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Implications of Sequential Decision Making for
Specification and Estimation of Production Models

The agricultural economics literature abounds with studies of
agricultural production which are based on single equation estimates of
econometric production function models. The single-equation approach has been
justified by Hoch (1958, 1962) and Mundlak and Hoch (1965) under the
assumption that input decisions are based on "anticipated” output, and by
Zellner, Kmenta and Dreze (1966) under the assumption that input decisions are
based on the maximization of the mathematical expectation of profit or some
other function of output. These models are all based on the strong assumption
that production inputs are chosen as part of a one-period decision problem, an
assumption which appears to be inconsistent with actual production decision
making. Indeed, Zellner et al., state in the conclusion of their paper that
"we are fully aware of the fact that one-period maximization of expected
returns is just a step in the direction of a proper treatment of stochastic
elements in a firm's sequential decision-making process under uncertainty."
Especially in agriculture, both short-run and long-run production decisions
are not based on a one-period maximization problem but rather on a
multi-period dynamic optimization problem because inputs are not all chosen or
utilized simultaneously. Therefore, the farmer's optimal input choices may be
intrepreted as optimal controls in a stochastic control problem.

The aim of this paper is to formulate a short-run single product
production model within a stochastic control framework and to explore its
implications for specification and estimation of econometric production
models. The analysis demonstrates that sequential solutions to production
problems generally result in input demand equations which differ from those of

one-period solutions. In addition, sequential solutions may produce models



which require either single equation or simultaneous equation estimation
methods, depending on the assumptions made about the information the farmer
uses to make input choices and on the availability of data for estimation. In
particular, it is shown that simultaneous equation estimators are not required
if (i) decision makers do not "feedback” information about early stages'
production to later input decisions, or (ii) output and input data are
available for each stage in the production process. Since both of these
conditions are usually violated in agricultural production, these findings
suggest that even though farmers choose inputs so as to maximize expected
returns, as in the models of Hoch, Mundlak, and Zellner et al.,
single—equation estimates of agricultural production functions are generally
subject to simultaneous equation bias. One example of how this bias occurs is
the choice of inputs for harvest. Because a farmer knows how weather and
other random events such as pest infestations have affected the size of his
crop, his choice of harvest inputs will be a function of this knowledge.
Consequently harvest input choices are likely to be correlated with output and
single-equation estimates of the marginal product of labor will be biased.

The harvest input bias may be particularly serious in the context of
agricultural development where harvest labor is often an important input.1
Another example is measurement of pesticide productivity. Pesticides are
often applied in significant quantities only when a pest infestation occurs,
so that pesticide input is associated with negative shocks to production. If
a production function is estimated without accounting for the sequential
structure of the farmer's decision problem, the estimated marginal product of
pesticides is likely to be biased.2 One can conclude that, as a general

principle, parameter estimates with desirable properties can only be obtained




by specifying and estimating empirical production models which are consistent
with the sequential structure of the production process and farm managers'
solutions of their input choice problems.

Using a simple two input example, the first section of the paper briefly
describes the single stage Cobb-Douglas production models proposed by Marshak
and Andrews and by Zellner et al. The second section extends the Cobb-Douglas
example to a two-stage model, defines various sequential solutions to the
input choice problem, and discusses appropriate estimation methods under the
various control solutions, two stochastic specifications, and two output data
assumptions. The third section shows that there is a close connection between
functional separability across production stages, production function error
specification, and the implied relationship between inputs and production
uncertainty. These relationships have important implications for

specification of multi-stage production functions.

SINGLE STAGE COBB-DOUGLAS MODELS

In this section I describe specification and estimation of the single
stage Cobb-Douglas production models of Marshak-Andrews (MA) and
Zellner-Kmenta-Dreze (ZKD). The Cobb-Douglas production function provides an
interesting special case of the general production model because of its
widespread use in theoretical and empirical research. It is also useful for
illustrating issues of specification and estimation that arise in sequential
models described in the following section., I shall utilize a simple crop
production model defined as follows: the ith farmer chooses the amount of
inputs Lij; and Lijp to use on a predetermined acreage, Aj. Output, Qi7, is

sold after harvest at price pj, and input prices are wj] and wij.



