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Implications of Sequential Decision Making for 
Specification and Estimation of Production Models 

The agricultural economics literature abounds with studies of 

agricultural production which are based on single equation estimates of 

econometric production function models. The single-equation approach has been 

justified by Hoch (1958, 1962) and Mundlak and Hoch (1965) under the 

assumption that input decisions are based on "anticipated" output, and by 

Zellner, Kmenta and Dreze (1966) under the assumption that input decisions are 

based on the maximization of the mathematical expectation of profit or some 

other function of output. These models are all based on the strong assumption 

that production inputs are chosen as part of a one-period decision problem, an 

assumption which appears to be inconsistent with actual production decision 

making. Indeed, Zellner~ al., state in the conclusion of their paper that 

"we are fully aware of the fact that one-period maximization of expected 

returns is just a step in the direction of a proper treatment of stochastic 

elements in a firm's sequential decision-making process under uncertainty." 

Especially in agriculture, both short-run and long-run production decisions 

are not based on a one-period maximization problem but rather on a 

multi-period dynamic optimization problem because inputs are not all chosen or 

utilized simultaneously. Therefore, the farmer's optimal input choices may be 

intrepreted as optimal controls in a stochastic control problem. 

The aim of this paper is to formulate a short-run single product 

production model within a stochastic control framework and to explore its 

implications for specification and estimation of econometric production 

models. The analysis demonstrates that sequential solutions to production 

problems generally result in input demand equations which differ from those of 

one-period solutions. In addition, sequential solutions may produce models 
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which require either single equation or simultaneous equation estimation 

methods, depending on the assumptions made about the information the farmer 

uses to make input choices and on the availability of data for estimation. In 

particular, it is shown that simultaneous equation estimators are not required 

if (i) decision makers do not "feedback" information about early stages' 

production to later input decisions, or (ii) output and input data are 

available for each stage in the production process. Since both of these 

conditions are usually violated in agricultural production, these findings 

suggest that even though farmers choose inputs so as to maximize expected 

returns, as in the models of Hoch, Mundlak, and Zellner et al., 

single-equation estimates of agricultural production functions are generally 

subject to simultaneous equation bias. One example of how this bias occurs is 

the choice of inputs for harvest. Because a farmer knows how weather and 

other random events such as pest infestations have affected the size of his 

crop, his choice of harvest inputs will be a function of this knowledge. 

Consequently harvest input choices are likely to be correlated with output and 

single-equation estimates of the marginal product of labor will be biased. 

The harvest input bias may be particularly serious in the context of 

agricultural development where harvest labor is often an important input.I 

Another example is measurement of pesticide productivity. Pesticides are 

often applied in significant quantities only when a pest infestation occurs, 

so that pesticide input is associated with negative shocks to production. If 

a production function is estimated without accounting for the sequential 

~ structure of the farmer's decision problem, the estimated marginal product of 

pesticides is likely to be biased.2 One can conclude that, as a general 

principle, parameter estimates with desirable properties can only be obtained 
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by specifying and estimating empirical production models which are consistent 

with the sequential structure of the production process and farm managers' 

solutions of their input choice problems. 

·- Using a simple two input example, the first section of the paper briefly 

describes the single stage Cobb-Douglas production models proposed by Marshak 

and Andrews and by Zellner et al. The second section extends the Cobb-Douglas 

example to a two-stage model, defines various sequential solutions to the 

input choice problem, and discusses appropriate estimation methods under the 

various control solutions, two stochastic specifications, and two output data 

assumptions. The third section shows that there is a close connection between 

functional separability across production stages, production function error 

specification, and the implied relationship between inputs and production 

uncertainty. These relationships have important implications for 

specification of multi-stage production functions. 

