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ABSTRACT 

Inequality Restricted Least Squares by Linear 
Programming: Duality in Least-Squares Theory 

Duality in statistical estimation is discussed within the con-

text of linear least squares theory. The main result is that the 

quadratic pro~rammine problem of minimizing the residual sum of 

squared residuals subject to the linear model possesses a dual that 

is a linear program. The interpretation of this dual is that of 

maximizine the value of sample information defined as a linear com-

bination of the sample data. Least-squares estimates restricted by 

linear (deterministic and stochastic) inequalities can easily be ob-

tained by linear programmin g. 
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INEQUALITY RESTRICTED LEAST SQUARES BY LINEAR 

PROGRA.}.A}f!NG: DUALITY IN LEAST-SQUARES THEOP..Y 

1. INTRODUCTIOI\ 

During the past two decades many statisticians have recognized 

that the specification of some relevant empirical problems involves 

the :ilTlposition of inequality restrictions upon the parameters of 

linear models. Accordingly, the traditional normal equations asso

ciated with unrestricted least-squares do not offer a feasible pro

cedure for estimating the desired parameters. The problem of 

estimating by least-squares methods those linear models whose para

meters are suhject to inequality restrictions has always been con

sidered only a quadratic programmin g (QP) problem. A clear expres

sion ·of this sentiment can be found in a rather famous paper by Judge 

and Takayama who wrote (p. 169): " .since the objective function 

(of the inequality restricted least-squares problem) is a quadratic 

form in P, (the parameter vector), use of the linear programming ap

proach is precluded (erophasis added). Thus, unable to use conven

tional techniques in obtaining a solution to this constrained reini

mization problem, we reformulate the problem so that a solution can 

be obtained by quadratic programming procedures." 

He conjecture that this statement--although incorrect--repre

sents the belief of the totality of econometricians and statisticians. 

In fact, the perusal of the relevant literature has revealed a series 

of important studies which support the viewpoint of Judge and Takayama. 
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Theil and Rey, for example, were among the first to propose a quadratic 

programming algorithm for estimating the transition probabilities 

of a first-order Markov chain model. Malinvaud (pp. 317-319) reem

phasizes the exclusive quadratic programminp, nature of the problem. 

A similar position is reasserted by Lovell and Prescott (p. 914). 

Liew confirms the quadratic programming specification very explicitly 

and goes as far as to propose the solution of the QP problem by either 

Lemke's or Dantzig-Cottle's algorithms for solving the corresponding 

linear complementarity problem. More recently, Lee, Judge and Zellner 

published a book entirely devoted to the subject of estimating alter

native specifications of transition probability models by means of 

quadratic programming. But, perhaps, the most revealing statement 

about econometricians' opinion of the exclusive quadratic progranuning 

nature of the problem is provided by Arrow and Hoffenberg . The two 

authors were concerned with the problem of estimating interindustry 

input-output coefficients which, obviously, ought to be nonnegative. 

In a methodolo~ical chapter they wrote (pp. 55-56): "However, it did 

seem worth while to make some attempt to use inequalities in f:f.tting. 

One possibility is to disregard the simultaneous equation nature of 

the problem and fit ri(t) to the remaining variables ••• by the 

method of least-squares, where the minimization is to be constrained 

by inequalities. This becomes a problem in quadratic programming ••• ; 

the computational problems are large but by no means completely im

practical. An alternative to minimizing the sum of squares is mini

mizing the sum of absolute deviations. From a theoretical point of 
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view, it would be difficult to argue the superiority of one method 

over the other, while the latter has the advantage of being capable 

of expression as a linear programming problem." (Emphasis added.) 

The two authors thanked G. B. Dantzig for suggesting the alternative 

approach. 

If Arrow and Hoffenberg , as well as Judge and Takayama, desired 

to use linear programming (LP) techniques for dealing with the es

timation of inequality restricted linear models, they did not need 

either to abandon the least-squares approach or to rely exclusively 

upon quadratic programming. In fact, and contrary to a widespread 

belief, the least-squares estimation of inequality restricted linear 

models can be performed by linear programming. 

This admittedly surprising result may be regarded--at least in 

some instances--as offering computational advantages especially 

when and where quadratic programming computer subroutines are either 

inaccessible or unreliable. 

