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ABSTRACT 

A production model is developed based on the postulate that the firm's 

economic behavior depends on the form of the probability distribution function 

of output which is defined as the firm's output distribution. In general all 

of the moments of the output distribution may be functions of the inputs and 

the parameters which characterize the firm's technology. After showing how 

this approach is related to the literature, it is shown that the "standard" 

stochastic production function specifications impose generally unacceptable 

restrictions on the relationship between the inputs and the output 

distribution's moments. Next, a "linear moment model" is proposed which is 

free of such restrictions, and large sample econometric techniques are devised 

which provide parameter estimators which are asymptotically equivalent to 

Aitken estimators. The paper concludes with a comparison of the proposed 

econometric techniques to others that have been proposed for estimation of 

output distribution and frontier production models. 



THEORY AND MEASUREMENT OF OUTPUT DISTRIBUTIONS 

In this paper I set out a production model based on the thesis that the 

firm's decision maker views output, Q, as a random variable conditionally 

distributed on the input vector x and the parameter vector a which 

characterize the firm's technology. Therefore, the firm's economic behavior 

depends on the form of the probability distribution function of Q which is 

denoted by f(Qlx, a) and referred to as the firm's output distribution. This 

interpretation of a firm's stochastic technology is of interest because it 

suggests that, in general, all of the moments of the output distribution may 

be functions of the inputs and the parameters which characterize the firm's 

technology. In this paper I discuss the theoretical foundations and propose 

some empirical techniques for the study of production models based on the 

output distribution concept.! 

The first section of the paper is devoted to various results from the 

statistics, econometrics, and economics literature which serve to motivate the 

output distribution approach and illustrate how the output distribution's 

moments are important in terms of specifying a firm's technology and 

understanding the firm's behavior under technological uncertainty. The second 

section discusses several of the stochastic production function specifications 

in the literature and shows that they all impose generally unacceptable 

restrictions on the relationship between the inputs and the output 

distributions's moments. In section 3, large sample econometric techniques 

are devised which produce consistent, and asymptotically normal estimators of 

the model's parameters. The paper concludes with a comparison of these 

econometric techniques to others that have been proposed for estimation of 

output distributions and frontier production models. 
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1. Statistical and Economic Foundations of the Output Distribution Model 

Our first task is to explore the relationship between the moments of the 

output distribution and the characteristics of a firm's stochastic technology. 

Can we use these moments to uniquely characterize a firm's technology? To 

demonstrate that the answer is aff i rmative I draw upon some results from the 

"problem of moments" in the statistics literature.2 Kendall and Stuart (1976, 

Ch. 4) prove the following theorem: 

Theorem 1: Let µi denote the moments of a distribution calculated about 

any origin. The moments uniquely determine the distribution if the 

series 

00 

converges for some real non-zero t. 

For the study of output distributions the following corollary to Theorem 1 is 

particularly important: 

Corollary _!.: The moments uniquely determine the distribution if it is 

defined over a finite interval of the real line. 

Since we know that an output distribution must be defined over a finite 

interval of the real line, it is uniquely determined by its moments. In 

practice we may often need to approximate a firm's output distribution with 

relatively few moments because the distribution may have many (or even an 

infinity) of moments. Kendall and Stuart also suggest a method for such an 

approximation. They let a distribution be approximated over some interval, 

say [O, Q*], by: 



& 
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where the bi are found by minimizing the squared approximation error: 

q* 
f 0 [f(z) 

Minimization of the above expression gives: 

Thus, Kendall and Stuart (p. 90) conclude that "if two distributions have 

moments up to order n then they must have the same least squares 

approximation, for the coefficients bi are determined by the moments." 