The MA model is based on maximization of profit in a single-period
framework. The theoretical model consists of the first order conditions for
profit maximization and the deterministic Cobb-Douglas production function,
both in logarithmic form. The econometric model is obtained by appending
random error terms to these equations. For our crop production example the

structural equations with parameters % J=1, 2, 3, are3

log Qj2 = log ag + a; log Lj; + ap log Ljp + a3 log Aj + €5
(1)
log Lit = log ay — log wijt + log Qij2 + ujg, t=1, 2.
P
i

Here € and ujy are independent random variables with zero means, the €3
representing random disturbances in production due to weather, pests, etc.,
and the ujt allowing for nonsystematic errors in maximization by farmers.
Adding the error term €§ to the production function transforms the
deterministic theoretical model into a system of simultaneous equations with
endogenous variables Qj2, Lij, and Lijp. Therefore, with a sample of
i=l,...,N farms, simultaneous equation estimators are needed to obtain
consistent estimates of the model's parameters. Note, too, that in the MA
model prices are treated as known, nonstochastic variables.*

The ZKD model is also a one-period model, but in contrast to the MA model
it is based on the assumption that firms recognize production is stochastic
and therefore choose inputs to maximize the mathematical expectation of
profit. Prices are viewed as independent random variables in the model.
Writing the stochastic production function as

e | @2 a3 E€j
Qi2 = ap Ly; Lijo2 A; e , €1~N(0,02)



and letting a bar over a variable denote its expectation, the decision problem

is:

max  E[m3] = pjQip - wijLi] - wioLi2

Lii,sLi2
o ay a3 02/2 - oy
PiegLi; Lip Ay e = wiili) - wioLji2.

The structural econometric model, in log form, consists of the first—order

conditions and the production function:

log Q42 = log ap + @) log Ly} + ap log Lip + a3 log Aj + €4

log Lit+ = log at — log Wit + log 612 + ujp, t=1,2 2

Pi

ujt is an independent random error added to the first-order conditions to
represent nonsystematic errors in maximization. For econometric estimation
the important difference between models (1) and (2) is that inputs depend on
actual output, Qj2, in the former and expected output,‘aiz, in the latter.
Since‘aiz is nonstochastic, the inputs are independent of output [as long as

E(ujt€i) = 0] and the production function can be estimated with single

equation methods such as ordinary least squares.

TWO STAGE COBB-DOUGLAS MODELS AND SEQUENTIAL DECISION MAKING

We define the two-stage Cobb-Douglas production function as follows:
before the first production stage labor input Lj; is chosen, and during stage
1 the crop is planted and grows. Random events such as weather occur during
plant growth and the output of the first stage, Qii, representing the mature,
unharvested crop, is

B1 B2 €4
Qi1 = BoLi; Ay e (3)
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where €] is a N(O,al) random error term. In the second production stage the

crop Q4] is harvested by labor input Ljj. Adverse weather, etc., may affect

the harvest, so we write the second-stage production function as

Y1 o2 &2
Qi2 = YoQi1 Liz2 e (4)
2
where €45 is a N(0,05) random error term (again, Lj; and Ljp could be
interpreted as any inputs that enter production sequentially). Equations

(3) and (4) comprise a system of recursive equations, a fact that is exploited

below. Combining the two equations we have

Y1 ByYp Boyp vz (vpeqp + £43)
Qi2 = YoBo Lii A  Lip e . (5)

We note that final harvested output is a function of both €7 and €45.

In order to discuss estimation of this model we must carefully specify

the production disturbance terms. The simplest assumption is that the €i, are

independently distributed across both firms and time, that is

2 2
E(Eit) = 0¢

E(Bit, Ei'tl) - 0, i*i', t*t'. (6)

These assumptions may not hold in practice, and in agricultural production as

well as manufacturing and processing the €4, are likely to be correlated

across time. Therefore, we also consider estimation under the assumptions

Ej7 = PE4] ) Vi, |D|<1 E(Viﬁit) = () tom ], 2

E(vy vir) = 0, i#i' vy ~ N(0, o2) (7)



Heteroscedasticity and cross—equation, cross-firm correlation may also be

present in the production errors, especially in agricultural production.

These violations of assumption (5) may be introduced by making appropriate
. modifications of the covariance matrix and are not discussed here.