The same result, however, has a second and perhaps more inter

esting aspect. Indeed, one may conjecture that this unsuspected 

result went unnoticed because statisticians have not studied with 

any degree of fervor the structure of duality of the least-squares 

estimator. The linear programm.inE specification presented in this 

paper is, in fact, dual to the problem of minimizing the sum of 

squared residuals. The corresponding geometric interpretation is 

that the objective function of the proposed LP problem constitutes 
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a supporting hyperplane to the conv~~ set defined by the function 

of squared residuals. Intuitively, the objective function of the 

new linear program can be interpreted as maximizing the net value 

of sample information. An interesting by-product of this new way of 

looking at least-squares estimation is that the variance of the 

error terms can be computed as a linear combination of the sample 

observations. 

To facilitate the introduction and the discussion of duality 

in least-squares theory, Section 2 is devoted to the explanation 

of terminology and procedures connected with the duality of unre

stricted least squares. Section 3 deals with the duality results 

associated with least-squares estimates restricted by exact linear 

inequality. A further analysis of the structure of least-squares 

duality is undertaken in Section 4 by means of the Legendre trans

formation of the sum of squared residuals. In Section 5, it is 

shown that the LP algorithm proposed in this paper can handle also 

the least-squares mixed estimation of linear models subject to 

stochastic inequalities. Some computational aspects of the new LP 

approach to least-squares estimation are reviewed in Section 6. 

Finally, in Section 7, a numerical application--requiring the es

timation of a Cobb-Douglas production function--is used to illustrate 

the LP approach in terms of both unrestricted and inequality re

stricted least squares. 
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2. THE DUAL OF THE LEAST-SQUARES PROBLEM 

Consider the linear model 

y • XB + e (2.1) 

"7here y is a vector of n observations, X is an ~ x .1: matrix of rank 

£. of fixed regressors, B is a vector of unknown parameters, and e is 

a vector of random variables with mean zero and homoscedastic vari-

2 ance a • The problem is to find estimates b of the vector B of 

unknown parameters such that y • Xb + u, and b minimizes the qua-

dratic form u'u of residuals, where u • y - Xb. Equivalently, the 

primal least-squares problem can be formulated as the followin e 

quadratic progrannning specification: 

min u'u/ 2 (2. 2) 

subject to 

Xb + u = y 

b and u unrestricted. 

The specification of (2.2) is a typical constrained minimiza-

tion problem whose solution (if it exists) is obtained by means of 

1/ the Lagr an gean method.- Hence, choosing n as the n-dimensiona l 

vector of Lagrange multipliers, associated with the constraints of 

(2.2), the necessary and sufficient conditions for solving (2.2) 

are obtained by differentiating the following Lagrangean function 

with respect to u, b and TI 

L • u'u/2 + n'[y - Xb - u] (2. 3) 

and setting the corresponding derivatives equal to zero; that is: 

dL/dU • U - TI • 0, (2 .4) 
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aL/ab • -x•n = o, 

dL/dTT a y - Xb - u a o. 

(2. 5) 

(2. 6) 

In the terminology of mathematical prograrraning , the relation 

(2.3) constitutes a saddle function whose saddlepoint (if it exists) 

provides a solution to the original problem (2.2). The objective 

function of the dual problem associated to the primal (2.2) is ob

tained by minimizing the Lagrangean function with respect to t he 

Lagrange multipliers, n, for given values of u and b. In genera l 

terms, the derivatives of the Lagrangean function with respect to 

the primal variables constitute the dual constraints. Similarly, 

the derivatives of the same function with respect to the Lagrange 

multipliers (heretoforth called also dual variables) repr es ent t he 

primal constraints. Hence, in our case, relations (2.4) and (2.5) 

are dual constraints for the unrestricted least-squares problem, 

while relation (2.6) is, obviously, the primal constraint. 

Therefore, by substituting the dual constraints (2.4) and (2.5) 

into the Lagran ~ean function, the dual to problem (2.2) can be 

stated as 

subject to 

max L = n'y - u'u/2 

U - TT "" 0, 

x•n "" o, 

u and TT unrestricted. 

(2. 7) 

(2. 8 ) 

(2. ~ ) 
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Two important remarks are in order. First of all, constraint (2.8) 

establishes that the dual variables 'TT are identical to the primal 

variables u, that is, the Lagrange multipliers are identically equal 

to the residuals. Secondly, constraint (2.9) makes explicit the 

characteristic least-squares orthogonality between the regressor 

matrix X and the residuals u. 