SINGLE STAGE COBB-DOUGLAS MODELS 

In this section I describe specification and estimation of the single 

stage Cobb-Douglas production models of Marshak-Andrews (MA) and 

Zellner-Kmenta-Dreze (ZKD). The Cobb-Douglas production function provides an 

interesting special case of the general production model because of its 

widespread use in theoretical and empirical research. It is also useful for 

illustrating issues of specification and estimation that arise in sequential 

models described in the following section. I shall utilize a simple crop 

production model defined as follows: the ith farmer chooses the amount of 

inputs Lil and Li2 to use on a predetermined acreage, Ai• Output, Qi2• is 

sold after harvest at price Pi• and input prices are wil and Wi2• 
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The MA model is based on maximization of profit in a single-period 

framework. The theoretical model consists of the first order conditions for 

profit maximization and the deterministic Cobb-Douglas production function, 

both in logarithmic form. The econometric model is obtained by appending 

random error terms to these equations. For our crop production example the 

structural equations with parameters aj, j=l, 2, 3, are3 

log Gi2 

log Lit 

log ao + al log Lil + a2 log Li2 + a3 log Ai + £i 

log at - log Wit+ log Gi2 + Uit• t=l, 2. 
pi 

(1) 

Here £i and uit are independent random variables with zero means, the £i 

representing random disturbances in production due to weather, pests, etc., 

and the Uit allowing for nonsystematic errors in maximization by farmers. 

Adding the error term £i to the production function transforms the 

deterministic theoretical model into a system of simultaneous equations with 

endogenous variables Gi2• Lil• and Li2• Therefore, with a sample of 

i=l, ••• ,N farms, simultaneous equation estimators are needed to obtain 

consistent estimates of the model's parameters. Note, too, that in the MA 

model prices are treated as known, nonstochastic variables.4 

The ZKD model is also a one-period model, but in contrast to the MA model 

it is based on the assumption that firms recognize production is stochastic 

and therefore choose inputs to maximize the mathematical expectation of 

profit. Prices are viewed as independent random variables in the model. 

Writing the stochastic production function as 

Gi2 e 
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and letting a bar over a variable denote its expectation, the decision problem 

is: 

02/2 
e 

The structural econometric model, in log form, consists of the first-order 

conditions and the production function: 

log Qi2 

- (2) 
log Lit log at - log Wit+ log Qi2 + Uit• t=l,2 

Pi 

uit is an independent random error added to the first-order conditions to 

represent nonsystematic errors in maximization. For econometric estimation 

the important difference between models (1) and (2) is that inputs depend on 

actual output, Qi2• in the former and expected output, Qi2• in the latter. 

Since Qi2 is nonstochastic, the inputs are independent of output [as long as 

E(uit£i) = O] and the production function can be estimated with single 

equation methods such as ordinary least squares. 

TWO STAGE COBB-DOUGLAS MODELS AND SEQUENTIAL DECISION MAKING 

We define the two-stage Cobb-Douglas production function as follows: 

before the first production stage labor input Lil is chosen, and during stage 

1 the crop is planted and grows. Random events such as weather occur during 

plant growth and the output of the first stage, Qil• representing the mature, 

unharvested crop, is 

Qu (3) 
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z 
where Eil is a N(0,01) random error term. In the second production stage the 

crop Gil is harvested by labor input Liz• Adverse weather, etc., may affect 

the harvest, so we write the second-stage production function as 

(4) 

z 
where Eiz is a N(O,oz) random error term (again, Lil and Liz could be 

interpreted as any inputs that enter production sequentially). Equations 

(3) and (4) comprise a system of recursive equations, a fact that is exploited 

below. Combining the two equations we have 

e (5) 

We note that final harvested output is a function of both Eiz and Eiz• 

In order to discuss estimation of this model we must carefully specify 

the production disturbance terms. The simplest assumption is that the Eit are 

independently distributed across both firms and time, that is 

0, i*i', t*t'. (6) 

These assumptions may not hold in practice, and in agricultural production as 

well as manufacturing and processing the Eit are likely to be correlated 

across time. Therefore, we also consider estimation under the assumptions 

E(vi Eit) = 0, t 

vi ~ N(O, oZ) 

1, z 

(7) 
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Heteroscedasticity and cross-equation, cross-firm correlation may also be 

present in the production errors, especially in agricultural production. 

These violations of assumption (5) may be introduced by making appropriate 

modifications of the covariance matrix and are not discussed here. 

