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Estimation of Heteroscedastic Regression Models Whose 
Variances are Functions of Exogenous Variables 

Heteroscedasticity of a regression model's disturbances is a standard 

estimation problem. The assumption that the regression disturbances' 

variances are functions of exogenous variables is often a feasible maintained 

hypothesis in applied research, and numerous techniques have been proposed for 

estimation of such models (see [8], Ch. 4, for a survey of recent research). 

In this paper I propose a general heteroscedastic regression model for which 

one can obtain consistent estimates of the error variances in the case where 

the variances are linear functions of exogenous variables. The proposed 

estimation technique is a generalization of Goldfeld and Quandt's [6] 

"Modified Glejser Method" and of Amemiya's [l] generalized least squares 

method, and is based on the principle that, not only the mean and variance 

but, generally, all of the moments of the dependent variable may be functions 

of exogenous variables. Using this principle, a general model is proposed for 

which one can obtain single equation estimates of the parameters of both the 

regression model and the variance function which are asymptotically equivalent 

to Aitken estimators, and this is achieved without making explicit assumptions 

about the distribution of the regression model's disturbance term (such as 

normality). Since the Aitken estimator can be shown to be asymptotically 

normal under standard conditions, this method provides an asymptotic test for 

the hypothesis of heteroscedasticity without imposing an explicit distribution 

on the regression model. In addition, I show that if the third moment of the 

regression distrubance is nonzero (and also possibly a function of exogenous 

variables) one can employ a joint Aitken procedure, which is a heteroscedastic 

version of Zellner's [13) "seemingly unrelated regression technique," to 
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increase estimation efficiency. Asymptotically valid tests for symmetry of 

the disturbance distribution are also devised. One problem with the 

proposed estimation method is that negative estimates of variances may be 

obtained. Using standard programming techniques, I also show how the model 

may be estimated under the restriction that the estimated variances are 

non-negative. 

Several other model specifications and estimation methods have been 

proposed for heteroscedastic regression models which are similar to the one 

described in this paper (Glejser [4], Harvey [7]). While these models 

exhibit some desirable properties, I show that they require explicit 

distributional assumptions for the regression error term. Therefore, the 

model described in this paper is more general in the important sense that one 

need not assume the error term follows a particular distribution to obtain 

estimates of the model's parameters and standard errors with desirable 

asymmptotic properties. 

The paper begins with a description of the heterscedastic model and the 

single equation Aitken estimators. The following sections discuss the joint 

Aitken estimator, the estimation procedure with the variances constrained to 

be positive, and the alternative estimation methods. 

1. The Model and Single Equation Estimation Method. 

The linear regression model is given by 

(1) 

The (lxk) vector Xt = (1, xtl' ••• , xtk). In addition let 
2 

(2) 

where zt is a vector of variables exogenous to ut• 
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Note that the (!xi) vector zt (1, ztl, ••• , zti) could include xt as a 

subvector. Now defining 

i 
E(ut) .. µit' 

we have 

2 
E(ut) µ2t ztY2, 

2 2 
E(vt) = µ4t - µ2t' (3) 

E(vt Vt i) = O, ttt'. 

Therefore the regression model (1) has a heterscedastic error structure, and 

consistent estimates of the regression variances µ2t can be obtained if the 

parameter vector Y2 can be consistently estimated. I will now show that under 

standard assumptions on the xt and zt one can obtain consistent estimates of 

y 2 and, thus, implement the Aitken procedure for estimation of S. Let X be 

the (Txk) matrix of the xt, let Z be the (Txi) matrix of the zt, and let u, u2 

2 
and v be the (Txl) vectors of the ut, ut and vt• 

Assumptions. As T + 00 , X'X/T and Z'Z/T converge to nonsingular 

matrices and plim X'u/T = plim Z'v/T = O. 

Under these assumptions it follows that least squares estimation produces a 

consistent estimate ~ of S. Thus, we have the residuals 

Using (4) we have 
"2 2 

[xt(S-S)]2 Ut • Ut + + UtXt(~-S). 
"2 

In general, E(ut) * µt, but using a well-known limit theorem (Rao [ 11] ' 

122) it follows that the bias 
"2 

plim Ut "" 

is zero in the limit because plim ~ = S: 
.... 2 

[ut + zt (S - plim S)]2 = Ut• 

(4) 

p. 