As written above, the objective function (2.7) of the dual 

problem is, obviously, a quadratic (concave) function. Notice, 

however, that by successive use of conditions (2.4), (2.6), and 

(2.5), it can be transformed into a linear function as follows: 

max L = n'y - n'(y - Xb)/2 (using (2.4) and (2. 6) (2 .10) 

= n'y n'y/2 + n'Xb/2 

a n'y/2 (using (2.5)). 

Thus, the dual of problem (2.2) can be restated as the linear 

program 

subject to 

max n'y/2 

Xb + TI = y, 

X'n ., O, 

b, 'TT unrestricted. 

(2 .11) 

(2 .12) 

(2.13) 

Constraint (2.12) replaces (2.8) since u a y - Xb. Notice that pro

blems [(2.7) - (2.9)] and [(2.11) - (2.13)} are equivalent in the 

sense that they provide exactly the same solutions. It is very 

easy, in fact, to reconstruct the specification (2.7) - (2.9) 
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beginning from (2.11) - (2.13), by further use of relations (2.4) 

(2.6). Hence, both formulations can be regarded as representing 

the dual of the unrestricted least-squares problem. Of course, the 

linear programming version is of greater interest because it was 

previously unsuspected and, furthermore, it may be easier to imple

ment computationally than the QP version (2.7) - (2.9). 

Several remarks come to mind. Clearly, the constraints of 

(2.11) are equivalent to the least-squares estimator. In fact, pre

rnultiplying (2.12) by X' one gets X'Xb + X';r = X'y, which in view 

of (2.13) corresponds to the system of least-squares normal equa

tions. Secondly, the interpretation of (2.11) as the dual problem 

of (2.2) can be illustrated by Figure A. 

In this figure, the traditional primal problem is represented 

by the convex function u'u to be minimized. The dual problem 

(2.11) is represented by the supporting hyperplane, n'y, to be 

maximized. Another appealing interpretation of the objective func

tion (2.11) is that of maximizing the value of sample information 

defined as a weighted combination of the sample observations, y, 

with weights iT representing the marginal valuation of the primal 

constraint in problem (2.2). This interpretation is suggested by 

the fact that the sample information is contained in the quantities 

constituting the sample observations and by adopting the traditional 

economic interpretation of the dual variables, ;r, as "shadow prices". 

Hence, if the vector y represents the "quantity" of information 
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contained in the sample and the vector TI represents the associated 

"prices," the linear combination n'y may be regarded as the value of 

sample information. 

Perhaps, the most striking feature of this LP approach is the 

2 discovery that an unbiased estimate of the variance a can be ob-

tained as a linear combination of the sample observations, y. In 

fact, premultiplying (2.6) by n' and using (2.4) and (2.5), such 
"? 

an unbiased estimate is a~= u'u/(n - p) = n'y/(n - p). This 

appears to be an entirely novel procedure for computing the vari-

2 / ance.- Notice also that, although the dual variables, n, depend 

upon the sample observations, y, the term n'y is still to be re-

garded as a linear combination exactly as in the conventional lin-

ear programnin g specifications. 

3. A LINEAR PROGRAM FOR INEQUALITY RESTRICTED LEAST-SQUARES 

We can now tackle the problem which concerned Arrow and Hof fen-

berg , Theil and Rey, Jud ge and Takayama, and other researchers. 

The problem is to determine whether linear programming techniques 

can be used to obtain least-squares estimates of parameters in linear 

models restricted by linear inequalities. In view of the results 

obtained in Section 2, the answer, of course, is positive and can 

be articulated as follows. 

Let us suppose that the parameters of the linear model y • XB 

+ e, whose elements were defined in Section 2, are subject to linear 

inequality restrictions such as RB 2_ r, where R is a k x ~ full rank 
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matrix of known coefficients, and r is a known vector of constraints. 

In this case, the primal least-squares problem can be stated as 

follows: 

subject to 

min u'u/2 

Xb + u = y, 

Rb < r, 

b, u unrestricted. 

(3.1) 

(3.2) 

(3.3) 

The derivation of the corresponding dual problem follows the outline 

developed in Section 2 and requires to differentiate the following 

Langrangean function 

L = u'u/2 + TI'[y - Xb - u] + W'[Rb - r] (3. 4) 

with respect to u, TI, b and w, where W is a nonnegative vector of 

Lagrange multipliers associated with constraint (3.3). The con-

strained minimization problem (3.1) - (3.3) is of a slightly dif-

ferent structure than that in Section 2 because of the presence of 

the inequality constraints (3.3). For this reason the classical 

Lagrangean method must be modified according to the theory of non-

3/ linear progranuning developed by Kuhn and Tucker.- Hence, the 

desired derivatives (called also Kuhn-Tucker conditions) are as 

follows: 

a1/au • u - TI • o, 

a1/ab = -x'n + R'w = o, 

aL/dTI e y - Xb - u • O, 

a1/aw • Rb - r ~ O, ~·ca11aw) ·~'Rb - ~·r - o. 

