

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

UNIVERSITY OF CALIFORNIA

AUG 2 9 1979

Agricultur2l Economics Library

JJCD Department -of Agricultural Economics

..

WORKING PAPER SERIES

:.

University of California, Davis
Department of Agricultural Economics

Working papers are circulated by the author without
formal review. They should not be quoted without
his permission. All inquiries should be addressed
to the author, Department of Agricultural Economics,
University of California, Davis, California 95616.

A SELF-DUAL PROBLEM FOR CHECKING THE
RELIABILITY OF LINEAR AND QUADRATIC

PROGRAMMING COMPUTER CODES

by

Q. Paris

Working Paper No. 79-10

A SELF-DUAL PROBLEM FOR CHECKING THE
RELIABILITY OF LINEAR AND QUADRATIC

PROGRAMMING COMPUTER CODES

I. Introduction. To date, the approach used in checking the reliability

of computer subroutines for solving linear programming (LP) problems is

based on a battery of tests problems whose solutions were obtained either

by desk calculator or by other "well established" computer codes. This

approach leaves much to be desired because it provides only a test of

relative consistency. There remains always the possiblity that the same

mistake is made by all the computer codes used to solve the given test

problems and a gainst whose solutions one wishes to verify the correctness

of a newly developed computer subroutine.

In place of a relative consistency check one would obviously wish to

use an absolute consistency criterion for judging the reliability of the

computer code. Such an absolute consistency criterion nrust clearly be

provided internally by the structure of the problem to be solved and whose

solution one attempts to achieve by means of the computer code at hand.

The great advantage of such a criterion -- if one can be found is that the

progranuner can dispense with the relative comparison of test problems'

solutions obtained also by other means or methods.

With regard to linear programming, the absolute consistency criterion

is provided by problems characterized by the property of self-duality.

Very simply, problems of this type exhibit the unique feature that the

primal solution is identical to the dual solution. Therefore, if one does

not encounter such a correspondence in the solution of a self-dual linear

programming problem, the inescapable conclusion is that the computer code

2

employed is not reliable. Using this criterion, it was recently discovered

that threeout of five LP computer codes provide incorrect answers.

In what follows, we first describe the structure of a self-dual linear

prograunning problem. The topic was first discussed by Duffin [4] whose paper

seems to be the only reference on the subject. The self-dual problem

discussed here, however, is more general than any of the examples presented

by Duffin. It turns out that this problem is directly related to the

least-squares problem restricted by linear inequalities. We then present

a nwnerical example used to verify the reliability of five LP computer codes.

We report in detail the performance of each computer code vis-a-vis the

numerical example. We conclude the discussion with a conjecture as to the

possible origin of the programs' errors and with suggestions for extending

the self-duality criterion to other mathematical prograunning computer codes.

2. A self-dual linear program. Consider the following linear programming

problem:

Maximize

(2 .1) d'TI - b'1lJ

subject to

(2.2) Dx + 1T = d

(2.3) D'TI - A'1lJ = 0

(2.4) -Ax>-b

iµ ~ O, x and 1T unrestricted,

where D and A are matrices of dimensions p x n and d x n, respectively.

The rank of such matrices is arbitrary. The vector d£Rp while the vector

m b£R • The vector variable iµ is required to be nonnegative, while the vector

----------~----- ---- - - - -- -

3

variables x and TI are free. This means that the implementation of problem

(2.1) - (2.4) using a standard LP computer code requires that each of the

vectors x and TI be defined as the difference of two nonnegative vectors

such as x • x
1

- x2 , TI= TI1 - TI2 , where all the components of x1 , x2 , TI,

and TI2 are nonnegative.

The principal characteristic of problem (2.1) - (2.4) is that it is

self-dual, that is, its dual prossesses the identical structure of the primal

and, therefore, the primal solution(s) is (are) identically equal to the

dual solution(s).

To demonstrate this proposition we form the Lagrangean function of

problem (2.1) - (2.4) using the symbols u, y and ¢ to indicate the Lagrange

nrultiplier (dual variable) vectors associated with constraints (2.2), (2.3)

and (2.4), respectively. Thus,

(2.5) L = d'TI - b'~ + u'[d - TI - Dx] + y'[A'~ - D'TI] +¢'[Ax - b].