Another important factor in estimation of sequential production models is
the availability of observations on the output variable Qj+. Often only
observations of the final product Q7 are possible or available. For example,
in agriculture often only the quantity harvested is known and it is not known
what part of output can be attributed to each farming operation. With
manufacturing or processing operations, in contrast, it may be possible to
disaggregate production into separate stages each of which has a measurable
product. Because of this "observability” problem of intermediate products, we
shall consider the properties of estimators based on the final product Q2
only as well as on both Qj; and Q45.

To illustrate the essential differences between the one-period and
sequential solutions we continue to assume that farmers choose inputs to
maximize expected returns and that prices are independently distributed.? The

maximum problem to be solved is

max E[m4] subject to: (3), (4)
Li1»Li2

E[n3] = pj Q42 - wijlil - wizLi? (8)
Sequential solutions to decision problems such as (8) may be
ks differentiated from one-period solutions in terms of the information that is

utilized by the decision maker. The information pertains to three features of

sequential solutions:




(a)

(b)

(c)

Sequential dependence of decisions: decisions made earlier may affect
decisions made later, so that the optimal choice of Lij may be a function
LgZ(Lil) depending on Lyj. If the farmer takes this fact into account
then his optimal input choice in period 1 may depend on how it affects
the optimal input in period 2.

Information feedback: information that becomes available during earlier
stages may be utilized in subsequent decisions. The optimal choice of
Ljp will depend on expected output ail if there is no information
feedback about first period production; if there is information feedback
about first period production Ljs depends on Qj;. Thus, the farmer may
use his knowledge of the actual output, Qj], rather than his original
estimates of production,'ail to determine the optimal amount of harvest
labor to hire.

Anticipated revision: decisions made earlier may be revised later as new
information becomes available. If the decision maker knows information
about Q41 will become available in period 2, his choices in period 1 will
depend on the conditional distribution gp(€471/Qi1) rather than on the
unconditional distribution gp(€j5). Thus, the farmer's planting
decisions may be different if he knows he can revise his harvest plans at
harvest time, rather than having to base harvest decisions on his initial
expectations.

We shall consider four alternative sequential solutions to the input

choice problem defined in (8) which utilize different information sets.® We

assume that at the beginning of stage 1, when Lj] is chosen, each farmer

knows, as a minimum, wage rate wjy; and the probability distribution functions

of €41, €42, Pi, and wijp. This minimal information set is defined as I° in

Table 1. In addition to the elements of I°, the farmer may know that the




optimal input in stage 2 is a function of the input chosen in stage 1.
Augmenting I° with this piece of information we have 12, defined in Table 1,
which incorporates the sequential dependence property (a). When choosing Ljj
the farmer may also know that he will be able to acquire information about Qi;
before choosing Ljjy, and thus be able to revise his plans for harvest labor
input. This additional element of information is represented by replacing the
unconditional distribution gy(€;9) with the condition distribution
g2(€421Q41); making this change we obtain I2C as defined in Table 1. In
period 2, the farmer's choices of Ljp may be based only on the minimal
information set I°; alternatively, the farmer's information set may be updated
as additional information becomes available. When I° is updated with
information about Qi and wyp, we obtain IP as defined in Table 1.

The Open Loop (OL) Control Solution. The OL solution embodies property

(a) but not properties (b) or (c) of sequential solutions. The choice of Ljj
is made with the knowledge that it may affect the optimal Ljj, and thus is
based on 12, but the information set is not updated in stage 2 and the choice
of Lip is conditioned on I°. Thus, the OL solution implies that

the farmer does not use what he learns about the crop growth during the
growing season to choose the optimal harvest labor input. To calculate the OL
solution we proceed recursively from stage 2 to stage l. We first solve for
the optimal Ljp, taking Lj; as given, by maximizing

- ey EEL o ST A s
E[n41TI°] = pjY0Qq1 Lip e = wyjljy - wiolys

2 2 2
where w = [0y + 0] (Y] + pY] - Yl)]/2.7 Note that the expectation is taken
over €41, €49, Pi, and wip because the only information assumed to be used in

choosing Ljp is the farmer's knowledge of the distributions of €51, €42, Ppi,

and wip. The solution is



10

0 = =
log Lip = 1 [w+ 1log Ygv2] - _1  log %Wi2 + 1  log Qi) (9)
1-Y, 1-Y, Pi )