(3.5) 

(3.6) 

(3. 7) 

(3. 8) 
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Using conditions (3.5) through (3. 8) in (3.4), as appropriate, 

the objective function of the dual problem can be transformed into 

a linear function as follows: 

max L • u'u/2 + n'y - lJl'r - u'u + (ljl 'R - n'X) b (3.9) 

• n'y lJl 'r u'u/2 by (3.5) and (3. 6) 

-= n'y - ljl 'r - n' (y - Xb)/2 by (3.5) and (2. 7) 

= n'y/2 - lJl'r + lJl'Rb/2 by (3. 6) 

-= {n'y - lJl'r}/2 by (3. 8 ) 

In its last equivalent specification this function is linear since 

both the y and r vectors are kno'Wil. 

Hence, the followin g linear programming probleM can be used to 

obtain least-squares estimates of linear models subject to inequality 

restrictions: 

max {n'y - lJl 'r} 

subject to 

X'n - R'l)J -= 0 

-Rb > - r 

1Ji ~ O, b, iT unrestricted. 

(3.10) 

(3.11) 

(3 .12) 

(3.13) 

The objective function (3.10) can now be interpreted as maximizing 

the value of sample information, n'y, minus the value of the exo ge-

nous information, lJl'd, or, in other words, maximizing the net value 

4/ 
of sample information.- To verify the correspondence between pro-

blem (3.10) - (3.13) and the least-squares estimator restricted by 
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linear inequalities, it is sufficient to notice that a solution b, 

n, and ~ satisfying constraints (3.11), (3.12), and (3.13) corre-

sponds to the desired least-squares estimator. In fact, premulti-

plying (3.11) by X' one gets 

X'y = X'Xb + X'n = X'Xb + R'~ 

which--in view of the full rank property of X--can be solved for b 

to obtain 

b = (X'X)-lX'y - (X'X)-lR' ~ 

= b - (X'X)-1R'~ (3.14) 

easily recognizable as the least-squares estimator restricted by 

5/ linear inequalities.- It is, thus demonstrated that also the 

least-squares method (just like the least absolute deviation method) 

for estimation of linear models is capable of expression as a linear 

programming problem. 

4. A FURTHER ANALYSIS OF LEAST-SQUARES DUALITY: 
THE LEGENDRE TRANSFOR'MATION 

An alternative and perhaps deeper analysis of duality in least-

squares theory can be developed in terms of the Legendre transforma-

tion. For simplicity we refer the discussion of this section to the 

unrestricted least-squares problem of Section 2. 

By definition, the Legendre transformation of the differentiable 

function f(z), where z is a vector variable, is given by the function 

¢(d) = f(z) - d'z, where d = af/az is the gradient vector of f(z). 

By applying this notion to the least-squares problem, the function 
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f(•) is given by the quadratic form f (b) • u'u. Furthermore, d = 

X'Xb - X'y. Hence, the corresponding Legendre transformation is: 

¢(d) = u'u - d'b (4.1) 

• (y - Xb)'(y - Xb) - (X 1Xb - X'y)'b 

c y'(y - Xb) 

= y'u. 

Since the function f(b) is convex, the maximization of the Legendre 

transformation, ¢ (d), subject to the condition d = O, corresponds 

to the mini~ization of f(b). Therefore, ¢ (0) c u'u = u'y. In 

Figure 1, the function ¢(d) can be interpreted as the intercept on 

the residual sum of squares (RSS) axis of the tangent to the convex 

function u'u. The maximization of the intercept, subject to the 

condition d = O, is equivalent to the minimization of u'u. 

In other words, the Legendre transformation (4.1) represents 

the family of tan gents to the convex function u'u. Since tangents 

are, obviously, linear functions, the optimal tangent for a least

squares problem is that which corresponds to the minimum of the 

function u'u. Such a tangent has intercept ¢(d = O) and corresponds 

to the hyperplane y'u or, equivalently, y'n. 

