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A SELF-DUAL PROBLEM FOR CHECKING THE 
RELIABILITY OF LINEAR AND QUADRATIC 

PROGRAMMING COMPUTER CODES 

I. Introduction. To date, the approach used in checking the reliability 

of computer subroutines for solving linear programming (LP) problems is 

based on a battery of tests problems whose solutions were obtained either 

by desk calculator or by other "well established" computer codes. This 

approach leaves much to be desired because it provides only a test of 

relative consistency. There remains always the possiblity that the same 

mistake is made by all the computer codes used to solve the given test 

problems and a gainst whose solutions one wishes to verify the correctness 

of a newly developed computer subroutine. 

In place of a relative consistency check one would obviously wish to 

use an absolute consistency criterion for judging the reliability of the 

computer code. Such an absolute consistency criterion nrust clearly be 

provided internally by the structure of the problem to be solved and whose 

solution one attempts to achieve by means of the computer code at hand. 

The great advantage of such a criterion -- if one can be found is that the 

progranuner can dispense with the relative comparison of test problems' 

solutions obtained also by other means or methods. 

With regard to linear programming, the absolute consistency criterion 

is provided by problems characterized by the property of self-duality. 

Very simply, problems of this type exhibit the unique feature that the 

primal solution is identical to the dual solution. Therefore, if one does 

not encounter such a correspondence in the solution of a self-dual linear 

programming problem, the inescapable conclusion is that the computer code 
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employed is not reliable. Using this criterion, it was recently discovered 

that threeout of five LP computer codes provide incorrect answers. 

In what follows, we first describe the structure of a self-dual linear 

prograunning problem. The topic was first discussed by Duffin [4] whose paper 

seems to be the only reference on the subject. The self-dual problem 

discussed here, however, is more general than any of the examples presented 

by Duffin. It turns out that this problem is directly related to the 

least-squares problem restricted by linear inequalities. We then present 

a nwnerical example used to verify the reliability of five LP computer codes. 

We report in detail the performance of each computer code vis-a-vis the 

numerical example. We conclude the discussion with a conjecture as to the 

possible origin of the programs' errors and with suggestions for extending 

the self-duality criterion to other mathematical prograunning computer codes. 

2. A self-dual linear program. Consider the following linear programming 

problem: 

Maximize 

(2 .1) d'TI - b'1lJ 

subject to 

(2.2) Dx + 1T = d 

(2.3) D'TI - A'1lJ = 0 

(2.4) -Ax>-b 

iµ ~ O, x and 1T unrestricted, 

where D and A are matrices of dimensions p x n and d x n, respectively. 

The rank of such matrices is arbitrary. The vector d£Rp while the vector 

m b£R • The vector variable iµ is required to be nonnegative, while the vector 
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variables x and TI are free. This means that the implementation of problem 

(2.1) - (2.4) using a standard LP computer code requires that each of the 

vectors x and TI be defined as the difference of two nonnegative vectors 

such as x • x
1 

- x2 , TI= TI1 - TI2 , where all the components of x1 , x2 , TI, 

and TI2 are nonnegative. 

The principal characteristic of problem (2.1) - (2.4) is that it is 

self-dual, that is, its dual prossesses the identical structure of the primal 

and, therefore, the primal solution(s) is (are) identically equal to the 

dual solution(s). 

To demonstrate this proposition we form the Lagrangean function of 

problem (2.1) - (2.4) using the symbols u, y and ¢ to indicate the Lagrange 

nrultiplier (dual variable) vectors associated with constraints (2.2), (2.3) 

and (2.4), respectively. Thus, 

(2.5) L = d'TI - b'~ + u'[d - TI - Dx] + y'[A'~ - D'TI] +¢'[Ax - b]. 

It is well known that the minimization of (2.5) with respect to u, y and ¢, 

subject to the appropriate constraints constitutes the dual of problem 

(2.1) - (2.4). It is also well known that the appropriate constraints 

correspond to the Kuhn-Tucker conditions represented by the derivatives 

of the Lagrangean function (2.5) with respect to the primal variables TI, 

x, and ~. Such conditions are: 

(2.6) aL/an = d - u - Dy = o 

(2.7) aL/ax = -D'u +A'¢ = 0 

(2.8) aL/a~ - -b + Ay ~ o 
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(2.10) 

(2.11) 
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n'(aL/an) a n 1d - n'u - n1Dy ~ 0 

x'(aL/ax) • -x'D'u + x'A'¢ co 

~·caL/a~) = - ~·b + ~'Ay = o. 