These results have great importance for our interpretation of output 

distribution models, for they tell us that we can uniquely identify, or 

approximate to a desired degree, a firm's stochastic technology with the 

output distribution's moments. Consequently the firm's optimal input choices 

depend on these moment functions, as we shall now demonstrate. We let product 

and input prices be given by p and r and for simplicity assume they are not 

random variables (assuming they are random would complicate the analysis 

without altering the qualitative conclusions concerning the output 

distribution model). Expressing profit as n • pQ - rx, and letting U(•) 

denote the firm's concave utility function, the firm's objective 

is: max EU(n) • f U(n)f(Qlx, a) dQ. The input choice which maximizes the 
x 

expected utility of profit satisfies: 

oEU(n) • f U' an f(Qlx, a)dQ + f U(n) of dQ = 0 
ax "§"i' "§"i' 

or: r f U' f(Qlx, a)dQ = f U(n) of dQ 
ax 

As usual, the optimal input choice equates the expected marginal cost to the 

expected marginal benefit.2 The first term above is the cost term, the 
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expected marginal utility per dollar times the input price. The second term, 

the expected marginal benefit, is expressed in terms of the change in expected 

utility due to the shift in the mass of the distribution which is induced by 

the input change. Since we know that: 

f ~ dQ = 0 
ax 

we can interpret the marginal benefit as a weighted average about zero of the 

utility of each possible profit level. If on average the mass of the 

distribution increases for higher utility levels and decreases for lower 

utility levels, the marginal benefit is positive.3 

The connection between the output distribution moments and the firm's 

behavior can be introduced explicitly by expanding the utility function about 

expected profit before taking the expectation of utility (see Anderson, 

Dillon, and Hardaker, Ch. 6). Letting En = 1T, and letting Di denote the ith 

derivative of D, we obtain: 

00 

ED(n) = D(n) + L Di piµi 
i=2 ii 

Differentiation gives: 

00 00 

Now recalling that the firm's technology is uniquely characterized by the 

output distribution's moments, we can see that the firm's optimal input 

choices depend on the effects of inputs on the technology as represented by 

the functional relationship between the µi and x. 

A further understanding of the behavioral implications of the output 

distribution model can be gained by interpreting it as a frontier production 
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function model (for references to the literature see Forsund, ~al. 1980). To 

do this we note that a frontier output distribution model must account for two 

factors: the effects of inputs on the relative position of the mass of the 

distribution function, and the effects of inputs on the location of the 

production frontier, denoted as QF• These two elements of the frontier model 

can actually be considered as one and the same by defining the distribution 

function over the positive real line, by assuming it is unimodal, and by 

defining QF as that Q > 0 which satisfies f(Qlx, a) • O. Viewing the frontier 

model this way is useful because it shows that the firm's choice of inputs 

determines the position of the mass of the distribution. The different ways 

the various inputs and production techniques shift the distribution's mass, 

together with the form of the firm's objective function, determine the 

benefits the firm obtains from the inputs. For example, an increase in an 

input could shift the entire mass in the positive direction (see Figure la); 

other inputs may have little effect on the frontier while shifting the mass 

rightward towards the frontier (see Figure lb); still other inputs may shift 

the frontier rightward without greatly altering the position of the mass (see 

Figure le). 

The frontier interpretation of the model has several interesting 

implications. First, frontier output distributions will not generally be 

symmetric distributions. Clearly, therefore, odd moments of the third and 

possibly higher order are likely to play an important role in determining the 

shape of the output distribution. For example, in Day's (1965) study of yield 

distributions of field crops, it was found that as fertilizer applications 

increased the distributions systematically shifted from a positive skew shape 

to a negative skew. Essentially, the increased fertlizer input shifted much 

of the mass rightward towards the production frontier, with more and more of 
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the mass "piling up" near the frontier as fertilizer input increased. 