5. LEAST-SQUARES MIXED ESTIMATION BY LINEAR PROGRAMMING 

Oftentimes, theoretical conclusions or personal belief about 

events suggest the use of this prior information in conjunction 

with the sample information for estimating the parameters of a model. 
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While, in Section 3, the exogenous information was assumed to ex-

hibit the structure of exact (or detenninistic) inequalities (Rb::.._ r), 

a de~ree of uncertainty about the exact nature of this inforn.ation 

can be easily specified by introducing a random element, v, into the 

inequalities. 

Hence, suppose that the parameters of the linear model (Xb + 

u = y) obey also the followin g stochastic inequality system 

Gb ::.._ p, + v (5.1) 

where G is a £ x p matrix and g is a £ x 1 vector of known coe f -

ficients. Each component of the £ x 1 random vector is supposed 

2 to have zero expectation and variance a . The intuitive interpre
v 

tation of relation (5.1) is that t he researcher does not possess a 

100 percent confidence (or knowledge) about the structure of the 

inequalities that the parameter vector b ought to satisfy. Re, 

therefore, allows a margin of error, v, in the specification of the 

vector g. It is desirable, however, to make such an error as small 

as possible. Fence, the appropriate primal least-squares problem 

is specified as follows 

min {u'u/2 + v'v/2} (5. 2) 

subject to 

Xb + u = y (5.3) 

Gb - v < g (5. 4) 

b, u, v unrestricted. 
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By followin g, step by step, the procedure developed in Section 3, 

it is possible to arrive at the specification of the followin g lin-

ear program: 

subject to 

max {n'y - ~ 'g}/2 s 

Xb + 1T = y 

X' n - G' ~ ic O s 

Gb - •1• < g 'l's - ., 

~' b, 1T unrestricted. 

(5.5) 

(5. 6 ) 

(5. 7) 

(5. 8) 

The dual variables ~· ., i = 1 ••• ~' represent the cost of satis
si 

fyin p, the stochastic inequalities (5.1). Although we use the 

same symbol, ~ ' as in Section 3, they are obviously of a different 

nature than those associated with the exact inequalities Rb < r. 

In this case, the specification contains two sources of error: 

the sample and the ~ priori information. The formulation in 

problem (5.2) - (5.4) or, alternatively, problem (5.5) - (5.8), 

corresponds to a slightly more general version of the mixed esti-

mation specification discussed, for example, by Goldberg and Theil. 

6. COMPUTATIONAL ASPECTS OF THE LP ALGORITHM 

No particular problem exists for implementing the linear pro-

gramming formulations developed in previous sections using the LP 

subroutines conventionally available at computer centers. The only 
\ 

requirements are that they be reliable and, secondly, that all the 
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unrestricted variables appearing in the LP formulations be redefined 

as the difference of two nonne?ative variables. Hence, by letting 

are n x 1 nonnegative vectors, the more explicit version of the 

unrestricted least-squares problem (2.1) - (2.13) becomes 

subject to 

X(bl - b2) + (nl - 7T2) = y, 

X'(n1 - n2)-= O, 

n1 ~ O, n2 ~ O, bl ~ O, b2 > O. 

(6.1) 

Similarly, the inequality restricted least-squares problem (3.10) -

(3.13) must be converted to the following computer-ready specification 

subject to 

max {y' (TI - 7T ) - W1 r} 1 2 

X(bl - b2) + (nl - 7T2) -= y 

x'<n1 - n2) - R'w co 

-R(b - b ) > - r 1 2 -

w ~ o, bl ~ o, b2 ~ o, 7Tl ~ o, 7T2 ~ o. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

It is well known that the available and efficient LP subroutines 

based upon the simplex algorithm can handle several hundred con-

straints and several thousands of variables. Therefore, the dimen-

sionality of the least-squares problem cannot possibly present any 

inconvenience. In principle, it would clearly seem that linear pro-

grannning is a simpler and more efficient computational technique 
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than either quadratic programming or any other algorithm for the 

linear complementarity problem. This belief must have been shared 

also by Arrow and Hof fenberg, Judge and Takayama while carrying out 

their original studies. In practice, however, the advantages and 

disadvantages of any algorithm constitute an empirical question. 

They depend, to a large extent, upon the sophistication of the 

progranuning language and diagnostic techniques used for implementing 

the desired algorithm on the computer. 

Consider first the linear progrannnin g problem (6.2). With n 

observations, p parameters and k constraints, its dimensionality 

(that is, the dimensionality of the associated simplex tableau) is 

of (n + p + k) rows and (2n + 2p + k) columns. The corresponding 

input requirements are the matrix of regressors X, the vector of 

observations y, the matrix R and vector r describing the constraints. 