The OL solution for Lj; is based on the assumption that the decision maker
) =
knows Ljp is a function of Lj; through Qi;, so the optimal Ly; is obtained by

maximizing E[m4|I2]. The solution is a complicated nonlinear function of the

form,8

(¢] o - ==
Li; = Li; (Pi» Wi1» Wiz, 915 92, Bos Bps B2y Yo, Y1» Y2)o (10)

Noting that LT and Lg are independent of the production function
disturbances €] and €49, we can conclude that the OL solution implies that a
single equation estimator of the production function's parameters could be
efficient and free of simultaneous equation bias. This result, which is also
obtained with ZKD model, follows from the assumption that input choices are
based only on information available before production begins and not on
information about the random events which occur during production. Note,
however, that the functional form of the input equations derived from the OL
solution differ from those of the ZKD model.

The Sequential Updating (SU) Solution. The SU solution exhibits only

property (b) of the sequential solution.? 1In each of the production stages
the information set is updated with information acquired in previous stages,
but the effects of the current decision on future stages is ignored.
Therefore in period two labor input is chosen to maximize

2

> Y] Yy 03/2
E[nsITP] = pivoQi) Lio e = wijli) = wi2Llio. (11)
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Note that in (11) the expectation is taken only with respect to €49 since in
stage two Qj] and wip are known and this information is used to choose Ljj.
The optimal Ljp satisfies

() 2
log Lip = 1[92 + log vgv2]l - _1 log ¥i2 + Y1  log Q4) (12)
=y 2 =Y Pi 1-y2

To find the optimal Ljj we take expectations with respect to both €4; and €49
and maximize E[m;|I°], ignoring the fact that Liz is a function of Ljj.
Solving the maximum problem gives

log Lil =8p + 8; log Aj + 8 log Yil + 63 log E[L:2l1°] (13)

Pi

where 6, 6, 89 and 63 are functions of the production function parameters
and 0; and 03. We conclude that when information acquired in stage 1 about
Qi1 is used to update the decision maker's information set for the choice of
Lio, L:z becomes a function of €4 through Qj; and is correlated with Qjg.
However, Lzl is based on information set I° and is not a function of €4 or
€i2. Therefore, when decisions are sequentially updated we obtain a
simultaneous equation model consisting of equations (3), (4), (12), and (13)
with properties similar to the Marshak-Andrews Model.

The Open Loop with Feedback (OLF) Solution. The OLF solution combines

the properties (a) and (b) of the OL and SU solutions and is therefore
generally superior to them both as an optimal solution to the maximum problem.
In stage 2, Lip is chosen to maximize E[nj|IP] as in the SU solution; then in
stage 1, Ly; is chosen to maximize E[n4|I2] as in the OL solution. Therefore,
the OLF solution, like the SU solution, has the property that Liz is an

endogenous variable in the structural equation model. The full model consists
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of the production functions (3) and (4) plus the input equations (10) and (12)
and therefore differs from both the OL and SU models.

The Closed Loop (CL) Solution. The CL solution utilizes properties (a),

(b), and (c¢). It is similar to the OLF solution except that the expectation
in each stage is computed with the probability density conditioned on
information available at that time as well as the knowledge that more
information will become available in the future so that decisions may be
revised. It is this "closing"” of the information loop which distinguishes the
OLF and CL solutions, hence, the CL solution also possesses the simultaneity
properties of the OLF and SU solutions. Thus, the CL solution is based on
maximization of E[m4|IP] with respect to Ljp and maximization of E[mj|I3C]
with respect to Ljij.

We may summarize the analysis of the sequential solutions to the
Cobb-Douglas model by noting that sequential decision making has two distinct
effects on the form of the production model. First, optimal input choices are
sequentially dependent. Sequential dependence generally leads to input choice
equations which are nonlinear functions of production function parameters,
prices and previous inputs and outputs. Even in the case of the simple
two-stage Cobb-Douglas model, one obtains the optimal first-stage input by
solving a complicated ploynomial equation. One can expect this result for all
but the simplest models such as linear production functions and quadratic
objective functions.10 Second, the feedback of information causes inputs
chosen in later stages to depend on previous stages' outputs and thus may lead
to simultaneity between inputs and outputs. To consider in greater detail the
econometric properties of these models under the two error specifications (6)
and (7) and under the two data availability conditions described above, we

shall consider first the OL solution which does not involve information
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feedback, and then consider the SU, OLF, and CL solutions which do involve
some degree of information feedback.