Secondly, the frontier model suggests that output distributions are not likely 

to be well approximated by normal or other symmetric distributions; 

consequently, the mean-variance criterion may be very inadequate in analyzing 

behavior under technological uncertainty. As an example of how the 

mean-variance model could lead to exactly the opposite conclusions from a more 

general expected utility model, consider a case in which an input increase has 

a small effect on the mean but substantially increases the distribution's 

variance and skewness. In this case the mean-variance criterion could indicate 

a reduction in expected utility whereas a more general utility model (say, with 

mean, variance, and skewness) which attached positive utility to skewness could 

show that the input change would increase utility. As an example of how this 

might occur, consider a third-order approximation of the utility function. The 

firm's decision would depend on the mean, variance, and third moment of the 

output distribution. A risk averse individual has U2 < O, and if the 

individual is downside risk averse as defined by Menezes, Geiss, and Tressler 

(1980) then U3 > O. Therefore, the decision maker prefers output distributions 

with a positive skew over those with a negative skew. This issue of skewness 

is not only of academic interest, as shown by research on the behavior of 

subsistence-level farmers in developing agricultures. It seems likely that 

these farmers are very concerned with down-side risk and may choose techniques 

accordingly; moreover, this attitude may differ substantially from the 

attitudes of wealthy farmers. The output distribution model could be used to 

determine the relationships between production inputs and the shape of the 

alternative technologies available to these farmers, and thus improve our 

understanding of their technology choices. 
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We can also relate the output distribution model to stochastic dominance 

theory. Hadar and Russell (1969) show that if distribution g is preferred to f 

by all agents with monotonic increasing utility functions, that is if g is 

greater than f in terms of first order stochastic dominance, all of the odd 

moments of g about the mean are greater than the odd moments of f. It also 

follows that all of the positive moments about zero are greater for g than for 

f.4 Therefore, first order stochastic dominance implies a set of testable 

restrictions for the effects of inputs on the output distribution's moments. 

If an input has a positive effect on all moments, then we know that more of the 

input is preferred to less in the sense of first order stochastic dominance. 

However, in the case of second order stochastic dominance (the case of risk 

averse agents) there is no such systematic relationship between moments and 

preferred distributions. This does not mean that studying the moments of 

output distributions is not a worthwhile endeavor, for as we have shown above 

we can use the moments to approximate distributions, and using the local 

approximation of the utility function leads to direct interpretations of 

the moments' effects on firm behavior. In addition, if we were interested in 

studying second order stochastic dominance, the moments could be used to 

approximate the distribution function and determine whether the stochastic 

dominance condition holds. 

2. Interpreting Stochastic Production Models as Output Distributions 

Two stochastic specifications of production functions have dominated the 

econometrics literature. These are: 
i 

Qk_ a m(xk, e) +Uk, Euk • 0, Euk independent of x for all i (la) 

i 
Qk • m(xk, e) Uk, Euk ) 0, Euk independent of x for all i (lb) 
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where m(x, e) is a function obeying the usual regularity conditions. The first 

specification implies that only the mean of the output distribution is a 

function of the inputs. The second implies that the relationship between the 

inputs and the ith moment is determined by the parameters e, since: 

Clearly, both of these specifications are unacceptable for a theory of 

production based on the hypothesis that the moments may be general functions 

of the inputs and not arbitrarily restricted as in these models. 

In order to study the variance of output as a function of the inputs, 

Just and Pope (1978) specified a model which does not restrict the 

relationship between inputs and variance as model (lb) does. Their model is: 

Just and Pope show that this model allows inputs to have separate effects on 

the mean and variance of output. They propose an estimation algorithm which 

involves: (i) least squares regression of Qk, on m(xk, e) to produce consistent 

(but inefficient) estimates of e; (ii) linear regression or the log residual 

ln lukl on ln h(xk, y) to produce consistent, asymptotically normal estimates 

of r [ln h(xk, y) is assumed to be linear in the paramters]; reestimation of e 

using weighted least squares, with h(xk, y)-.5 as weights to obtain 

asymptotically efficient estimates; an interative estimation algorithm to 

obtain asymptotically efficient estimates of y. 

Although the Just and Pope model is somewhat more general than the models 

in (1), I will now show that their specification imposes generally undesirable 
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restrictions on the second and higher order moments of the output distribution, 

just as model (lb) imposes such restrictions on all of the moments. To show 

this we simply note that, from (2), 

so that 

Clearly, then, for i, j ~ 2 the parameters of the ith moment are directly 

related to the parameters of the jth moment; if ln h(xk, y) is linear in the 

parameters then the parameters of the jth moment are equal to j/i times the 

parameters of the ith moment.S It is also clear that if the ith moment of Ek 

exists, then the ith moment of Qk exists and is a function of xk with these 

restrictive properties. 