No computations or transformations of the sample data are necessary 

prior to inputting the sample information. 

Consider now the quadratic progrannning algorithm suggested 

by Judge and Takayama, as well as by Lee, Judge, and Zellner for 

solving inequality restricted least squares. Using as a reference 

the simplex tableau of Judge and Takayama (p. 172) it would appear 

that the dimensionality of their quadratic progrannning formulation 

is of (p + k) rows and (2p + 2k) columns. 

Notice, however, that the reduced dimensions of the QP speci

fication is associated with more complex input requirements and lack 
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of final information about residuals as compared to the LP method. 

In fact, the QP approach of Jud ge and Takayama requires that the 

matrix X'X as well as the vector X'y be inputted necessitating , 

therefore, nonnegligible preliminary data manipulations. Further

more, their QP approach does not directly provide either the series 

of residual terms or the sum of their squares. These estimates will 

have to be co~puted separately, after the estimates of the coeffi

cients are obtained. 

The LP formulation, on the contrary, does not require any prior 

transformation of the sample information and provides the estimates 

of the coefficients, error terms and their sum of squares directly 

in the solution of the LP problem. The inverse of the optimal 

basis associated with the optimal solution gives the variance-covari

ance matrix of the coefficients. 

The comparison between the LP algorithm proposed in this paper 

and the linear complementarity problem suggested by Liew follows 

more or less the lines indicated above for the LP versus QP algo

rithms, with one additional advantage in favor of the LP specifica

tion. In general, LP al gorithms based upon the simplex method are 

articulated in two phases: Phase I, which utilizes the dual-simplex 

algorithm, establishes the feasibility of the solution, while Phase 

!!--using the primal-simplex algorithrn--attempts to achieve opti

mality. If, during computations performed in Phase II, feasibility 

is lost (due to rounding off errors, for example), the subroutine 
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reverts to Phase I and so on. The algorithms for solving the linear 

complementarity problem of Lemlre as well as that of Dantzig and 

Cottle, cited by Liew, do not possess this double phase articulation, 

and, in large problems, may encounter difficulties in successfully 

completing the computations, due principally to rounding-off errors. 

So far, the matrix of fixed regressors, X, was assumed to be of 

full rank. The linear progranuninc formulation proposed in this 

paper, however, is not restricted to this assumption. If X is 

of rank r < p one can either use the repararnetrization approach 

traditionally used in least-squares theory, or allow the LP program 

to select a suitable basis. Usually, the reparametrization involves 

a subjective choice of the re gressor(s) to be eliminated from the 

X matrix . This arbitrary choice may often imply elimination of 

unneccessary sample infonnation. On the contrary, the LP formula

tion does not involve any a priori arbitrary choice and will elimi

nate regressor(s) according to the objective of retaining the 

largest amount of information. 

In the case of a non-full-rank matrix X, it is admissible that 

the LP formulation possesses alternative optimal solutions. But also 

this aspect does not constitute any problem whatsoever. To see 

this, it is sufficient to recall the theory of estimable functions. 

Under this theory, the alternative schemes of reparametrization 

which might exist give rise to the same projection of the vector 

of observations, y, onto the space of regressors, x.2-/ Of course, 
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the sets of individual coefficient estimates associated with the 

alternative reparametrizations would differ from each other. Analo-

gously, in the non-full-rank LP specification all the alternative 

optimal solutions produce the same minimization of the residual sum 

of squares and, therefore, the same projection of y onto X. Of 

course, the individual elements of the alternative optimal solutions 

are not the same but this is no different from the conventional 

approach toward reparametrization. 

Furthermore, the LP formulation naturally provides a criterion 

for step·wise regression. In fact, at each iteration the variable 

that most increases the value of the objective function, n' y (the 

value of sample information), is introduced into the basic solu-

tion. By duality, increasing the value of sample information means 

reducing the sum of squared residuals. 

Finally, notice that the LP algorithm proposed in this paper 

is capable to provide generalized least-squares estimates of the 

parameters. 

VThen the error term e of (2.1) is heteroscedastic with full 

rank covariance matrix r, the appropriate least-squares procedure 

is to minimize a weighted sum of squared errors defined as u'E-1u/2 

where E-l is the inverse of the r matrix. If r is not known, it 

can be estimated by r using the solution vector TI of problem (2.11). 

The second stage of the procedure can thus be formulated as the 

following linear programming problem 
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"-1 
max ;r'r y 

"-1 " "-1 "-1 r Xb + r n = r y, 
"-1 x'r n = o, 

(' 

b, TI unrestricted. 