It is clear that conditions (2.6), (2.7) and (2.8) are -- except for 

the symbols used to indicate the vector variables -- identical to the primal 

constraints (2.2), (2.3) and (2.4), respectively. Also, by using (2.9), 

(2.10) and (2.11) in (2.5), we can restate in a simplified fashion the 

objective function of the dual problem which becomes 

(2.12) min L c d'u - b'¢. 

Hence, relation (2.12) subject to conditions (2.6), (2.7) and (2.8), ¢ ~ O, 

u and y unrestricted, constitutes the dual of problem (2.1) - (2.4). It is 

thus, obvious that -- if a solution exists we must have TI = u, x = y 

and ~ = d. This result proves our assertion that it is sufficient to 

inspect the numerical findings corresponding to the primal and dual solut-

tions for deciding whether the correct result was obtained. 

3. Inequality restricted least-s9uares_.£roblems. The structure of the LP 

problem (2.1) - (2.4) is intimately related to that of the least-squares 

(LS) problem restricted by linear inequalities. Such a problem has always 

been considered only as a quadratic program (QP). Problems of this type 

were also discussed in this Journal by Stoer [7] who presented a solution 

algorithm closely related to Rosen's gradient projection method. It 

turns out, however, that least-squares problems of any sort can be solved 

by linear programming and, therefore, one can add the simplex algorithm 

to the list of least-squares solution procedures. To demonstrate the 

~-1 

I 

I 
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correspondence between the inequality restricted LS problem and LP structure 

given in (2.1) - (2.4) we follow Stoer [7] in defining the following 

least-squares primal problem: 

Minimize 

(3.1) 

subject to 

(3.2) 

(3.3) 

u'u/2 

Dx + u = d 

Ax < b 

x, u unrestricted. 

This quadratic progranuning problem possesses a dual representation which 

corresponds exactly to the linear prograDmling structure (2.1) - (2.4). To 

demonstrate this proposition let us choose dual variables (Lagrange multi­

pliers) TI and w corresponding to constraints (3.2) and (3.3), respectively. 

The Lagrangean function of problem (3.1) - (3.3) is, then, defined as 

(3.4) L = u'u/2 + TI'[d - Dx - u] +~'[Ax - b]. 

The Kuhn-Tucker conditions associated with the solution of problem (3.1) -

(3.3) are as follows: 

(3.5) 

(3.6) 

(3. 7) 

(3.8) 

dL/au • U - TI a 0 

a1/ax = -D'TI +A'~• o 

a1/aTI • d - nx - u • o 

a11a~ - Ax - b ~ o 
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(3.10) 

(3.11) 

(3.12) 
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u'(oL/au) • n'n - n'u = o 

x'(a1/ax) = -x'D'n + x'A'~ = O 

n'(a1/an) • n'd - n'Dx - n'u = o 

~·ca11a~) =~'Ax - ~'b = o. 

Notice that in (3.5) we re-encounter very explicitly the self-duality 

condition concerning the residual vector according to which u = n. Hence, 

using (3.5), the relations (3.6), (3.7) and (3.8) correspond exactly to 

the constraints (2.3), (2.2) and (2.4), respectively. To show that the 

dual objective function of problem (3.1) - (3.3) is indeed given by the 

objective function of the linear programming problem (2.1) it is sufficient 

to substitute, as convenient, the relations (3.5) - (3.12) into the Lagrangean 

function (3.4). When this is done, one obtains. 

(3.13) max L = u'u/2 + n'd - n'Dx - n'u + ~'Ax - ~'b 

= n'd - ~'b - n'u/2 by (3.5) and (3.10) 

• n'd - w'b - n'(d - Dx)/2 by (3.7) 

= n'd/2 - ~'b + x'A'~/2 by (3.10) 

= n'd/2 - ~'b + ~'b/2 by (3.12) 

= n'd/2 - ~'b/2, 

and the proposition is proved. 

The peculiar dual structure of the least-squares problem provides a 

very strong consistency check as to whether the correct solution of a given 

LS problem was indeed obtained: not only one possesses the internal check 

given by solving the linear programming (2.1) - (2.4) where the entire 

primal solution vector must be equal to the entire dual vector; one can 

also verify the numerical results by solving the associated quadratic 

progranming (3.1) - (3.3), where, also there, u = n. Hence, the self-duality 
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of least-squares problems can further be used as an absolute consistency 

criterion for verifying also the reliability of quadrat.ic programming com-

puter codes. 