It is well known that the minimization of (2.5) with respect to u, y and ¢,

subject to the appropriate constraints constitutes the dual of problem

(2.1) - (2.4). It is also well known that the appropriate constraints

correspond to the Kuhn-Tucker conditions represented by the derivatives

of the Lagrangean function (2.5) with respect to the primal variables TI,

x, and ~. Such conditions are:

(2.6) aL/an = d - u - Dy = o

(2.7) aL/ax = -D'u +A'¢ = 0

(2.8) aL/a~ - -b + Ay ~ o

(2. 9)

(2.10)

(2.11)

4

n'(aL/an) a n 1d - n'u - n1Dy ~ 0

x'(aL/ax) • -x'D'u + x'A'¢ co

~·caL/a~) = - ~·b + ~'Ay = o.

It is clear that conditions (2.6), (2.7) and (2.8) are -- except for

the symbols used to indicate the vector variables -- identical to the primal

constraints (2.2), (2.3) and (2.4), respectively. Also, by using (2.9),

(2.10) and (2.11) in (2.5), we can restate in a simplified fashion the

objective function of the dual problem which becomes

(2.12) min L c d'u - b'¢.

Hence, relation (2.12) subject to conditions (2.6), (2.7) and (2.8), ¢ ~ O,

u and y unrestricted, constitutes the dual of problem (2.1) - (2.4). It is

thus, obvious that -- if a solution exists we must have TI = u, x = y

and ~ = d. This result proves our assertion that it is sufficient to

inspect the numerical findings corresponding to the primal and dual solut-

tions for deciding whether the correct result was obtained.

3. Inequality restricted least-s9uares_.£roblems. The structure of the LP

problem (2.1) - (2.4) is intimately related to that of the least-squares

(LS) problem restricted by linear inequalities. Such a problem has always

been considered only as a quadratic program (QP). Problems of this type

were also discussed in this Journal by Stoer [7] who presented a solution

algorithm closely related to Rosen's gradient projection method. It

turns out, however, that least-squares problems of any sort can be solved

by linear programming and, therefore, one can add the simplex algorithm

to the list of least-squares solution procedures. To demonstrate the

~-1

I

I

'

5

correspondence between the inequality restricted LS problem and LP structure

given in (2.1) - (2.4) we follow Stoer [7] in defining the following

least-squares primal problem:

Minimize

(3.1)

subject to

(3.2)

(3.3)

u'u/2

Dx + u = d

Ax < b

x, u unrestricted.

This quadratic progranuning problem possesses a dual representation which

corresponds exactly to the linear prograDmling structure (2.1) - (2.4). To

demonstrate this proposition let us choose dual variables (Lagrange multi­

pliers) TI and w corresponding to constraints (3.2) and (3.3), respectively.

The Lagrangean function of problem (3.1) - (3.3) is, then, defined as

(3.4) L = u'u/2 + TI'[d - Dx - u] +~'[Ax - b].

The Kuhn-Tucker conditions associated with the solution of problem (3.1) -

(3.3) are as follows:

(3.5)

(3.6)

(3. 7)

(3.8)

dL/au • U - TI a 0

a1/ax = -D'TI +A'~• o

a1/aTI • d - nx - u • o

a11a~ - Ax - b ~ o

(3.9)

(3.10)

(3.11)

(3.12)

6

u'(oL/au) • n'n - n'u = o

x'(a1/ax) = -x'D'n + x'A'~ = O

n'(a1/an) • n'd - n'Dx - n'u = o

~·ca11a~) =~'Ax - ~'b = o.

Notice that in (3.5) we re-encounter very explicitly the self-duality

condition concerning the residual vector according to which u = n. Hence,

using (3.5), the relations (3.6), (3.7) and (3.8) correspond exactly to

the constraints (2.3), (2.2) and (2.4), respectively. To show that the

dual objective function of problem (3.1) - (3.3) is indeed given by the

objective function of the linear programming problem (2.1) it is sufficient

to substitute, as convenient, the relations (3.5) - (3.12) into the Lagrangean

function (3.4). When this is done, one obtains.

(3.13) max L = u'u/2 + n'd - n'Dx - n'u + ~'Ax - ~'b

= n'd - ~'b - n'u/2 by (3.5) and (3.10)

• n'd - w'b - n'(d - Dx)/2 by (3.7)

= n'd/2 - ~'b + x'A'~/2 by (3.10)

= n'd/2 - ~'b + ~'b/2 by (3.12)

= n'd/2 - ~'b/2,

and the proposition is proved.

The peculiar dual structure of the least-squares problem provides a

very strong consistency check as to whether the correct solution of a given

LS problem was indeed obtained: not only one possesses the internal check

given by solving the linear programming (2.1) - (2.4) where the entire

primal solution vector must be equal to the entire dual vector; one can

also verify the numerical results by solving the associated quadratic

progranming (3.1) - (3.3), where, also there, u = n. Hence, the self-duality

7

of least-squares problems can further be used as an absolute consistency

criterion for verifying also the reliability of quadrat.ic programming com-

puter codes.