(6.6) 

It can be easily verified that the above problem corresponds to the 

" "-1 -1 "-1 generalized least-squares estimator b = (X' r X) X' r y. The in-

terpretation of (6.6) is entirely analogous to that of (2.11) with 

the only difference that the axes of the regressors X have been ro

"-1 
tated by the matrix r . A linear programming specification can 

easily be formulated for the case of generalized least-squares re-

stricted by linear inequalities . 

7. A NUMERICAL ILLUSTRATION 

To illustrate the theoretical development outlined in previous 

sections we will now discuss three numerical examples using the 

same sample data presented in Table 1. The information refers to 

a ten-year period of the U.S. private nonfarni GNP which is postu-

lated to have been generated by a Cobb-Douglas technology specified 

by capital and labor: 
bl b2 

Yi• BKi Li Ei, is 1, ••• , 10 (7 .1) 

where E is a multiplicative random disturbance and B, b
1

, and b
2 

are the coefficients to be estimated. When using the least-squares 

approach it is customary to take the natural log-transform of (7.1) 

which can be stated as 
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i .. 1, • • • t 10 (7. 2) 

The transformed random error ei is assumed to possess zero expec-

2 
tation and constant variance a and, furthermore, it is independent 

of all other observations. 

Unrestricted Least-Squares Estimation 

The first example consists in the computation of the unrestricted 

least-squares estimates of the parameters B0 , B1, B2• For this 

purpose, we adopt the specification (6.1), where y is a (10 x 1) 

vector and X is a 10 x 3 matrix of regressors. 

The estimated coefficients, the associated residuals and the 

corresponding sum of squared resi<luals (RSS) are presented in Table 

2. The computations were carried out on a 1130 IBM computer usin g 

the 1130LP-MOSS software for linear programs. Exactly the same 

figures were obtained using a conventional regression package based 

upon normal equations. 

Least-Squares Estimation with Deterministic Inequalities 

The second numerical example specifies the estimation of the 

Cobb-Douglas coefficients in (7.2) under the restrictions that 

b1 .S. 3b2 and b1 ~ O, b2 > O. In this case, to obtain the desired 

least-squares estimates by linear programming, one must use the 

specification given in (6.2) - (6.5) with the following modifica-

tions: since b1 and b2 are supposed to be nonnegative, the rows 
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of (6.4) which (by duality) correspond to these coefficients are 

now inequalities. Furthermore, R = (O, O, 1, -3) and r = O. A 

configuration of the structure of the simplex tableau correspondin g 

to this example is given in Table 3. The type of constraints charac

terizing this problem is indicated in the second column where E = 

equality, L • less than or equal and G = greater than or equal. The 

letter N indicates the objective function's row, while the letter 

E represents a real number between 10 and 100. The least-squares 

estimates of the coefficients, residuals, their sum of squares, and 

of the dual variable ~ are presented in Table 2. The computations 

were carried out with the same LP software and hardware indicated 

previously. Exactly the same solution was obtained by quadratic 

programming using a computer subroutine prepared for the Rand 

Corporation by Cutler and Pass and implemented on a Burroughs 7700/6700 

system. 

Least-Squares Estimation with Stochastic Inequalities 

The third numerical illustration postulates that knowled ge 

of the ratio between the coefficients b1 and b 2 is not certain. 

Furthermore, theory suggests that an economic equilibrium is 

achieved only when the production function exhibits either de

creasing or, at most, constant returns to scale. Given the nature 

of the sample data, also this second inequality is not applicable 

with full confidence. Hence, the new specification introduces 

stochastic inequalities as follows 



where v1 and 

tic variance 
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b1 - 3b 2 ~ v1 

b1 + b2 ~ 1 + v2 

are random errors with zero expectation, homoscedas-

7/ and zero covariance.- In this case, the appropriate 

LP specification of the problem is that given in (5.5) - (5.8), 

modified to account for the nonnegativity of the coefficients b1 , 

b2 • The corresponding estimates are presented in Table 2. Exactly 

the same estimates were obtained by quadratic progrannning . 