4. An,!Pplication of the self-dual consistency criterion. The data 

presented in Table l were used to implement the approach outlined in 

sections 2 and 3. The regression line was postulated to be linear in 

the logarithms of the data of Table 1. Hence, the various components of 

the least-squares problem are as follows: 

12.668639 12 .063345 

12.714335 11. 572778 12.094381 

12.746089 11. 600890 12.134920 

12.749475 11.547549 12.125331 

D 1.0 12.801257 11.589460 ' d = 12.211025 

1.0 12. 839963 11. 730783 12.234200 

1.0 12.872704 11. 618222 12.255458 

1.0 12.858117 . 11. 573550 12.234174 

1.0 12.904324 11.614868 12.307659 

1.0 12.929516 11. 625191 12.335314 

The inequality restrictions were chosen as 

r
o.o 

A• 

o.o 

1.0 - 3.0) • 

1.0 1.0 

b • (o.o\ 
1.0 J 

• 

The five linear programming computer codes tested by means of this 

numerical example are (a) Burroughs' "TEMPO", (b) Lawrence Berkeley 

Laboratory's (I.BL) "GUMPS", (c) Berkeley Computer Center's (BCC) "ALPHAC", 
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(d) IBM's 1130 LP-MOSS, and (e) IBM's 370 MPSX. All these codes have 

compatible input data requirements. 

Burroughs' "TEMPO". This is a computer code copyrighted by Burroughs 

Corporation since 1971 .and revised in 1972, 1973, 1974 and 1975. It is 

available only through computer centers equipped with Burroughs 7700 or 

6700 systems. The corporation makes available only the object deck. The 

User's Manual [2] does not specify the language of the original code. The 

Computer Center of the University of California at Davis, where "TEMPO" is 

available, owns a Burroughs 6700 system. 

The results of the test are presented in Table 2, Column 1. Although 

the code's exit condition asserts that it has encountered an optimal solution, 

the primal and dual solution vectors are entirely different. Furthermore, 

it does not seem plausible to invoke rounding errors as the cause of the 

discrepancy. The inevitable conclusion is that "TEHPO" constitutes an 

unreliable LP computer code. 

Lawrence Berkeley Laboratory's "GUMPS". This subroutine was written 

for use at the Lawrence Berkeley Laboratory which is equipped with 7600, 

6600 and 6400 CDC hardware. Although the write-up of the program [8] explicitly 

states that the Laboratory has been "reluctant to provide a user's guide 

while the program is still undergoing many changes and additions -- and 

an occasional correction", this computer code has been in operation for 

more than three years. GUMPS test results obtained on the LBL's CDC computer 

network are presented in Table 2, Column 2. Numerically, they are identical 

to those obtained by TEMPO, indicating that also GUMPS gives incorrect 

answers. 
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Berkeley Computer Center's "ALPHAC". This code [1] was written for the 

Berkeley campus computer center in 1972 and revised in 1973 and 1975. The 

coding languages are Fortran IV and Compass compiled on a CDC 6400 series 

machine. ALPHAC'S findings, obtained at the Berkeley Computer Center, are 

presented in Table 2, Column 3. Again they indicate that the ALPHAC code 

is not reliable. The numerical results -- except for the sign of the yi's 

are identical to those of TEMPO and GUMPS. 

IBH 1130 LP-MOSS. This code [5] is copyrighted by IBM Corporation and 

is intended for use on the IBM 1130 system. The code is, to a large extent, 

compatible with the IBM MPS 360 and IBM MPSX 370 systems. The test was 

carried out on the 1130 machine at the Department of Agricultural and 

Resource Economics of the University of California, at Berkeley. The 

results are presented in Table 2, Column 4, and indicate that the LP-MOSS 

computer code passes the reliability test. Although only three decimal 

digits are printed by the output subroutine, it is clear that the entire 

primal solution vector is equal to the entire dual solution vector, as 

anticipated by the theory. Furthermore, the value of the optimal objective 

function is more than three times smaller than that obtained by TEMPO, 

GUMPS and ALPHAC. 

IBH MPSX. This code [6] is supplied by IBM for its 370 system. One 

would expect to obtain results similar to those computed with the IBM 

1130 LP-MOSS code. Indeed -- as it can be seen from Table 2, Column 5 

the numerical information on the primal and dual solutions indicates that 

the correct optimal solution was achieved. Hence, also MPSX passes the 

reliability test. 
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Rand Quadratic Programming Code. This is a famous subroutine [3] 

since it is a conversion of an earlier Rand QP subroutine co-planned 

by Philip Wolfe, written for the US Air Force, and coded QPF4. It is 

completely written in Fortran IV, explicitly for the IBM 360/65. It 

can be easily adapted to other machines with minor modifications. For 

the present study it was implemented on the Burroughs 6700 system of the 

University of California, at Davis. 