(5) 
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We now consider the following theorems: 

Theorem 1: Let the least squares estimator of Y2 in equation (2) 
be given~ 

Also define the feasible least squares estimator of y2 as 
~ 

Y2 = (Z'z)-l Z' u2. 

· Then plim Y2 = plim Y2 = y and y2 converges in distribution to 

Proof: From (5) it follows that 

plim r 2 = plim r 2 

and under the assumptions made above it also follows that 

plim Y2 = Y2· Since Y2 converges to Y2 in probability, Y2 

also converges to y2 in distribution (Rao [11], p. 122). Q.E.D. 

Theorem 2: Let E be the diagonal matrix of the µ2t and let E be 

the diagonal matrix of the ZtY2, t=l, ••• , T. Also, assume 

lim Z' L-1 Z/T .!.!. finite and nonsingular. 
T+co 

Then the feasible Aitken estimator -- -- ----- ---- -----

converges in distribution to the Aitken estimator 

Proof: It is sufficient to show that 

plim x 1 r-lx = 
T 

I T 

lim X' E-lx 
T 

I T 

(6) 

(7) 
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By Theorem 1 and (3) we have 

(8) 

and hence (6) is satisfied for each element of the matrix. 

Equation (7) follows from (8) and the fact that each element of 

r-lu therefore converges in distribution to the corresponding 

element of r-lu (Rao [11], p. 122). Hence, plim ~(~A - ~A) 0 

and therefore ~A converges in distribution to aA. Q.E.D. 

It is also possible to obtain Aitken estimates of the variance 

regressions by letting 
4 

E(ut) = µ4t = zt Y4 

By the above arguments it is clear that regression of ut on zt will produce 

consistent estimates of Y4, that is, plim Y4 = Y4· Therefore, we can also 

prove the following result: 

2 2 
Theorem 3: Let 11 be the diagonal matrix of [µ4t - µ2tl = E(vt), and 

let 11 be the diagonal matrix of [ztY4 - (ztY2)2], t=l, ••• , T. 

Also assume lim Z' llZ ~~finite nonsingular matrix. Then the 
T-+-00 T 

feasible Aitken estimator 

converges in distribution .!£_ the Aitken estimator 

Proof: First note that 

plim Z'~i-lz/T .. lim Z' 11-lz/T 

because the elements of 12 converge in probability to the elements 

of H. In addition: 
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I T I T 

by the fact that the elements of il converge in probability to the 

elements of H, and by the fact that u2 converges in probability to u2 

(see 5). Therefore, each element of il-1 u2 converges in distribution to 

the corresponding element of ~l-1 u2 (Rao [11], p. 122). Hence, 

"'A A 
plim I T (y2 - y2) = o. Q.E.D. 

The reader should note that µ4t need not be a function of Zt for the 
T "' 4 

above results to hold, since any consistent estimate such as µ4 = l: Ut/T can 
t=l 

be used in the event that µ4 is a constant across all observations. 

We have now established the asymmptotic equivlance of the feasible Aitken 
"'A A 

estimators aA and Y2 to their respective true Aitken estimators aA and Y2• The 

standard proof of asymmptotic normality of the Aitken estimator can be applied 

to aA and 

2 
Ut/( µ4t -

A 
Y2 (Theil [12], Ch. 8) since the weighted distrubances ut/./µ 2t and 

2 
µ2t)l/Z are independently distributed with zero mean and unit 

variance for all t.l 
"'A 

Therefore, a large sample estimate y2 is approximately 

normal, and one can employ standard test procedures to test the hypothesis of 

heteroscedasticity (some Y2 ~ * 0 for some ~ ) 2) against the hypothesis of 

homoscedasticity (yz~ = 0 for ~ ) 2). 

A large sample estimation algorithm for ~ and Y2, based on the above 

Theorems, can be defined as follows: First, run the regression 

Yt (9) 

to obtain a consistent estimate a of ~. Second, use p to compute ut and run 

the regressions 
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(10) 

to obtain consistent estimates r2 and Y4 of Yz and Y4· Third, use the Yz and 

Y4 to estimate the variances of (9) and (10) and compute the feasible Aitken 

estimators for these equations. These latter regressions can be accomplished 

by weighted least squares with weights given by 

,. ,. 