If we interpret the Just and Pope criticism of the standard models in 

(1) as saying that the effects of inputs on the second moment should not be 

constrained to be zero or to have the same sign as their effects on the first 

moment, then the consideration of higher order moments suggests the following 

generalization of their principle: the effects of inputs on each moment of 

the output distribution should not necessarily be determined by their effects 

on lower order moments. Each of the models discussed above fails to satisfy 

this "principle of the output distribution." In the following section I 

propose an alternative model which does satisfy this principle, and then 

discuss estimation procedures for it. 
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3. Specification and Estimation of Output Distributions 

In this section I develop estimators for the parameters of the following 

linear moment model: 

(3) 

i 
Uk s XkYi +Vik• Evik • 0, i ) 2. (4a) 

Note that (4a) implies 
i 2 2 

Euk • µik • XkYi, E(Vik) • µ2i,k - µik• E(VikVik') • 0, k * k' (4b) 

This model clearly satisfies the output distribution principle defined above, 

as there are no~ priori restrictions on the Yi across moments. For the 

asymptotic results derived below we let X be the (N x k) matrix of the xk, ui 
i 

and vi are (N x 1) vectors of the uk and Vik• and we assume that X'X/N 

converges to a positive nonsingular matrix as N approaches infinity and plim 

X'ui/N m O. Under the conditions in (3) and other standard assumptions, 

least squares estimation [either linear or nonlinear, depending on the 

function m(x, 6)) produces a consistent estimate 6 of 6 (Malinvaud, 1970). 

We then have the residuals: 

(5) 

Using the binomial theorem, (5) implies: 

Ai i i i i-j A j 
Uk = [uk + m(xk,~) - m(xk,6)] a L (j) [uk] [m(xk,6) - m(xk,6)] 

j•O 

i i i i-j A j 
= uk + L (j)[ukl [m(xk,6) - m(xk,6)] 

j=l 
(6) 

Ai 
From (6) it is clear that Euk * µik• However, in the limit the bias vanishes 

because plim 6 - 6, and using a well known limit theorem (Rao 1971, 

PP• 120-124) it follows that: 
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"i i i 
plim uk = [uk + m(xk,a) - plim m(xk,6)] = uk (7) 

"i i 
Therefore, Ilk converges in distribution to uk (Dhrymes 1974, p. 93), that is: 

Next I construct the estimator: 

i 
which is obtained by regressing uk on XkYi• It follows from (8) that: 

i.d. * (X'X)-1 x•ui --+ Yi 

and hence 

* plim Yi =Yi '"' plim Yi 

Using (11) and (4) we have: 

2 
plim XkY2i - plim (XkYi) 2 

c µ2i,k - µik 

Now define:6 

2 
~1 i = diag [µ2i,k - µikl and ~li • diag [xkY2i - (xkYi)2], 

k • 1, ••• , N 

We are now prepared to prove the following Theorem: 

-1 
x' ~liX 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Theorem 2: Suppose lim N is finite and nonsingular and that µik and 
N + ao 
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µ2i k exist for i • 2, ••• , M. Then the feasible generalized least squares , 
estimator: 

"GLS "-1 -1 "-1 
Yi ~ (X'~i X) X' Oi ui, i • 2, ••• , M 

has the same asymptotic distribution as the Aitken estimator: 

GLS 
Yi 

Proof: It is sufficient to show that: 

plim 

and 

plim 

... -1 
X' ni X 

N = plim 

-1 
X' Qi X 

N 

-1 i 
X'Qi u 

• plim 

i • 2, • • • , M 

(14) 

(15) 

Equations (12) and (13) show that (14) is satisfied for each element. (15) holds by 

the fact that the elements of ni converge in probability to nonstochastic term, and 
"i 

by the fact that u converges in 
"-1" 
Qi ui converges in distribution to 

distribution to ui. Therefore, each element of 
-1 

~i ui (Rao 1971, PP• 116-124). Thus (14) and 

(15) hold and we can assert that: 

Q.E.D. 

