 

YEAR 1960 0.4289 o. 5 711 0.3717 0.6284 
0.2797 0.2797 0.2582 0.2582 
1.5334 2.0418 1.4394 2.4335 

1963 0.2614 o. 7 386 0.2475 o. 7 525 
0.1800 0.1800 0.1555 0.1555 
1.4521 4.1025 1.5916 4.8385 

1965 0.1149 0.8851 0.1015 0.8985 
0.2502 0.2502 0.2000 0.2000 
0.4593 3.5368 0.5073 4.4922 

aFor each year, the first line gives the coefficient estimate 
for e of model (30) and the second line its standard error. 
The third line gives the t-ratio for e which is referred to 
in the text as the C-statistic. 
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Table 9. The Estimated CP Test Statisticsa 

Hypothesis Tested NS7SR SR7NS NS7Q Q7NS 

YEAR 1960 -0.553 -3. 729 -0.515 -3. 796 
(-0.54l)b (-3.305) (-0. 502) (-3. 284) 

1963 -1.340 -5.194 -1.393 -6.126 
(-1.244) (-3.983) (-1.288) (-4.499) 

1965 0.001 -5. 377 0.010 -6.824 
(0.001) (-4. 261) (0. 010) (-5.117) 

aThe entries in the table are for Di= Ti/[Vi(Ti)] 112 where the 
subscript i = 0 refers to the hypothesis being tested (Ho) and i = 1 
to the alternative (H1)· Testing Ho against H1 is summarized as 
Ho/H1· 

bFigures in parentheses are the linearized CP statistics • 
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