In sections 2 and 3 it was explained that the LP specification of 

least-squares problems is self-dual, a property exhibited also by their 

quadratic progrannning formulation. Hence, the same test problem was used 

to verify the reliability of the Rand QP computer code. The results are 

encouraging and are presented in Table 2, Column 6. The solution obtained 

corresponds to that computed by the IBH 1130 LP-MOSS subroutine. The fact 

that, once again, u = TI, indicates that the Rand QP code has passed this 

reliability test. 

5. A conjecture. The .source decks of all programs used in this test were 

unavailable. Speculating as to the probable reasons for the tmreliable 

behavior of subroutines TEMPO, GUMPS, and ALPHAC, therefore, becomes 

a guessing game. As a conjecture, one may advance the hypothesis that 

rounding errors have set in all the programs that misbehaved. If this 

were true, the logical action would be to increase the precision of the 

computations by, for example, instructing the program to operate in "double 

precision". This strategy, however, is much easier to formulate than to 

carry out. Essentially, it amounts to rewriting many sections of the 

(unavailable) codes. 
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Another possibility is to study the various tolerances employed in 

the programs and decide whether their present levels might be the cause 

of the problem. In Table 3 we have summarized the main tolerances' values 

employed by the six computer codes tested in this exercise. Except with 

regard to LP-MOSS subroutine there seems to be no great difference among 

the various codes. TEMPO, however, sets a tolerance for the reduced cost 

and the primal solution which is higher than all other subroutines. 

In order to verify the hypothesis that the cause for the unreliability 

of TEMPO, GUMPS and ALPHAC codes is different from a problem of rounding-off 

errors, we performed the following experiment: the tolerance value of "reduced 

cost" was first increased to .01. This action was taken on the basis that 

the algorithm was inserting the wrong primal activities into the basis 

because the corresponding reduced costs were encountered to be significantly 

negative. When this was done the program approached the correct optimal 

value of the objective function but the primal solution was still very 

different from the dual solution. A second experiment was carried out setting 

the tolerance value of the "reduced cost" to .1. In this case, TEMPO was 

able to achieve the correct optimal primal solution and the optimal value 

of the objective function but, quite naturally, almost all the dual variables 

exhibited a misleading zero value. Of course, a tolerance value of .1 is 

absurd and the exercise was carried out to make sure that the main troubles 

are algorithmic rather than generated by rounding errors. 

6. Conclusion. It may come as a surprise that three out of five LP 

computer codes were found unreliable. The surprise, however, will soon 
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disappear if one realizes that a self-dual linear programming problem of 

some generality was formulated only very recently. Without such a speci­

fication with its own stringent consistency conditions, it is not easy to 

realize that an "optimal" solution like that generated by either TEMPO or 

ALPHAC or GUMPS is not optimal. The output printouts appear to be completely 

plausible, and even when tested against each other, the two computer 

codes cannot be detected in error. 

Since none of the source programs were available to the author, little 

can be said about the causes of unreliability of TEMPO, GUMPS, and ALPHAC. 

It is, however, possible to conjecture that the trouble area for the 

three codes must be associated with the treatment of slack and artif i-

cal variables. This conclusion is obvious if one studies the incorrect 

solutions: the two inequality constraints which in the correct optimal 

solution should be binding, are actually satisfied by slack variables. 

The importance and the widespread use of linear and quadratic programm­

ing models for representing engineering, biological and economic problems, 

warrants a thorough testing of the computer codes in circulation. This 

paper has offered a very powerful test of consistency which ought to be 

added to the traditional battery of test problems. 

8/27 /79: cfg 



13 

REFERENCES 

[l] BERKELEY COMPUTER CENTER, ALPHAC, A Linear Programming System, 

University of California, Berkeley, CA, 1972, 1973, 1975. 

[2] BURROUGHS CORPORATION, B7700/B6700 Systems TEMPO, Mathematical 

Progrannning System, User's Manual 1073665, Detroit, MI, 1975. 

[3] L. CUTLER AND D. S. PASS, A Computer Program For Quadratic 

Mathematical Models to be Used for Aircraft Design and Other 

Applications Involving Linear Constraints, R-516-PR, Rand 

Corporation, Santa Monica, CA, 1971. 

[4] R. J. DUFFIN, Infinite Programs, in Linear Inequalities and Related 

Systems, H. W. Kuhn and A. W. Tucker, Editors, Princeton University 

Press, Study 38, Princeton, NJ, 1956, pp. 157-170. 

[5] IBM CORPORATION, 1130 Linear Programming - Mathematical Optimization 

Subroutine System, (1130LP-MOSS) (1130-C0-16X), 1967. 