[ztY4 - (ztYz)2J-1/2 

respectively for (9) and (10). 

In concluding this section, we emphasize that estimators for S and Yz 

which are asymmptotically equivalent to Aitken estimators have been devised 

without imposing any explicit distributional assumptions on the regression 

model. Only the condition of independence of the Ut across observations (see 

equation 1) and the standard assumptions concerning asymmptotic behavior of 

the data matrices are required for these results. 

2. The Joint Aitken Estimator 

I now show that the disturbances ut and vt of the regression model (1) 

and the "variance equation" (3) may be contemporaneously correlated. 

Therefore, we can increase estimation efficiency by taking these 

cross-equation correlations into account. Since the disturbances are 

heteroscedastic both within and across equations, the estimator is similar to 

Zellner's "seemingly unrelated regression" estimator with the addition of 

heteroscedasticity. 
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The cross-equation correlations are computed in a straightforward 

fashion, as follows: 

2 
E(ut vt') = E(utut' - utzt'Yz) = µ3t t "' t I 

0 t * t'. 
A3 

Note that a consistent estimate of µ3t can be obtained by regressing ut on zt 

to obtain the estimate Y3· Now we let r be the diagonal matrix of the ZtY3 

and we let r be the diagonal matrix of the ZtY3· Also let: 

The following Theorem is a straightforward generalization of Theorems 2 and 3: 

Theorem 4: Let e-1 [ oij], i,j = 1,2, and assume lim R' OijR'/T 

is finite and nonsingular. Then the feasible joint Aitken estimator 

converges in distribution to the estimator 

The joint estimation procedure is, therefore, an extension of the single 

equation approach, and requires the estimation of the parameter vector Y3 of 

the third moment in addition to yz and Y4· The reader may note that if the 

distribution of the original dependent variable, y, is symmetric, then Y3 = 0 

and the single equation Aitken estimators are as efficient as the joint 
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estimator. Consequently, it is of interest to test the hypothesis Y3 = 0 

against Y3 * O. To do so we may formulate the models 

Noting that 

we can obtain a feasible Aitken estimate of Y3 by regressing ut and ut on zt 

to obtain consistent estimates of Y3 and Y6 and then running a weighted least 

squares regression with weights [ztY6 - (ztY3)2]-l/2. Since the resulting 
AA 

estimate Y3 of Y3 is asymmptotically normal one can then test the hypothesis 

Y3 = 0 using standard test statistics.2 

3. Constraining Estimates .£.£Even Moments to be Non-negative 

Although even moments are non-negative by definition, in utilizing the 

estimation techniques described in the previous two sections it is possible 

that some estimates of even moments may be negative. If the model is 

correctly specified, the problem may be due to either small sample bias or 

sampling error in parameter estimates (recall from section 1, least squares 

estimates of the Yi are biased but consistent). Therefore, it may be 

necessary to constrain the estimates to be positive in finite samples; in the 

limit as T approaches infinity consistency holds and the problem disappears. 

Since the non-negativity restriction holds with certainty, it can be 

demonstrated that the restricted estimator is superior to the unrestricted 

estimator in terms of mean-squared error. Hence, use of a restricted 

estimator can improve small sample properties of even-moment estimates and 

will not affect their asymmptotic properties. 

I 
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Restricted Aitken estimators can be implemented as follows. First, 

estimate r 2 by solving the nonlinear minimization problem: 

T 
min L 
r 2 t=l 

A2 
[ut - ZtY21 2 subject to ZtY2 ) O. 

Second, estimate Y4 by solving 

T 
min E 
Y4 t=l 

A4 
[ut - ztY4J 2 subject to [ztY4 - (ztY2) 2J ) O. 

Note that the inequality constraint in this latter problem simultaneously 
A4 

forces y to satisfy the restriction that µ4 ) 0 as well as the restriction 

2 
that the variance of ut be non-negative. These inequality constrained 

minimization problems can be solved with appropriate software (see (10] for an 

example), and the resulting estimates can then be employed in the weighted 

regressions to obtain Aitken estimates. Similar procedures could be 

implemented for the even moment regressions discussed in section 2. 