Another important factor in estimation of sequential production models is 

·- the availability of observations on the output variable Qit• Often only 

observations of the final product Qi2 are possible or available. For example, 

in agriculture often only the quantity harvested is known and it is not known 

what part of output can be attributed to each farming operation. With 

manufacturing or processing operations, in contrast, it may be possible to 

disaggregate production into separate stages each of which has a measurable 

product. Because of this "observability" problem of intermediate products, we 

shall consider the properties of estimators based on the final product Qi2 

only as well as on both Qil and Qi2• 

To illustrate the essential differences between the one-period and 

sequential solutions we continue to assume that farmers choose inputs to 

maximize expected returns and that prices are independently distributed.5 The 

maximum problem to be solved is 

max E[ni] subject to: (3), (4) 

Lil ,Liz 
(8) 

Sequential solutions to decision problems such as (8) may be 

differentiated from one-period solutions in terms of the information that is 

utilized by the decision maker. The information pertains to three features of 

sequential solutions: 
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(a) Sequential dependence of decisions: decisions made earlier may affect 

decisions made later, so that the optimal choice of Liz may be a function 
0 

Li2(Li1) depending on Lil• If the farmer takes this fact into account 

then his optimal input choice in period 1 may depend on how it affects 

the optimal input in period 2. 

(b) Information feedback: information that becomes available during earlier 

stages may be utilized in subsequent decisions. The optimal choice of 

Li2 will depend on expected output Qil if there is no information 

feedback about first period production; if there is information feedback 

about first period production Liz depends on Qil• Thus, the farmer may 

use his knowledge of the actual output, Qil• rather than his original 

estimates of production, Qil to determine the optimal amount of harvest 

labor to hire. 

(c) Anticipated revision: decisions made earlier may be revised later as new 

information becomes available. If the decision maker knows information 

about Qil will become available in period 2, his choices in period 1 will 

depend on the conditional distribution gz(Ei2IQi1) rather than on the 

unconditional distribution gz(Ei2). Thus, the farmer's planting 

decisions may be different if he knows he can revise his harvest plans at 

harvest time, rather than having to base harvest decisions on his initial 

expectations. 

We shall consider four alternative sequential solutions to the input 

choice problem defined in (8) which utilize different information sets.6 We 

assume that at the beginning of stage 1, when Lil is chosen, each farmer 

knows, as a minimum, wage rate wil and the probability distribution functions 

of £il• £i2• Pi• and Wi2• This minimal information set is defined as I 0 in 

Table 1. In addition to the elements of I 0
, the farmer may know that the 
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optimal input in stage Z is a function of the input chosen in stage 1. 

Augmenting I 0 with this piece of information we have Ia, defined in Table 1, 

which incorporates the sequential dependence property (a). When choosing Lil 

the farmer may also know that he will be able to acquire information about Qil 

before choosing Liz, and thus be able to revise his plans for harvest labor 

input. This additional element of information is represented by replacing the 

unconditional distribution gz(Eiz) with the condition distribution 

gz(EizlQi1); making this change we obtain Iac as defined in Table 1. In 

period 2, the farmer's choices of Liz may be based only on the minimal 

information set I 0
; alternatively, the farmer's information set may be updated 

as additional information becomes available. When I 0 is updated with 

information about Qil and wiz, we obtain Ib as defined in Table 1. 

The Open Loop (OL) Control Solution. The OL solution embodies property 

(a) but not properties (b) or (c) of sequential solutions . The choice of Lil 

is made with the knowledge that it may affect the optimal Liz, and thus is 

based on Ia, but the information set is not updated in stage Z and the choice 

of Liz is conditioned on 1°. Thus, the OL solution implies that 

the farmer does not use what he learns about the crop growth during the 

growing season to choose the optimal harvest labor input. To calculate the OL 

solution we proceed recursively from stage 2 to stage 1. We first solve for 

the optimal Liz, taking Lil as given, by maximizing 

Yz w 
Liz e - wilLil - wizLiz 

z 2 z 
where w = [oz+ 01 (Y1 + PY1 - Y1)]/2.7 Note that the expectation is taken 

over Eil, Eiz, Pi, and wiz because the only information assumed to be used in 

choosing Liz is the farmer's knowledge of the distributions of Eil, Eiz, Pi, 

and wi2• The solution is 



0 

log Liz 1 [w + log YoYz] -
1-rz 

10 

1 
1-yz 

log wiz + 
Pi 

1 
1-yz 

log Gil (9) 