" GLS GLS 
Although the estimator Yi converges in distribution to Yi , it is not a 

fully efficient estimator because the errors Vik are correlated across equations. 

To see this, note that: 
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A GLS estimator for the parameter vector ~ can also be devised. Let Q 

be the (N x 1) vector of the Qk, let: 

E1 • diag [µ2k], k • 1, ••• ,N 

and define E1 accordingly. By the same arguments as in the above proof we 

have the following result: 

Theorem 3: Under the conditions of Theorem 2 the feasible GLS estimator: 

has the same asymptotic distribution as the Aitken estimator: 

GLS 
~ 

-1 -1 -1 
= (X'E1 X) X'E1 Q. 

In addition to the heteroscedasticity of the errors in the moment 

functions, it is easy to show that the errors are contemporaneously correlated 

across equations. Therefore, efficiency may be gained by utilizing a multiple 

equation GLS estimator. In the discussions to this point the same input 

matrix X has been used in each moment equation, although this need not be the 

case. For example, restrictions on the parameters of the moment functions 

would essentially break the identical regressor situation. Therefore, I shall 

now consider the joint GLS estimation problem under the assumption that the 

regressors are not identical across moments; the identical regressor situation 

is obviously a special case of this model. 

The cross equation correlations are given as follows: 

- 0 ' k * k' 
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i j 
E(VikVjk) - E(uk - XkYi)(uk - XkYj) - µi+j,k -µikµjk' all i,j 

E(v1kVjk') a O, k * k' 

Now let 

~i • diag[µki+l], i • l, ••• ,M 

Slij .. diag[µi+j'k - µikµ jk], i,j .. 2, ••• ,M 

and let 

and Sl is defined accordingly. Finally, define Xi as the matrix of regressors 

for the ith moment function, and define: 

y' • (Q, u2, ••• ,uM), yl. (Q,u2, ••• ,uM) 

"-1 -1 "-!" 
o GLS .. (X* ' ~2 X*) X*S1 y 

The following theorem is a direct generalization of Theorem 2: 
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Theorem 4: Let n-1 = [Qij], and assume lim Xi ·~zijxj/N is finite and 

nonsingular for i,j a l, ••• ,M. Then oGLS converges in distribution to the 

joint GLS estimator: 

-1 -1 -1 
oGLS ... (X*' H X*) X*' ll y. 

"-1 
Proof: By (11) we know that the elements of ~l converge in probability to 

-1 
the elements of n Therefore, as in Theorem 2 we have that: 

"-1 
plim X* 1 ~2 X* /N 

"-1" 
plim X* •n y/./N 

-1 
lim X* •n X* /N 

-1 
plim x* ·~2 y/./N 

and it follows that oGLS i+d. oGLS. Q.E.D. 

Based on these results, an estimation algorithm for the moments of the 

output distribution proceeds as follows: 

(i) use least squares to obtain unbiased or consistent estimates of e; 

(ii) use least squares to obtain consistent estimates of the moment 

function parameters Yi which are of interest to the analysis; 

(iii) use the Yi to form estimators of the covariance matrixes; 

(iv) use the estimated covariance matrixes in GLS regressions. 

4. Applications and Extensions of the Linear Moment Model 

The econometric models in equations (3) and (4) and the proposed 

estimation techniques have several important advantages over the models and 

methods used in the literature. One major advantage is that only one 

observation per individual is required when cross section data is used, or 

only one observation per time period is needed in the case of time series 

data. Repetitions for each individual are not required as in the "method of 

moments" estimation approach used by Day (1965). Another advantage is that 
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standard test statistics can be employed to test hypotheses about the effects 

of inputs on the moment functions. A third advantage is that these linear 

functions and associated test statistics can be computed with readily 

available software at a low cost. 

