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ABSTRACT 

THE LINEAR PROGRAMMING APPROACH TO CONVEX QUADRATIC PROGRAMMING 

by 

Q. Paris and R. E. Howitt 

The solution of convex quadratic programs is shown to be ac

cessible by means of conventional linear programming methods. The 

principal idea is to construct the supporting hyperplane to the 

convex set defined by the objective function of the quadratic pro

gramming problem. The optimal hyperplane is obtained by a maximi

zation operation. The dimensionality of the resulting linear pro

gram is the same as that of the quadratic programming procedures. 

The solution of several classes of empirical problems requiring a 

quadratic programming specification is, thus, made easier. 
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A LINEAR PROGRAMMING APPROACH TO CONVEX QUADRATIC PROGRAMMING 

Every convex quadratic programming (QP) problem can be solved 

by conventional linear programming(LP) techniques. This seemingly 

paradoxical proposition has gone unnoticed for more than two 

decades. In 1959 Wolfe published his seminal paper on the simplex 

method for quadratic programming. As is well known, Wolfe's [7] 

method requires that the simplex rules for linear programming be 

applied with an important qualification: no pair of complementary 

(slack and dual) variables with the same index can ever appear in 

the solution. 

In the linear programming method discussed in this paper, no 

such rule about complementary variables is needed. Thus, every re

liable standard computer code for solving linear programming problems 

can directly be used to obtain the solution of any convex quadratic program. 

1. The Linear Programming Formulation of Quadratic Programs 

Consider the following quadratic programming problem: 

minimize [ c ' x + x ' Qx ] , Ax~ b, x > 0 (P) 

where c and x are n x 1 vectors of known coefficients and unkown va

riables, respectively; Q is a known n x n positive semidefinite ma

trix; A is a known m x n matrix and b is an m x 1 vector. 

It is well known that, under the above specification, the neces

sary and sufficient conditions for a solution of problem P are obtain 
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ed by differentiating the associated Lagrangean function with res-

pect to primal and dual variables. Let y be an m x 1 vector of 

Lagrange multipliers. Then, the Lagrangean function of problem P is 

L = c ' x + x' Qx + y' [ b - Ax] ( 1) 

The corresponding Kuhn-Tucker conditions are x > O, y > 0 and 

aL/ax = c + · 2Qx - A'y ~ 0 (2) 

x' (aL/ax) x'c + 2x'Qx x 'A'y 0 (3) 

aL/ay = b - Ax < 0 (4) 

y' (aL/ay) y'Ax - y'b = o. (5) 

The Lagrangean function (1), when maximized with respect toy for 

any given x, constitutes the objective function of the dual problem. 

Notice, however, that by appropriate substitution of relations (3) 

and (5) into (1), the same Lagrangean function can be expressed as a 

hyperplane. Indeed, 

maximize L c'x + (x'A'y - x'c)/2 

[c 'x + .b 'y] /2 

using (3) and (5) 

using (5). 

Therefore, a solution (if it exists) of the following linear 

programming problem 

(6) 

maximize [c'x + b'y]/2 (P*) 

subject to 

and 

A'y - 2Qx < c 

....; Ax 2. - b, y ~ o, x > 0 

represents also a solution of the original quadratic problem P. 
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2. The Legendre Transformation of problem P 

The results of the previous section are related to the duality 

structure of problem P. To see this, it is convenient to study the 

Legendre transformation associated with it. Recall that the Legendre 

transformation of a differentiable function f(z) is defined as ¢ (d) 

f(z) - d'z, where d = af/az. is the .gradient vector of f(z). In our 

case, the function f(z) corresponds to the Lagrangean function (1), 

z' = (x', y), d' = (di, d;) where d
1 

= c + 2Qx - A'y and d2 = b - Ax. 

Therefore, the Legendre transformation of problem P is 

¢ (d) c'x + x'Qx + y'(b - Ax) - x'(c + 2Qx - A'y) - y '(b - Ax) 

y'Ax - x 'Qx 

y'b + x'c/2 - x'A'y/2 

(x'c + y'b)/2. 

In the development of (7) we have made use of relations (3) and 

(5). Hence, one concludes that the maximization of ¢(d) subject 

to the condition d ~ O, ·is equivalent to the solution of problem P. 

The Legendre transformation can be given the following interpre

tation: since problem P is convex, ¢(d) is the intercept of the 

tangent plane to the convex set defined by (1). The member of the 

family of tangents to the convex set of P which satisfies d ~ O, 

also generates the optimal value of the intercept f(d). Alternatively, 

(c'x + y'b)/2 represents the supporting hyperplane to the convex set 

defined by c'x + x'Qx. 

(7) 
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3. A Numerical example 

To illustrate the linear prograrrnning method for solving con-

vex quadratic programs discussed in previous sections we choose the 

following numerical example 

Q ( 
13 -4 3) (-.5 

-4 5 -2 ' c = 1 

3 -2 1 2 

0 

1 

The matrix Q is positive semidefinite; yet, this fact is of no con-

sequence in the computations. 

The solution of problem P* is x' = (3.0, 2.3, 0.0), y' = (59.1, 0.0), 

(c'x + b'y)/2 = 89.05 and it is identical to the solution of problem P, 

where c'x = .8 and x'Qx = 88.25. Problem P was solved using a 

quadratic programming computer code written by Cutler and Pass [3] 

and based on Dantzig's [4] variant of Wolfe's [7] simplex algorithm 

for quadratic progrannning. Problem P* was solved using a connnercial 

linear progrannning subroutine called"Tempo" and copyrighted by 

Burroughs Corporation [l].!/ 

4. Conclusions 

In principle, the use of linear programming methods for solving 

quadratic prograrrnning problems simplifies both the algorithmic com-

putations and the problem of searching for and maintaining reliable 

quadratic prograrrnning computer codes. As it should be evident from 

the discussion, the LP approach to QP requires exactly the same dimen-
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sionality of the tableau as Wolfe's [7] QP method. 

Convenient applications of the approach described in this 

paper include (a) the solution of generalized least-squares pro

blems subject to deterministic and stochastic inequalities 15), (b) 

the solution of the linear-quadratic control problem with bounded 

policy instruments, (c) the solution of the portfolio selection 

problem, and (d) the verification of LP computer codes' reliability [6]. 

Of course, the same LP method can be used for solving the symmetric 

quadratic programming originally specified by Cottle 12). We con

jecture that other useful applications of the procedure will soon 

be found. 
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FOOTNOTES 

1. Although Burroughs' "TEMPO" subroutine is unreliable, it is 

possible to make it work properly by inputing some information 

characterizing the optimal solution. Such information was 

available via the solution of the problem by means of the 

QP subroutine of Cutler and Pass {3]. For a more detailed 

discussion of the unreliability of TEMPO (and other LP codes) 

consult [6]. 
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