4. An,!Pplication of the self-dual consistency criterion. The data

presented in Table l were used to implement the approach outlined in

sections 2 and 3. The regression line was postulated to be linear in

the logarithms of the data of Table 1. Hence, the various components of

the least-squares problem are as follows:

12.668639 12 .063345

12.714335 11. 572778 12.094381

12.746089 11. 600890 12.134920

12.749475 11.547549 12.125331

D 1.0 12.801257 11.589460 ' d = 12.211025

1.0 12. 839963 11. 730783 12.234200

1.0 12.872704 11. 618222 12.255458

1.0 12.858117 . 11. 573550 12.234174

1.0 12.904324 11.614868 12.307659

1.0 12.929516 11. 625191 12.335314

The inequality restrictions were chosen as

r
o.o

A•

o.o

1.0 - 3.0) •

1.0 1.0

b • (o.o\
1.0 J

•

The five linear programming computer codes tested by means of this

numerical example are (a) Burroughs' "TEMPO", (b) Lawrence Berkeley

Laboratory's (I.BL) "GUMPS", (c) Berkeley Computer Center's (BCC) "ALPHAC",

8

(d) IBM's 1130 LP-MOSS, and (e) IBM's 370 MPSX. All these codes have

compatible input data requirements.

Burroughs' "TEMPO". This is a computer code copyrighted by Burroughs

Corporation since 1971 .and revised in 1972, 1973, 1974 and 1975. It is

available only through computer centers equipped with Burroughs 7700 or

6700 systems. The corporation makes available only the object deck. The

User's Manual [2] does not specify the language of the original code. The

Computer Center of the University of California at Davis, where "TEMPO" is

available, owns a Burroughs 6700 system.

The results of the test are presented in Table 2, Column 1. Although

the code's exit condition asserts that it has encountered an optimal solution,

the primal and dual solution vectors are entirely different. Furthermore,

it does not seem plausible to invoke rounding errors as the cause of the

discrepancy. The inevitable conclusion is that "TEHPO" constitutes an

unreliable LP computer code.

Lawrence Berkeley Laboratory's "GUMPS". This subroutine was written

for use at the Lawrence Berkeley Laboratory which is equipped with 7600,

6600 and 6400 CDC hardware. Although the write-up of the program [8] explicitly

states that the Laboratory has been "reluctant to provide a user's guide

while the program is still undergoing many changes and additions -- and

an occasional correction", this computer code has been in operation for

more than three years. GUMPS test results obtained on the LBL's CDC computer

network are presented in Table 2, Column 2. Numerically, they are identical

to those obtained by TEMPO, indicating that also GUMPS gives incorrect

answers.

9

Berkeley Computer Center's "ALPHAC". This code [1] was written for the

Berkeley campus computer center in 1972 and revised in 1973 and 1975. The

coding languages are Fortran IV and Compass compiled on a CDC 6400 series

machine. ALPHAC'S findings, obtained at the Berkeley Computer Center, are

presented in Table 2, Column 3. Again they indicate that the ALPHAC code

is not reliable. The numerical results -- except for the sign of the yi's

are identical to those of TEMPO and GUMPS.

IBH 1130 LP-MOSS. This code [5] is copyrighted by IBM Corporation and

is intended for use on the IBM 1130 system. The code is, to a large extent,

compatible with the IBM MPS 360 and IBM MPSX 370 systems. The test was

carried out on the 1130 machine at the Department of Agricultural and

Resource Economics of the University of California, at Berkeley. The

results are presented in Table 2, Column 4, and indicate that the LP-MOSS

computer code passes the reliability test. Although only three decimal

digits are printed by the output subroutine, it is clear that the entire

primal solution vector is equal to the entire dual solution vector, as

anticipated by the theory. Furthermore, the value of the optimal objective

function is more than three times smaller than that obtained by TEMPO,

GUMPS and ALPHAC.

IBH MPSX. This code [6] is supplied by IBM for its 370 system. One

would expect to obtain results similar to those computed with the IBM

1130 LP-MOSS code. Indeed -- as it can be seen from Table 2, Column 5

the numerical information on the primal and dual solutions indicates that

the correct optimal solution was achieved. Hence, also MPSX passes the

reliability test.