The OL model with data for both Qi) and Qj7 consists of the two
production functions (3) and (4) and the two input equations (8) and (9). The
Lgt are nonstochastic and the production functions may be estimated using
single equation methods. Since the Cobb-Douglas functions are linear in
logarithms, under error structure (6) ordinary least squares estimates will be
unbiased and efficient (Qi; in equation (4) is a predetermined endogenous
variable). Under error structure (7), the combination of a lagged dependent
variable in equation (4) with autocorrelated errors causes least squares
estimates of the parameters to be biased and inconsistent. One possibility
under (6) is to utilize the instrumental variables technique, although a more
efficient method would be maximum likelihood estimation under appropriate
distributional assumptions (see Theil, Ch. 8). An additional estimation
procedure is possible due to the recursive structure of the stage production
functions. Equation (5) shows that the final output can be expressed as a
function of the exogenous variables alone and therefore the "reduced-form"
parameters could be efficiently estimated using a single equation estimator
under either error structure (6) or (7). However, it may not be possible to
identify the parameters of each stage's function using this approach. Equation
(5) shows that, in the Cobb-Douglas example, it would not be possible to
identify vg, Bg, Y1, By, or Bp.

The SU, OLF, and CL solutions differ from the OL solution in that
information feedback from previous stages' outputs to later stages' inputs
does occur, so some inputs may be endogenous variables in the structural
econometric model. To illustrate, let us consider the model derived from the

OLF solution to the input choice problem. The OLF model with both Q4; and Qy7
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observed consists of the two production functions (3) and (4) and the two
input equations (10) and (12). L?l is nonstochastic as in the OL solution but
Liz depends on Q4] and is stochastic; however, when Qi) is observed (12) is an
exact equation without an error term. Consequently, only the production
functions need be estimated and the estimation problem is identical to the
estimation problems encountered under the OL solution. Under error structure
(6) Q41 and Lyjy are predetermined variables in equation (4) and ordinary least
squares may be applied to both production functions in log form. Under error
structure (7), the autocorrelation biases least squares estimates and must be
accounted for as discussed above.

When data for Qi; is not available, equation (3) may be substituted into

equations (4) and (12), and the resulting "semi-reduced form" equations are

Y1 o )
log Qj2 = log YpBg + BjY] log Lj; + BoY] log Aj + Y2 log Ly )
* XiE4 Y ED
0 _ o
log Lip = 1 (w+ Bg + log Ygyo) - 1  log Wi2 + Bl 1og Ly
J=Na 1-Y5 Pi 1-Y;
(15)

+ B2 log Aq + g4

2 6|

Due to the occurrence of €] in both equations, a simultaneous equation
estimator must be utilized to obtain consistent estimates of the "semi-reduced
form" parameters. Least squares estimates of equation (14) would clearly be
biased in this case, in contrast to the OL solution which would allow least
squares estimation of (14).

We summarize this section by observing that the sequential solutions to

the production problem can yield either single or simultaneous equation
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models. If the decision maker is assumed to update his information set with
information about output as production takes place, as in the SU, OLF, and CL
solutions, simultaneity between inputs and output is introduced into the
model; and if the input choices are sequentially dependent, as in the OL, OLF,
and CL solutions, the form of the solution differs from the nonsequential
solution. It is worth noting that when interpreted in the context of
sequential decision making, the MA model is internally inconsistent, because
in a one-period choice problem inputs must be chosen before production begins.
Yet, the MA model shows inputs to be functions of actual output which is not
known until after inputs have been chosen. !l Interestingly, the SU solution
produces a model which is similar in form to the MA model but its simultaneity
is derived from an explicit sequential decision making process. It is also
instructive to note that the ZKD model could be derived from a sequential
solution of the input choice problem if the decision maker neither updates his
information set nor takes into account the effects of first stage decisions on
second stage decisions.