The OL solution for Lil is based on the assumption that the decision maker 

0 
knows Liz is a function of Lil through Gil, so the optimal Lil is obtained by 

maximizing E[nilra]. The solution is a complicated nonlinear function of the 

form 8 , 

0 
Lil (pi, wil' wiz, 0 1, oz, f3o, f31, t3z, Yo, Y1, Yz). (10) 

0 0 
Noting that L1 and Lz are independent of the production function 

disturbances Eil and Eiz, we can conclude that the OL solution implies that a 

single equation estimator of the production function's parameters could be 

efficient and free of simultaneous equation bias. This result, which is also 

obtained with ZKD model, follows from the assumption that input choices are 

based only on information available before production begins and not on 

information about the random events which occur during production. Note, 

however, that the functional form of the input equations derived from the OL 

solution differ from those of the ZKD model. 

The Sequential Updating (SU) Solution. The SU solution exhibits only 

property (b) of the sequential solution.9 In each of the production stages 

the information set is updated with information acquired in previous stages, 

but the effects of the current decision on future stages is ignored. 

Therefore in period two labor input is chosen to maximize 

Y1 
E[nilrb] = PiYOGil 

2 
oz/Z 

e - wi1Li1 - wizLiz• (11) 
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Note that in (11) the expectation is taken only with respect to £i2 since in 

stage two Qil and wi2 are known and this information is used to choose Li2• 

The optimal Li2 satisfies 

2 0 

log Li2 1 [~ + log YoY2] - log wi2 + .:!..!___ log Qu (12) 
l-Y2 2 Pi l-Y2 

To find the optimal Lil we take expectations with respect to both £il and £i2 
0 

and maximize E[nilI 0
], ignoring the fact that Li2 is a function of Lil• 

Solving the maximum problem gives 

0 

log Lu 
0 

co+ 01 log Ai+ 02 log wil + 63 log E[Li2II 0
) 

Pi 
(13) 

where oo. 01, 62 and 03 are functions of the production function parameters 

and 01 and 02. We conclude that when information acquired in stage 1 about 

Qil is used to update the decision maker's information set for the choice of 

0 
Li2• Li2 becomes a function of £il through Qil and is correlated with Qi2• 

0 
However, Lil is based on information set I 0 and is not a function of £il or 

£i2• Therefore, when decisions are sequentially updated we obtain a 

simultaneous equation model consisting of equations (3), (4), (12), and (13) 

with properties similar to the Marshak-Andrews Model. 

The Open Loop with Feedback (OLF) Solution. The OLF solution combines 

the properties (a) and (b) of the OL and SU solutions and is therefore 

generally superior to them both as an optimal solution to the maximum problem. 

In stage 2, Li2 is chosen to maximize E[ni!Ib] as in the SU solution; then in 

stage 1, Lil is chosen to maximize E[ni!Ia] as in the OL solution. Therefore, 
0 

the OLF solution, like the SU solution, has the property that Li2 is an 

endogenous variable in the structural equation model. The full model consists 
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of the production functions (3) and (4) plus the input equations (10) and (12) 

and therefore differs from both the OL and SU models. 

The Closed Loop (CL) Solution. The CL solution utilizes properties (a), 

(b), and (c). It is similar to the OLF solution except that the expectation 

in each stage is computed with the probability density conditioned on 

information available at that time as well as the knowledge that more 

information will become available in the future so that decisions may be 

revised. It is this "closing" of the information loop which distinguishes the 

OLF and CL solutions, hence, the CL solution also possesses the simultaneity 

properties of the OLF and SU solutions. Thus, the CL solution is based on 

maximization of E[nilrb] with respect to Liz and maximization of E[nilrac] 

with respect to Lil• 

We may summarize the analysis of the sequential solutions to the 

Cobb-Douglas model by noting that sequential decision making has two distinct 

effects on the form of the production model. First, optimal input choices are 

sequentially dependent. Sequential dependence generally leads to input choice 

equations which are nonlinear functions of production function parameters, 

prices and previous inputs and outputs. Even in the case of the simple 

two-stage Cobb-Douglas model, one obtains the optimal first-stage input by 

solving a complicated ploynomial equation. One can expect this result for all 

but the simplest models such as linear production functions and quadratic 

objective functions.IO Second, the feedback of information causes inputs 

chosen in later stages to depend on previous stages' outputs and thus may lead 

to simultaneity between inputs and outputs. To consider in greater detail the 

econometric properties of these models under the two error specifications (6) 

and (7) and under the two data availability conditions described above, we 

shall £onsider first the OL solution which does not involve information 
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feedback, and then consider the SU, OLF, and CL solutions which do involve 

some degree of information feedback. 