In the course of developing the least-squares estimates for 

the numerical examples presented here, it was realized that the 

linear programming formulation of the least-squares problem possesse s 

also a practical advantage as a method of checking the reliability 

of LP computer subroutines. Indeed, it is in the theoretical 

nature of the LP specification of the least-squares problem (either 

restricted or unrestricted) that the primal solution must be 

exactly equal to the dual solution. Hence, the LP least-squares 

formulation contains in itself an absolute consistency check . If 

one inputs the data correctly but does not obtain the verification 

that the primal solution is equal to the dual solution, he can 

conclude that the LP software is unreliable. In fact, usin g this 

check, it was discovered that the LP subroutine copyrighted by 

Burroughs Corporation for its 7700/6700 system since 1971 and 

called "TEMPO," does not give the correct primal optimal solution 

and the corresponding value of the objective function. 
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8. CONCLUSIONS 

The study of the structure of duality in least-squares theory 

has uncovered unsuspected results. The most interesting is that 

least-squares estimates can be obtained by formulating an appropriate 

linear programming problem. The advantages of this discovery are 

both computational and interpretative. I conjecture that several 

other useful insights and uses of this novel LP approach to least 

squares will be added shortly to those presented in this paper. 

ke 
8/7/79 
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FOOTNOTES 

l/ For a clear exposition of the Lagrangean method as it applies 

to constrained minima see Hadley (pp. 60-75). 

2/ A rather exhaustive search of the statistical literature has 

failed to reveal any hint that the error variance in least

squares may be computed as a linear combination of the sample 

observations using the residuals as weights. 

3/ A very intelligible discussion of Kuhn-TucY~r theory of non

linear programming can be found in Hadley (pp. 185-205). 

4/ The factor (1/2), appearing in (3.9), can be dropped in the LP 

problem (3.10) without modifying the solution. 

5/ See, for example, Theil, p. 44, equation (8.7). 

6/ See, for example, Graybill, p. 229. 

7/ The homoscedasticity of the variance of v1 and v2 as well as 

the zero covariance between the two terms is assumed for sim

plicity. A more complex specification of the error terms can 

be easily handled by the LP al gorithm. 
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TABLE 1 

The Sample Data 

Private 
nonfarm Man 

GNP Capital hours 
Year y K L 

1951 173,398 317,629 104,801 

1952 178,864 332,480 106,168 

1953 186,264 343,207 109,195 

1954 184,482 344,371 103,523 

1955 200,993 362,673 107 '954 

1956 205,730 376,986 124' 341 

1957 210,125 389,533 111,104 

1958 205,700 383, 892 106,250 

1959 221,385 402,047 110, 732 

1960 227,593 412,304 111, 881 

Source: R. Sato 

I. 
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TABLE 2 

LP Estimates of Alternative Least-Squares Specifications 

Cobb-Douglas Cobb-Douglas 
Unrestricted with deterministic with stochastic 

Estimates Cobb-Douglas inequalities inequalities 

RSS .00ll8 .00240 . 00511 

b -1.66522 -3.39608 -.4461B 
0 

bl 1. 03118 .93520 . 75911 

b2 .05662 . 31173 .25189 

ul TTl .01038 .00806 -.01916 

u2 = TT 2 - .00644 ...... 00768 -.02608 

u3 = TT 3 - .00024 - .00560 -.01673 

u4 TT4 .01032 - .00175 -.01547 

us ;:: TT5 . 01963 .02247 .02038 

u6 ;:: TT6 - .00499 - .03449 -.02131 

u7 ;:: TT 7 .01124 - .00888 .00333 

u8 TT8 .01495 - .00259 .00437 

U9 TT9 .00854 .01480 .03237 

ulO = TTlO . 00964 .01567 .03830 

ljJl .00142 .00344 

ljJ2 .01100 

L 
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TABLE 3 

Structure of the Simplex Tableau for Example 2 

Constraint 
Type 

N 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

L 

L 

G 

C C C C C C C C C C C C C C C C C C C C C C C C C R 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 
L L L L L L L L L L L L L L L L L L L L L L L L L S 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

B B B B B B B B B B-B-B-B-B-B-B-B-B-B-B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1-1 B B 1 -1 B 

1 1 1 1 1 1 1 1 1 l-l-l-l-l-l-1-1-1-l-l 

-1-1-l-l-l-l-l-l-l-l 1 1 1 1 1 1 1 1 1 1 

B B B B B BB B B B-B-B-B-B-B-B-B-B-B-B-1 

B B B B B B B B B B-B-B-B-B-B-B-B-B-B-B A 

-1 A 
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FIGURE A. Illustration of Duality in Least-Squares Theory 

RSS 

- primal function 

~(d=O) 

i 
n'y - dual function 

0 8 
b - least-squares estimate 

j 
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