These qualitative results obtained using the Cobb-Douglas model can be
generalized in a straightforward manner to models based on any production
function and any number of production stages. Dividing the production period
into T stages, and letting output of firm i in stage t be Qjt, with input
vector xj¢, a coefficient vector By, and a production disturbance €., the

stage production functions can be written

]

Qi1 = f1lx11, B1, €] (16)

Qit = £elQiyre=-1s X1its Bts €¢l, t=2,004,T; 1=1,.44,N.
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Assuming the final product Qj¢ is sold in period T at price pjy7, and for input

prices wy, profit is

—

(17)
4T = P47 YUt - 51 Wij Xij
t=

and assuming firms maximize expected returns, the ith firm's objective is

max E[miy7] subject to (16), (17).

X{lseeesX4T
It is worth noting that this control problem is a terminal period problem, and
can be interpreted as a special case of the more general multi-period model in
which output is sold in each period rather than only in the final period.
Solutions to this problem will generally be nonlinear in the parameters and,
as discussed further below, the probability distributions for Qi are
difficult to ascertain. When farmers are assumed to make decisions
sequentially, and when each stage's output is not observed by the
econometrician, then the structural econometric production model will be a
system of nonlinear simultaneous equations. Estimation procedures for this
class of models have been developed (Amemiya, Fair) but are usually very

costly to implement.

ERROR SPECIFICATION, FUNCTIONAL SEPARABILITY, AND BEHAVIOR UNDER UNCERTAINTY
For over a decade production economists have studied the relationship
between production inputs and the stochastic characteristics of production
processes (Day, Anderson, Roumasset, Just and Pope, and Antle). The error
specification of the production function is known to determine the way inputs
affect the probability distribution of output, and hence the implied behavior
of farmers toward production uncertainty. Dynamic production functions also

introduce the added problem of tractability of the probability distribution
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of each stage's output. In general, when the stage functions f; as given in
(16) are nonlinear, nonseparable functions of Qj,¢-1, ¥it, and €4¢, the
probability distribution of Qjt cannot be derived analytically and one cannot
utilize maximum likelihood estimation or use small sample inference
procedures. However, we can show that if the production function is either
additively or strongly (non-additive) separable it is possible in some cases
to obtain models with tractable distributions.l?

The production function which is additively separable in Qj,¢-j and €4,

can be expressed as

Qit = %tQist-1 + MelxXies Bel + €4t

where ay is a parameter and my is a concave function of xj¢. Substitution for
Qist-1s Qist-2, etc., shows that the distribution of Qi+ is a convolution of
the errors €it, €ist=]se++3€i]» Therefore, if linear combinations of the €
have a known distribution, Qj, has a known distribution. For example, if the
€4t are normal (0,02) variates Qit is normally distributed with a mean linear
in the my and a variance proportional to 02,

Additive separability of inputs across production stages is not usually a
plausible maintained hypothesis in agricultural production. Strong,
nonadditive separability would appear to be a more reasonable assumption. For
example, additive separability in the crop production model discussed in
section would imply that the marginal product of harvest labor input is
independent of the amount of crop harvested, whereas the strongly separable
Cobb-Douglas function used in section 1 (see equation 4) shows that the
marginal product of harvest labor Lj7 depends on the amount of crop harvested,
Qi1+ A production function which is strongly separable in Qj,¢-1, Xj¢ and

€it can be specified as:
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b
Qit = (Qise-1) melxye, Beleje

Note that the logarithm of Qj¢ is linear in the logarithms of Qj,¢-] and €4
under this specification. If the €4, follow a distribution such as the normal
which has the property that a convolution of normal variates also has a normal
distribution, the output of each stage follows the same distribution.

From these examples an important conclusion can be reached regarding
error specification and functional separability of the production stages'
inputs: tractable production function specifications typically must be
additively separable if error specifications are additive, or must be strongly
separable if error specifications are multiplicative. Otherwise, one
typically obtains each stage's output as a nonlinear function of the earlier
stages' error terms, and the probability distribution of output cannot be
ascertained analytically (see Aoki, 1967, Ch. 2, for a discussion of this
problem in the context of general solutions to stochastic control problems).

The relationship between error specification and functional separability
is also relevant to the analysis of behavior towards uncertainty because
additive and multiplicative error structures have different implications for
the effects of inputs on the probability distribution of output. Just and
Pope have shown that the standard multiplicative error specification restricts
the relationship between input choice and output variance. More generally,
not only the mean and variance but also higher moments of output may be
functions of inputs (Day, Anderson, Roumasset). Antle shows that a general
model which does not impose restrictions on the relationship between the
inputs and the form of the probability distribution of output can be specified
and estimated with an additive error term. The above discussion shows that a
dynamic model with this error structure would have to be additively separable

across production stages. However, a model with desirable properties which is
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strongly separable across production stages can also be specified, as follows.