10

Rand Quadratic Programming Code. This is a famous subroutine [3]

since it is a conversion of an earlier Rand QP subroutine co-planned

by Philip Wolfe, written for the US Air Force, and coded QPF4. It is

completely written in Fortran IV, explicitly for the IBM 360/65. It

can be easily adapted to other machines with minor modifications. For

the present study it was implemented on the Burroughs 6700 system of the

University of California, at Davis.

In sections 2 and 3 it was explained that the LP specification of

least-squares problems is self-dual, a property exhibited also by their

quadratic progrannning formulation. Hence, the same test problem was used

to verify the reliability of the Rand QP computer code. The results are

encouraging and are presented in Table 2, Column 6. The solution obtained

corresponds to that computed by the IBH 1130 LP-MOSS subroutine. The fact

that, once again, u = TI, indicates that the Rand QP code has passed this

reliability test.

5. A conjecture. The .source decks of all programs used in this test were

unavailable. Speculating as to the probable reasons for the tmreliable

behavior of subroutines TEMPO, GUMPS, and ALPHAC, therefore, becomes

a guessing game. As a conjecture, one may advance the hypothesis that

rounding errors have set in all the programs that misbehaved. If this

were true, the logical action would be to increase the precision of the

computations by, for example, instructing the program to operate in "double

precision". This strategy, however, is much easier to formulate than to

carry out. Essentially, it amounts to rewriting many sections of the

(unavailable) codes.

-----~~-----

11

Another possibility is to study the various tolerances employed in

the programs and decide whether their present levels might be the cause

of the problem. In Table 3 we have summarized the main tolerances' values

employed by the six computer codes tested in this exercise. Except with

regard to LP-MOSS subroutine there seems to be no great difference among

the various codes. TEMPO, however, sets a tolerance for the reduced cost

and the primal solution which is higher than all other subroutines.

In order to verify the hypothesis that the cause for the unreliability

of TEMPO, GUMPS and ALPHAC codes is different from a problem of rounding-off

errors, we performed the following experiment: the tolerance value of "reduced

cost" was first increased to .01. This action was taken on the basis that

the algorithm was inserting the wrong primal activities into the basis

because the corresponding reduced costs were encountered to be significantly

negative. When this was done the program approached the correct optimal

value of the objective function but the primal solution was still very

different from the dual solution. A second experiment was carried out setting

the tolerance value of the "reduced cost" to .1. In this case, TEMPO was

able to achieve the correct optimal primal solution and the optimal value

of the objective function but, quite naturally, almost all the dual variables

exhibited a misleading zero value. Of course, a tolerance value of .1 is

absurd and the exercise was carried out to make sure that the main troubles

are algorithmic rather than generated by rounding errors.

6. Conclusion. It may come as a surprise that three out of five LP

computer codes were found unreliable. The surprise, however, will soon

12

disappear if one realizes that a self-dual linear programming problem of

some generality was formulated only very recently. Without such a speci­

fication with its own stringent consistency conditions, it is not easy to

realize that an "optimal" solution like that generated by either TEMPO or

ALPHAC or GUMPS is not optimal. The output printouts appear to be completely

plausible, and even when tested against each other, the two computer

codes cannot be detected in error.

Since none of the source programs were available to the author, little

can be said about the causes of unreliability of TEMPO, GUMPS, and ALPHAC.

It is, however, possible to conjecture that the trouble area for the

three codes must be associated with the treatment of slack and artif i-

cal variables. This conclusion is obvious if one studies the incorrect

solutions: the two inequality constraints which in the correct optimal

solution should be binding, are actually satisfied by slack variables.

The importance and the widespread use of linear and quadratic programm­

ing models for representing engineering, biological and economic problems,

warrants a thorough testing of the computer codes in circulation. This

paper has offered a very powerful test of consistency which ought to be

added to the traditional battery of test problems.

8/27 /79: cfg

13

REFERENCES

[l] BERKELEY COMPUTER CENTER, ALPHAC, A Linear Programming System,

University of California, Berkeley, CA, 1972, 1973, 1975.

[2] BURROUGHS CORPORATION, B7700/B6700 Systems TEMPO, Mathematical

Progrannning System, User's Manual 1073665, Detroit, MI, 1975.

[3] L. CUTLER AND D. S. PASS, A Computer Program For Quadratic

Mathematical Models to be Used for Aircraft Design and Other

Applications Involving Linear Constraints, R-516-PR, Rand

Corporation, Santa Monica, CA, 1971.

[4] R. J. DUFFIN, Infinite Programs, in Linear Inequalities and Related

Systems, H. W. Kuhn and A. W. Tucker, Editors, Princeton University

Press, Study 38, Princeton, NJ, 1956, pp. 157-170.