The OL model with data for both Gil and Qi2 consists of the two 

production functions (3) and (4) and the two input equations (8) and (9). The 
0 

Lit are nonstochastic and the production functions may be estimated using 

single equation methods. Since the Cobb-Douglas functions are linear in 

logarithms, under error structure (6) ordinary least squares estimates will be 

unbiased and efficient (Qil in equation (4) is a predetermined endogenous 

variable). Under error structure (7), the combination of a lagged dependent 

variable in equation (4) with autocorrelated errors causes least squares 

estimates of the parameters to be biased and inconsistent. One possibility 

under (6) is to utilize the instrumental variables technique, although a more 

efficient method would be maximum likelihood estimation under appropriate 

distributional assumptions (see Theil, Ch. 8). An additional estimation 

procedure is possible due to the recursive structure of the stage production 

functions. Equation (5) shows that the final output can be expressed as a 

function of the exogenous variables alone and therefore the "reduced-form" 

parameters could be efficiently estimated using a single equation estimator 

under either error structure (6) or (7). However, it may not be possible to 

identify the parameters of each stage's function using this approach. Equation 

(5) shows that, in the Cobb-Douglas example, it would not be possible to 

The SU, OLF, and CL solutions differ from the 01 solution in that 

information feedback from previous stages' outputs to later stages' inputs 

does occur, so some inputs may be endogenous variables in the structural 

econometric model. To illustrate, let us consider the model derived from the 

OLF solution to the input choice problem. The OLF model with both Gil and Qi2 
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observed consists of the two production functions (3) and (4) and the two 

0 
input equations (10) and (12). Lil is nonstochastic as in the OL solution but 

0 
Li2 depends on Qil and is stochastic; however, when Qil is observed (12) is an 

exac t equation without an error term. Consequently, only the production 

functions need be estimated and the estimation problem is identical to the 

estimation problems encountered under the OL solution. Under error structure 

(6) Qil and Li2 are predetermined variables in equation (4) and ordinary least 

squares may be applied to both production functions in log form. Under error 

structure (7), the autocorrelation biases least squares estimates and must be 

accounted for as discussed above. 

When data for Qil is not available, equation (3) may be substituted into 

equations (4) and (12), and the resulting "semi-reduced form" equations are 

log Qi2 

0 
log Li2 

0 0 
+ ~lYl log Lil + S2Y1 log Ai + Y2 log L12 

(w + ~ 0 + log r 0r 2 ) - 1 
l-Y2 

+ S2 log Ai + £il 
l-Y1 

(14) 

(l S) 

Due to the occurrence of £il in both equations, a simultaneous equation 

estimator must be utilized to obtain consistent estimates of the "semi-reduced 

form" parameters. Least squares estimates of equation (14) would clearly be 

biased in this case, in contrast to the OL solution which would allow least 

squares estimation of (14). 

We summarize this section by observing that the sequential solutions to 

the production problem can yield either single or simultaneous equation 
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models. If the decision maker is asstlllled to update his information set with 

information about output as production takes place, as in the SU, OLF, and CL 

solutions, simultaneity between inputs and output is introduced into the 

model; and if the input choices are sequentially dependent, as in the OL, OLF, 

and CL solutions, the form of the solution differs from the nonsequential 

solution. It is worth noting that when interpreted in the context of 

sequential decision making, the MA model is internally inconsistent, because 

in a one-period choice problem inputs must be chosen before production begins. 

Yet, the MA model shows inputs to be functions of actual output which is not 

known until after inputs have been chosen.II Interestingly, the SU solution 

produces a model which is similar in form to the MA model but its simultaneity 

is derived from an explicit sequential decision making process. It is also 

instructive to note that the ZKD model could be derived from a sequential 

solution of the input choice problem if the decision maker neither updates his 

information set nor takes into account the effects of first stage decisions on 

second stage decisions. 