First, define the production function as

E u
Qit = Qi,e-1 Melxge, Bele 1t = mylxgy, B1] mylxjp, Bolee.mplxye, Byle 1t
where

E(uit) = 0, ujp = L Eij.

Second, assume the joint probability distribution of ujt is
g(ujtlxg1,eses%Xqy¢), a function of inputs. Then, generally, the moments of

ujt+ depend on inputs:

Wit (XipseeesXqe) = é (uie)d glugelxgyseee xip)dugy

u et J
Finally, note that e it - 3 Uit and, therefore,
j=0 3!
u oo
E(e 1t) = 1 + I MHjit .
=2 jl

Using this latter expression, it can be shown that the moments of output are
functions of the inputs through the my and the Wjjy. Hence, this strongly
separable production function specification yields a tractable output
distribution, and does not restrict the effects inputs may have on the moments

of the output distribution.

CONCLUSIONS AND EXTENSIONS

It has been demonstrated that when the short-run input choice problem is
solved sequentially the resulting structural econometric production model
generally differs, in terms of functional form and stochastic structure, from
single-stage production models. Since farm managers can be expected to

utilize all available information in their decision making, they will feedback
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information from earlier production stages to later input choices. 1In
addition, only the final agricultural product is usually measured. These two
facts mean that agricultural production models typically are systems of
simultaneous equations and single equation estimates of production function
parameters will be subject to simultaneous equation bias. Estimates with
desirable properties can be obtained by formulating and estimating models that
are consistent with the sequential structure of farm managers' input choice
problems. However, in order to implement multi-stage sequential production
models, researchers must devise models which have desirable properties and
which are empirically tractable.

In assessing the practical importance of these findings two points are
worth emphasizing. First, the magnitude of the simultaneous equation bias due
to input endogeneity remains to be ascertained. Currently, the author is
conducting Monte Carlo studies to investigate the nature of the bias. Second,
as any applied production economist knows, a crtical limiting factor is data
availability; most available production data do not contain information on
inputs by production stage or operation. An important contribution to our
understanding of both the simultaneity problem and, perhaps more important,
the sequential structure of farm managers' decision making and their
stage-level production functions, could be made by collection of production
data by stages so that stage-level production and sequential decision making
could be studied.

The results presented here concerning short-run production could be
extended to long-run, multi-period production problems in which farmers choose
inputs over many production periods (rather than over many stages in one

period) to maximize the expected present value of profit or some function of
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profit. If output in each period depends on outputs and inputs from previous
periods then both the production functions and input demand functions are
dynamic and involve lagged endogenous variables. Therefore, the long-run
model generally could be expressed as a system of dynamic, recursive
simultaneous equations and appropriate estimation methods could be devised

along the lines pursued in this paper.

3/10/82 Jsi
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TABLE 1

Definitions of Information Sets Used in Sequential Solutions
of the Cobb-Douglas Production Model

Infor- Input and Price Informaton ' Production Information
mation o
Set gp(Pi) wil 8w(wi2) wi2 Lip(Li1)| |81(€i1) Qi1 E2(€12) &2(€i2|Qi1)
j il X X X X X
X X X X X X
yac X X X X X X
b X X X X X

Definitions: gp(pi)
wil
gu(vi)
w12
o
Liz(Lip)
g1(eq1)
011
g2(e12)

g2(e12011)

m

il

probability distribution of product price.

period 1 wage rate,

probability distribution of period 2 wage rate.

period 2 wage rate.

optimal labor input in period 2.

probability distribution of period 1 production disturbance.
actual production in period 1.

probability distribution of period 2 production disturbance.
probability distribution of period 2 production disturbance

conditional on 041+
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TABLE 2

Information Sets Used in Sequential Solutions of the Production Model

Information Set Used in Period

L2 Solution 1 2
Open Loop (OL) Ia o

Sequential Updating (SU) s o b

Open Loop w/Feedback (OLF) I8 b

Closed Loop (CL) 1ac 1b

Note: See Table 1 for definitions of the information sets.
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Footnotes
Yotopoulous et al. (1976) found parameter estimates of a Cobb-Douglas
production function to be very different when obtained indirectly from
estimates of a profit function, and when obtained directly from

estimation of the production function. They suggest the differences may

be due to simultaneity of inputs and output which biases the direct
production function parameter estimates.