[5] IBM CORPORATION, 1130 Linear Programming - Mathematical Optimization

Subroutine System, (1130LP-MOSS) (1130-C0-16X), 1967.

[6] IBM CORPORATION, Mathematical Programming System, MPSX User's Manual,

1967.

[7] J. STOER, "On the Numerical Solution of Constrained Least-Squares

Problems", Siam J. Numer. Analysis, 8 (1971), pp. 382-411.

[8] LAWRENCE BERKELEY LABORATORY, User's Manual GUMPS, Berkeley, CA,

1977.

14

TABLE 1 -.

THE DATA

Dependent Regressor Regressor
Variable Ill (/2

173,398 317,629 104,801

178,864 332,480 106,168

186,264 343, 207 109,195

184,486 344, 371 103,523

200,993 362,673 107,954

205, 730 376,986 124,341

210,125 389,533 111,104

205,700 383,892 106,250

221,385 402,047 110, 732

227,593 412 '304 111,881

15
TABLE 2

TEST RESUL'TS OF :sIJC OJMPUTER CODES

Burroughs LBL BCC IBM IBM Rand
"TEMPO" "GUMPS" "ALPHAC" 1130LP-MOSS MPSX QP

1 2 3 4 5 6

Exit Condition Optimal Optimal Optimal Optimal Optimal Optimal

Value of Obj.
Function .01679 .01679 .01679 .005 .00525 .00525

PRIMAL SOLUTION

~ 12.19959 12.19960 12.19959 -.307 -.30757 -.30757

x2 .00000 .00000 .00000 .750 .75000 .75000

X3 .00000 .00000 .00000 .249 .25000 .25000

,,.1 -.13625 -.13625 -.13625 -.020 -.0205 2 -.02052

,,.2 -.10521 -.10521 -.10521 -.026 -.02700 -.02700

,,. 3 -.06467 -.06467 -.06467 -.017 -.01730 -.017 30

,,.4 -.07426 -.074 26 -.07426 -.016 -.01610 -.01610

,,.5 .01143 .01143 .01143 .020 . 02028 .02028

,,.6 .03473 .0 34 73 .03473 -.020 -.02078 -.02078

Tf 7 .05587 .0558 7 .05587 .003 .00394 .00394

Tf8 .03458 . 03458 .03458 .004 .00477 .00477

Tf 9 .10807 .10807 .10807 .033 .03326 .03326

,,.10 .135 72 .13572 .13572 .039 .03945 . 03945

W1 .01219 .01219 .01219 .003 .00355

W2 .05829 .05829 .05829 .001 .01154

DUAL SOLUTION

yl -.30757 -.30757 .30757 -.307 -.30757

Y2 .75000 .75000 .75000 .750 .75000

Y3 .25000 .25000 .25000 .250 .25000

!11 -.0205 2 -.02052 -.0205 2 -.020 -.02052 -.0205 2

u2 -.02700 -.02700 -.02700 -.026 -.02700 -.02700

U3 -.01730 -.01730 -.01730 -.017 -.01730 -.01730

U4 -.01610 -.01610 -.01610 -.016 -.01610 -.01610

us .02028 .02028 .02028 .020 .02028 .02028

u6 -.02078 -.02078 -.02078 -.020 -.02078 -.02078

U7 .00394 .00394 .00394 .003 .00394 .00394

u8 .00477 .00477 .00477 .004 .00477 .00477

U9 .03326 .03326 .03326 .033 .03326 .03326

~o .03945 • 03945 .03945 .039 .03945 .03945

4>1 -.00030 .00000 .00000 .003 .00355 .00355

4>2 .00000 .00000 .00000 .011 .01154 .01154

t ~ • •

Tolerance
On

Reduced Cost

Primal Solution

Pivot

Check ~? DJ
Coeff .-

2/ Screen-

Burroughs
"TEMPO"

1

.0001

.0001

.00001

.001

LBL
"GUMPS"

2

.000001

.000001

.000001

TABLE 3

TOLERANC ES FOR SIX COMPUTER CODES

BCC
"ALPHAC"

3

.000001

.000001

.00001

IBM
1130LP-MOSS

. 4

.0001

.0005

.001

IBM
MPSX

5

.00001

.00001

.000001

!/ Tolerance for computational error based upon the reduced cost (DJ) values computed by forward
and backward transformations.

'f:_/ After the input data has been scaled, any number whose magnitude is below this tolerance is
ignored.

Rand
QP

6

.00001

.00001

.00001

.....
°'

_I

,

1- -

-. d :.1 _, ... ··•
w

.. ..
t •

	Cover0229
	img0112
	Cover0230