These qualitative results obtained using the Cobb-Douglas model can be 

generalized in a straightforward manner to models based on any production 

function and any number of production stages. Dividing the production period 

into T stages, and letting output of firm i in stage t be Qit• with input 

vector xit• a coefficient vector ~t• and a production disturbance eit• the 

stage production functions can be written 

(16) 
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Assuming the final product Oit is sold in period T at price PiT, and for input 

prices wit, profit is 

T 
PiT QiT - ~ Wij Xij 

t=l 

(17) 

• and assuming firms maximize expected returns, the ith firm's objective is 

max E[niT] subject to (16), (17). 
xil , • •• ,xiT 

It is worth noting that this control problem is a terminal period problem , and 

can be interpreted as a special case of the more general multi-period model in 

which output is sold in each period rather than only in the final period . 

Solutions to this problem will generally be nonlinear in the parameters and, 

as discussed further below, the probability distributions for Oit are 

difficult to ascertain. When farmers are assumed to make decisions 

sequentially, and when each stage ' s output is not observed by the 

econometrician, then the structural econometric production model will be a 

system of nonlinear simultaneous equations . Estimation procedures for this 

class of models have been developed (Amemiya, Fair) but are usually very 

costly to implement . 

ERROR SPECIFICATION, FUNCTIONAL SEPARABILITY, AND BEHAVIOR UNDER UNCERTAINTY 

For over a decade production economists have studied the relationship 

between production inputs and the stochastic characteristics of production 

processes (Day, Anderson, Roumasset, Just and Pope, and Antle) . The error 

specification of the production function is known to determine the way inputs 

affect the probability distribution of output, and hence the implied behavior 

of farmers toward production uncertainty. Dynamic production functions also 

introduce the added problem of tractability of the probability distribution 
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of each stage's output. In general, when the stage functions ft as given in 

(16) are nonlinear, nonseparable functions of Gi,t-1> Xit, and Eit> the 

probability distribution of Git cannot be derived analytically and one cannot 

utilize maximum likelihood estimation or use small sample inference 

procedures. However, we can show that if the production function is either 

additively or strongly (non-additive) separable it is possible in some cases 

to obtain models with tractable distributions.12 

The production function which is additively separable in Gi>t-1 and Eit 

can be expressed as 

where at is a parameter and mt is a concave function of xit• Substitution for 

Gi>t-1> Gi>t-2> etc., shows that the distribution of Git is a convolution of 

the errors Eit> Ei>t-1>•••,Eil• Therefore, if linear combinations of the Eit 

have a known distribution, Git has a known distribution. For example, if the 

Eit are normal (O,o2) variates Git is normally distributed with a mean linear 

in the mt and a variance proportional to o2. 

Additive separability of inputs across production stages is not usually a 

plausible maintained hypothesis in agricultural production. Strong, 

nonadditive separability would appear to be a more reasonable assumption. For 

example, additive separability in the crop production model discussed in 

section would imply that the marginal product of harvest labor input is 

independent of the amount of crop harvested, whereas the strongly separable 

Cobb-Douglas function used in section 1 (see equation 4) shows that the 

marginal product of harvest labor Li2 depends on the amount of crop harvested, 

Gil• A production function which is strongly separable in Gi,t-1' xit and 

Eit can be specified as: 
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at 
Oit (Qi•t-1) mt[Xit• at]Eit 

Note that the logarithm of Oit is linear in the logarithms of Qi•t-1 and Eit 

under this specification. If the £it follow a distribution such as the normal 

which has the property that a convolution of normal variates also has a normal 

distribution, the output of each stage follows the same distribution. 

From these examples an important conclusion can be reached regarding 

error specification and functional separability of the production stages' 

inputs: tractable production function specifications typically must be 

additively separable if error specifications are additive, or must be strongly 

separable if error specifications are multiplicative. Otherwise, one 

typically obtains each stage's output as a nonlinear function of the earlier 

stages' error terms, and the probability distribution of output cannot be 

ascertained analytically (see Aoki, 1967, Ch. 2, for a discussion of this 

problem in the context of general solutions to stochastic control problems). 