[6] IBM CORPORATION, Mathematical Programming System, MPSX User's Manual, 

1967. 

[7] J. STOER, "On the Numerical Solution of Constrained Least-Squares 

Problems", Siam J. Numer. Analysis, 8 (1971), pp. 382-411. 

[8] LAWRENCE BERKELEY LABORATORY, User's Manual GUMPS, Berkeley, CA, 

1977. 



14 

TABLE 1 -. 

THE DATA 

Dependent Regressor Regressor 
Variable Ill (/2 

173,398 317,629 104,801 

178,864 332,480 106,168 

186,264 343, 207 109,195 

184,486 344, 371 103,523 

200,993 362,673 107,954 

205, 730 376,986 124,341 

210,125 389,533 111,104 

205,700 383,892 106,250 

221,385 402,047 110, 732 

227,593 412 '304 111,881 



15 
TABLE 2 

TEST RESUL'TS OF :sIJC OJMPUTER CODES 

Burroughs LBL BCC IBM IBM Rand 
"TEMPO" "GUMPS" "ALPHAC" 1130LP-MOSS MPSX QP 

1 2 3 4 5 6 

Exit Condition Optimal Optimal Optimal Optimal Optimal Optimal 

Value of Obj. 
Function .01679 .01679 .01679 .005 .00525 .00525 

PRIMAL SOLUTION 

~ 12.19959 12.19960 12.19959 -.307 -.30757 -.30757 

x2 .00000 .00000 .00000 .750 .75000 .75000 

X3 .00000 .00000 .00000 .249 .25000 .25000 

,,.1 -.13625 -.13625 -.13625 -.020 -.0205 2 -.02052 

,,.2 -.10521 -.10521 -.10521 -.026 -.02700 -.02700 

,,. 3 -.06467 -.06467 -.06467 -.017 -.01730 -.017 30 

,,.4 -.07426 -.074 26 -.07426 -.016 -.01610 -.01610 

,,.5 .01143 .01143 .01143 .020 . 02028 .02028 

,,.6 .03473 .0 34 73 .03473 -.020 -.02078 -.02078 

Tf 7 .05587 .0558 7 .05587 .003 .00394 .00394 

Tf8 .03458 . 03458 .03458 .004 .00477 .00477 

Tf 9 .10807 .10807 .10807 .033 .03326 .03326 

,,.10 .135 72 .13572 .13572 .039 .03945 . 03945 

W1 .01219 .01219 .01219 .003 .00355 

W2 .05829 .05829 .05829 .001 .01154 

DUAL SOLUTION 

yl -.30757 -.30757 .30757 -.307 -.30757 

Y2 .75000 .75000 .75000 .750 .75000 

Y3 .25000 .25000 .25000 .250 .25000 

!11 -.0205 2 -.02052 -.0205 2 -.020 -.02052 -.0205 2 

u2 -.02700 -.02700 -.02700 -.026 -.02700 -.02700 

U3 -.01730 -.01730 -.01730 -.017 -.01730 -.01730 

U4 -.01610 -.01610 -.01610 -.016 -.01610 -.01610 

us .02028 .02028 .02028 .020 .02028 .02028 

u6 -.02078 -.02078 -.02078 -.020 -.02078 -.02078 

U7 .00394 .00394 .00394 .003 .00394 .00394 

u8 .00477 .00477 .00477 .004 .00477 .00477 

U9 .03326 .03326 .03326 .033 .03326 .03326 

~o .03945 • 03945 .03945 .039 .03945 .03945 

4>1 -.00030 .00000 .00000 .003 .00355 .00355 

4>2 .00000 .00000 .00000 .011 .01154 .01154 
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Tolerance 
On 

Reduced Cost 

Primal Solution 

Pivot 

Check ~? DJ 
Coeff .-

2/ Screen-

Burroughs 
"TEMPO" 

1 

.0001 

.0001 

.00001 

.001 

LBL 
"GUMPS" 

2 

.000001 

.000001 

.000001 

TABLE 3 

TOLERANC ES FOR SIX COMPUTER CODES 

BCC 
"ALPHAC" 

3 

.000001 

.000001 

.00001 

IBM 
1130LP-MOSS 

. 4 

.0001 

.0005 

.001 

IBM 
MPSX 

5 

.00001 

.00001 

.000001 

!/ Tolerance for computational error based upon the reduced cost (DJ) values computed by forward 
and backward transformations. 

'f:_/ After the input data has been scaled, any number whose magnitude is below this tolerance is 
ignored. 

Rand 
QP 

6 

.00001 

.00001 

.00001 

..... 
°' 
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