In terms of approximating the shape of the distribution, at least two 

approaches are available. One is use of a polynomial approximation as 

discussed in Section l; however, it is not clear whether this approach would 

produce useful approximations. An attractive method would appear to be to use 

the first four moment functions in combination with a Pearson-type 

distribution, as a means of achieving an approximation. Day (1965) found 

Pearson's Type-I distribution performed well and it would appear to be 

suitable for other agricultural or nonagricultural applications. 

Recalling the interpretation of the output distribution model as a 

frontier production model, it is interesting to note that the production 

frontier is obtained as a by-product of the distribution approximation. It 

is quite remarkable to observe that production frontiers are apparent in the 

distributions Day studied, although he did not discuss the frontier production 

function interpretation. As an empirical technique for estimation of frontier 

production models it is also worth noting that because the linear moment model 

can be estimated with standard linear techniques, it may be an attractive 

alternative to the "stochastic frontier production function" proposed by 

Aigner, Lovell, and Schmidt (1978). The stochastic frontier model requires 

the use of nonlinear optimization techniques to obtain maximum likelihood 

estimates of the parameters. Furthermore, by using the output distribution 

model it is not necessary to make the stochastic frontier assumption that was 

introduced largely to facilitate the use of the maximum likelihood procedure. 

Although recent research has introduced distributions into the stochastic 
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frontier framework which are more plausible than the half-normal model of 

Aigner, Lovell and Schmidt (see the papers in Annals of Applied Econometrics, 

1980), a more flexible approach might well be the use of approximations based 

on the estimated moment function introduced in this paper. Future research 

will investigate this possibility. 

jms B-17 4/16/81 
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Footnotes 

1. The concept of the output distribution is, of course, implicit in any 

stochastic production function model. However, most specifications are 

designed to measure mean productivity and typically ignore the possibility 

that other moments may be functions of the inputs. The first explicit 

recognition of the broader implications of the output distribution concept 

appears to be Day's (1965) seminal study of yield distributions in 

agriculture. Assuming the yield distributions were in the class of Pearson 

distributions, Day found standard measures of skewness and kurtosis to be 

functions of fertilizer input. Also Anderson has studied the relationship of 

output distribution moments to input use (see Anderson, Dillon, and Hardaker, 

1977, Ch. 6), and Just and Pope (1978) have developed a two moment production 

model and discussed its economic interpretation. 

2. Of course this approach presumes that the moments of the output 

distribution exist. If they do not exist, all of the standard econometric 

formulations of production models would be misspecified. 

3. In the "usual" expected utility model Q is written as Q c m(x)u or 

Q s m(x) + u, where m(x) is a deterministic part and u is a stochastic part 

independent of x. Then the optimality condition is expressed as: 

aEU(n) a f U' !!_ f(u)du • 0 
ax ax 

Using this model we could perform a change of variable and rewrite EU(n) as: 

EU(n) • f U(n) f(Qlx, a)dQ 

Then the optimality condition becomes: 

aEU(n) • f U' !!_ f(Qlx, a)dQ + [ U(n) !.!_ dQ • 0 
ax ax ax 

as shown in the text. 
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4. Note that we must have a2Eu/ax2 < 0 to ensure concavity of the objective 

function. When f(Q) depends on x, concavity of the utility function is not 

sufficient to ensure this condition. It can be shown that a2f/ax2 < O and 

1 U' ~ dQ > 0 are sufficient conditions for concavity; only the former 
ax 

condition is needed if the firm is risk neutral. 

S. Hadar and Russell show that first order stochastic dominance implies g 

dominates f if: 

1 u(v) g(v) dv ~ 1 u(v) f(v) dv, 

where u' > O. Since u is a monotonic increasing function for odd moments 

about the mean (or zero) and even moments about zero, these moments are all 

greater for g than for f. 

6. Due to this condition, it follows that the standard measures of skewness 

and kurtosis, S = µ3/µ23/2 and K = µ4/µ22, are independent of the inputs, 

regardless of the form of the h(x, y) function. 

7. Diag [Zkkl, K = 1, ••• , N, is the (N x N) diagonal matrix with kth 

diagonal element zkk• 
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