The relationship between error specification and functional separability 

is also relevant to the analysis of behavior towards uncertainty because 

additive and multiplicative error structures have different implications for 

the effects of inputs on the probability distribution of output. Just and 

Pope have shown that the standard multiplicative error specification restricts 

the relationship between input choice and output variance. More generally, 

not only the mean and variance but also higher moments of output may be 

functions of inputs (Day, Anderson, Roumasset). Antle shows that a general 

model which does not impose restrictions on the relationship between the 

inputs and the form of the probability distribution of output can be specified 

and estimated with an additive error term. The above discussion shows that a 

dynamic model with this error structure would have to be additively separable 

across production stages. However, a model with desirable properties which is 
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strongly separable across production stages can also be specified, as follows. 

First, define the production function as 

where 

0, 
t 

uit l: e:ij • 
j=l 

Second, assume the joint probability distribution of Uit is 

g(uitlxil,•••,xit), a function of inputs. Then, generally, the moments of 

Uit depend on inputs: 
co 

J (uit)j g(uitlxil,•••,xit)duit 
0 

u 
Finally, note that e it l: 

j=O 

u. 
E(e it) 

co 

1 + l: µjit 
j=2 ]! 

j 
uit -.-, J. 

and, therefore, 

Using this latter expression, it can be shown that the moments of output are 

functions of the inputs through the mt and the µjit• Hence, this strongly 

separable production function specification yields a tractable output 

distribution, and does not restrict the effects inputs may have on the moments 

of the output distribution. 

CONCLUSIONS AND EXTENSIONS 

It has been demonstrated that when the short-run input choice problem is 

solved sequentially the resulting structural econometric production model 

generally differs, in terms of functional form and stochastic structure, from 

single-stage production models. Since farm managers can be expected to 

utilize all available information in their decision making, they will feedback 
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information from earlier production stages to later input choices. In 

addition, only the final agricultural product is usually measured. These two 

facts mean that agricultural production models typically are systems of 

simultaneous equations and single equation estimates of production function 

parameters will be subject to simultaneous equation bias. Estimates with 

desirable properties can be obtained by formulating and estimating models that 

are consistent with the sequential structure of farm managers' input choice 

problems. However, in order to implement multi-stage sequential production 

models, researchers must devise models which have desirable properties and 

which are empirically tractable. 

In assessing the practical importance of these findings two points are 

worth emphasizing. First, the magnitude of the simultaneous equation bias due 

to input endogeneity remains to be ascertained. Currently, the author is 

conducting Monte Carlo studies to investigate the nature of the bias. Second, 

as any applied production economist knows, a crtical limiting factor is data 

availability; most available production data do not contain information on 

inputs by production stage or operation. An important contribution to our 

understanding of both the simultaneity problem and, perhaps more important, 

the sequential structure of farm managers' decision making and their 

stage-level production functions, could be made by collection of production 

data by stages so that stage-level production and sequential decision making 

could be studied. 

The results presented here concerning short-run production could be 

extended to long-run, multi-period production problems in which farmers choose 

inputs over many production periods (rather than over many stages in one 

period) to maximize the expected present value of profit or some function of 

• 
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profit. If output in each period depends on outputs and inputs from previous 

periods then both the production functions and input demand functions are 

dynamic and involve lagged endogenous variables. Therefore, the long-run 

model generally could be expressed as a system of dynamic, recursive 

simultaneous equations and appropriate estimation methods could be devised 

along the lines pursued in this paper. 

3/10/82 JSl 
deb 
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TAJILE 1 

Definitions of Information Sets Used in Sequential Solutions 
of the Cobb-Douglas Production Model 

Input and Price In ormaton Production In ormation 
0 

lg1u:io gp(Pi) wu gw(Wi2) Wi2 Li2( Li 1) Qu g2(Ei2) g 2 ( £ i 21 Ciu) 

x x x x x 

x x x x x x 

x x x x x x 

x x x x x 

Definitions: gp(Pi) - probability distribution of product price. 

wil - period 1 wage rate. 

gw(wi2) - probability distribution of period 2 wage rate. 

wi2 - period 2 wage rate. 
0 

Li2(Li1) - optimal labor input in period 2. 

gl (Eil) - probability distribution of period 1 production disturbance. 

Ou - actual production in period 1. 

g2(£i2) - probability distribution of period 2 production disturbance. 

g2(£i2lou) - probability distribution of period 2 production disturbance 

conditional on Ou. 
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TABLE 2 

Information Sets Used in Sequential Solutions of the Production Model 

.. 