4. Choice Among Alternative Estimation Methods 

Two other estimation methods similar to the one described in section 1 

have been proposed by Glejser [4] and Harvey [7]. The existence of several 

methods poses the problem to the researcher of choosing among them. In this 

section I show that the heteroscedastic structure they both use requires the 

assumption that the regression disturbance follows a particular probability 

distribution such as the normal. The method proposed in section 1 above is, 

therefore, more general because it is valid for whatever distribution ut may 

follow. However, the Glejser and Harvey methods do always provide positive 

estimates of the regression variances, whereas the model in section 1 may 

produce negative estimates and, thus, require the use of the constrained 

estimation method described in section 3. We may conclude, therefore, that 



-------- --------

11 

the Glejser or Harvey methods are attractive if the researcher is willing to 

impose a specific distribution, such as the normal, on the regression model. 

However, if the researcher is not willing to impose a normal distribution on 

the regression model, or if the researcher would like to test for asymmetry of 

the distribution, the method described in section 1 is preferable. 

Both the Glejser and Harvey methods are based on the "nrultiplicative 

heteroscedasticity" structure of the general form 

(11) 

where Et is an independently distributed random variable. Glejser assumes g 

is linear 

whereas Harvey assumes g is log-linear: 

g(zt) =exp {zty2} 

The Glejser model implies µ2t is proportional to (ztr2)2 and the Harvey 

model implies µ2t is proportional to exp {2zt Y2 }• But in general it also 

follows from (11) that the ith moment is 

(12) 

The "multiplicative heteroscedasticity" model (11) therefore implies that the 

exogenous variables Zt affect all nonzero moments of ut through the powers of 

g(zt)• Clearly, this condition holds only under special circumstances; in 

particular, when the ut are normal variates it can be shown that 

r 
µ2t (2r!) = 
2r r! 

g(zt)2r (2r!) 

2 r! 

so that (12) is satisfied. However, the moments of Ut are not necessarily 

related to Zt in this manner, and in general need not be functions of zt at 
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all. Therefore, as we asserted above, the Glejser and Harvey models are valid 

only if ut follows a distribution, such as the normal, which satisfies (12). 

S. Conclusions 

In this paper I have demonstrated that under the hypothesis that a 

regression model's moments are linear functions of exogenous variables, 

estimators of the parameters of the regression model and other moment 

functions can be obtained which are asymmptotically equivalent to Aitken 

estimators. These results require only the assumptions of independent 

regression distrubances and the usual convergence conditions for the data 

matrices; therefore, this model is more general than other models which 

require specific distributional assumptions . Under the conditions of the 

Lindberg-Feller central limit theorem the Aitken estimators are 

asymmptotically normal and, thus, provide a means of testing for 

heteroscedasticity and skewness of the regression distribution. When the 

distribution has a nonzero third moment, I have shown that a joint Aitken 

estimation procedure is possible. To overcome the problem of negative 

estimates of even moments an inequality-constrained estimation procedure was 

outlined. 

The model discussed in this paper is based on the assumption that moments 

are linear functions of exogenous variables. It would appear that the results 

obtained here could be extended to the case of nonlinear functions by 

utilizing the nonlinear consistency results of Malinvaud [7]. This 

generalization could prove to be a useful extension of the methods discussed 

here. 

jw 8/24/81 Pll 
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FOOTNOTES 

lNote, however, that the proof of asymmptotic normality of the Aitken 

estimator does not require the assumption that the weighted disturbances are 

identically distributed; rather, it can be seen from an examination of the 

standard proofs (e.g., Theil [12], Ch. 8) based on the Lindberg-Feller theorem 

that independence of the ut is sufficient. This result is fortunate since in 

general the weighted disturbances are not necessarily identically distributed 

even though they have the same mean and variance (for example, if µ3t = ZtY3 * 
O, the weighted disturbances are not identically distributed). See Gnedenko 

and Kolmogorov [5] or Dhrymes [3], Ch. 3, for further discussion of this 

point. 

2rn general, the joint estimation procedure may include any number of 

moment functions. For the general model see Antle [2]. 
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