For example, Hall (1977) obtained negative estimates of herbicide and
insecticide production elasticities using a single-equation production
function model. One might suspect that rather than being due to the
over-use of these inputs, this result may be due to simultaneous equation
bias. Also see Headley (1968) for a study of pesticide productivity
using aggregate data. The dynamic dimension of the pesticide problem has
been considered by Hall and Norgaard (1973), Talpaz and Borosch (1974),
and others.

Throughout the paper we utilize the fact that, for a Cobb-Douglas
production function, 38Qi¢+/3Ljt = @4Qi¢/Lit, where aj is the production
elasticity of Lji¢e

As we shall discuss later, the MA model (1) is not internally consistent.

Formally, the theoretical production model is based on single-period

profit maximization and, therefore, inputs must be chosen before

production begins. Yet, in the MA model Lj; and Ljp are specified as

functions of actual (not expected) output!
A complete specification of the decision problem requires specification
of the farmer's price expectation formation process as well as his

sequential input choice. Modeling price expectations is a difficult
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problem with no easy solution. Since our purpose is not primarily to
study price expectations, we mention briefly several schemes which could
be utilized. One approach is to assume prices are independently
distributed and that price distributions are known to the decision maker,
as we did in the previous section. Within this framework one might
employ a “"rational expectations” model or an adaptive expectations model.
An alternative, more complex, and more theoretically satisfactory
approach is to incorporate the price expectation problem into the firm's
overall decision problem. By treating price information as a costly
economic good, this latter approach could generate "economically rational
expectations” which are consistent with the firm's dynamic behavior (see
Feige and Pearce, 1976; Chow, 1981, Ch. 16) in contrast to “"rational" or
"adaptive" expectations which are not derived from the firm's maximizing
behavior. However, this latter approach would certainly complicate the
solution of an already difficult problem. In the following analysis we
continue to assume price distributions are known by farmers.

For definitions and further discussion of alternative stochastic control
strategies, see Rausser (1978), Rausser and Hochman (1978, Ch. 8), and
Aoki (1976, Ch. 10). The sequential updating, open loop with feedback,
and closed loop control solutions discussed in this paper involve some
degree of "passive learning"” by the farmer during the production process,
that is, the amount of learning is not a function of the farmer's own
decision making. "Active learning," in contrast, refers to the case
where farmers take decisions in part for the information they generate
for future decision making. The reader may note that the qualitative
results derived here for passive learning models could be extended

directly to fully adaptive or active learning models.
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Za Note that

I Y2 Y1 €42 .
E[n;11°] = pjyp Li2 E(Qi; e ) - wjjLij - wisLio.

Y1 Bl B2 Y] 11541
r Since E(Qi1 ) (BoLi1 Ai ) E(e

B1 B2 Y1 712012/2
(BpLi1 A1) e

-
]

Y1 (12012 _ v10,2)/2
Qi1 e

Yi1€4] + €42 (022 + v12012 + y1p012)/2
and E(e ) =e

we obtain the expresion given in the text.

8. Since

_ Y1 o Y2 w = o)
E[n;|12] = pypQs) (Lj2) e - wyp Lyj - wyolyo,

L:l satisifies
BE[411°%] = E(nyIT°] {v[0y b 80y % elinsy T OLEa) - wep = Ts Tldz = 0
Bl o 5 ) [t | YASS V] et £} il 12 . -2<
9Ly dLi1 9Li1 9L4)
9. See also Zellner (1971), Ch. 11, for a discussion of sequential
updating.
10. See Aoki (1967), Ch. 2, for a detailed analysis of this point.
l11. This criticism of the MA model is also valid for the models of Hoch
(1958), 1962) and Mundlak and Hoch (1965). Those models with endogenous
input demand equations specify input demands as functions of actual
output rather than expected output.
< 12, An additively separable function f(x],Xxp) can be expressed as
= f1(x1) + £f2(x9); a strongly (but not necessarily additive) separable

function can be written f(x),xp) = F[f;(x;), fa(xp)].
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