Solution 

Open Loop ( OL) Ia Io 

Sequential Updating (SU) Io Ib 

Open Loop w/Feedback (OLF) Ia Ib 
1 

Closed Loop (CL) Iac Ib 

Note: See Table 1 for definitions of the information sets. 
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Footnotes 

Yotopoulous ~al. (1976) found parameter estimates of a Cobb-Douglas 

production function to be very different when obtained indirectly from 

estimates of a profit function, and when obtained directly from 

estimation of the production function. They suggest the differences may 

be due to simultaneity of inputs and output which biases the direct 

production function parameter estimates. 

2. For example, Hall (1977) obtained negative estimates of herbicide and 

insecticide production elasticities using a single-equation production 

function model. One might suspect that rather than being due to the 

over-use of these inputs, this result may be due to simultaneous equation 

bias. Also see Headley (1968) for a study of pesticide productivity 

using aggregate data. The dynamic dimension of the pesticide problem has 

been considered by Hall and Norgaard (1973), Talpaz and Borosch (1974), 

and others. 

3. Throughout the paper we utilize the fact that, for a Cobb-Douglas 

production function, aqit/aLit = aiQit/Lit, where ai is the production 

elasticity of Lit• 

4. As we shall discuss later, the MA model (1) is not internally consistent. 

Formally, the theoretical production model is based on single-period 

profit maximization and, therefore, inputs must be chosen before 

production begins. Yet, in the MA model Lil and Li2 are specified as 

functions of actual (not expected) output! 

5. A complete specification of the decision problem requires specification 

of the farmer's price expectation formation process as well as his 

sequential input choice. Modeling price expectations is a difficult 
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problem with no easy solution. Since our purpose is not primarily to 

study price expectations, we mention briefly several schemes which could 

be utilized. One approach is to assume prices are independently 

distributed and that price distributions are known to the decision maker, 

as we did in the previous section. Within this framework one might 

employ a "rational expectations" model or an adaptive expectations model. 

An alternative, more complex, and more theoretically satisfactory 

approach is to incorporate the price expectation problem into the firm's 

overall decision problem. By treating price information as a costly 

economic good, this latter approach could generate "economically rational 

expectations" which are consistent with the firm's dynamic behavior (see 

Feige and Pearce, 1976; Chow, 1981, Ch. 16) in contrast to "rational" or 

"adaptive" expectations which are not derived from the firm's maximizing 

behavior. However, this latter approach would certainly complicate the 

solution of an already difficult problem. In the following analysis we 

continue to assume price distributions are known by farmers. 

6. For definitions and further discussion of alternative stochastic control 

strategies, see Rausser (1978), Rausser and Hochman (1978, Ch. 8), and 

Aoki (1976, Ch. 10). The sequential updating, open loop with feedback, 

and closed loop control solutions discussed in this paper involve some 

degree of "passive learning" by the farmer during the production process, 

that is, the amount of learning is not a function of the farmer's own 

decision making. "Active learning," in contrast, refers to the case 

where farmers take decisions in part for the information they generate 

for future decision making. The reader may note that the qualitative 

results derived here for passive learning models could be extended 

directly to fully adaptive or active learning models. 
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7. Note that 

Y2 
E[ni!I 0

] = PiYO Liz 
Y1 

E(Qu 

Y1 
Since E (Qil ) 

81 
(80111 

81 
< t3oLu 

e:i2 
e ) - wilLil - Wi2Li2• 

y 1 e:il 
E(e ) 

Y12012/2 
e 

- Yl (y12012 - Y1012)/2 
= Qu e 

Y1£il + e:i2 (oz2 + Y1 201 2 + Y1Po1 2)/2 
and E(e ) = e 

we obtain the expresion given in the text. 

8. Since 

o Yz w o 
(Liz) e - wil Lil - wizLiz, 

0 
Lu satisifies 

9. See also Zellner (1971), Ch. 11, for a discussion of sequential 

updating. 

10. See Aoki (1967), Ch. 2, for a detailed analysis of this point. 

11. This criticism of the MA model is also valid for the models of Hoch 

(1958), 1962) and Mundlak and Hoch (1965). Those models with endogenous 

input demand equations specify input demands as functions of actual 

output rather than expected output • 

12. An additively separable function f(x1,xz) can be expressed as 

fl(x1) + fz(x2); a strongly (but not necessarily additive) separable 
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