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Restricted and Generalized Least Squares by Linear 
Programming: Duality in Least-Squares Theory 

1. INTRODUCTION 

In 1973, Sielken and Hartley proposed two very interesting 

linear programming (LP) algorithms for unbiased estimation of linear 

models. The two criterion functions chosen by those authors were 

t he minimization of the sum of absolute residuals and the minimiza-

tion of the maximum absolute residual, respectively. The use of LP 

techniques for econometric purposes offers the appealing aspects of 

relative computational ease and, more importantly, of interpretative 

potential • . Yet, it appears that the use of linear programming for 

1/ deriving other more commonly-used estimators has gone unnoticed.- I n 

particular, the least-squares estimator can be obtained by a linear 

programming algorithm. The extension of the LP algorithm for computing 

generalized least-squares estimates and least-squares estimates sub-

ject to linear inequalities is straight-forward. 

The main interest in the new LP algorithm lies in the dual inter-

pretation of the least-squares problem rather than in computational 

aspects. Hence, the new development is relevant because it brings 

forward the almost completely neglected duality side of statistical 

estimation. The dual problem of minimizing the familiar sum of squared 

errors is given an elegant interpretation in terms of the supporting 

hyperplane to the convex function represented by the sum of squared 

residuals. On a more intuitive basis, the dual problem of minimizing 

noise defined by the sum of squared residuals can be interpreted as the 
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problem of maximizing the value of information, defined as a weighted 

combination of the sample information. The weights are the dual variables 

of the problem of minimizing the sum of squared residuals subject to the 

linear regression system. Because of the self-duality property of the 

least-squares problem (clearly demonstrated by the proposed LP algorithm.), 

the dual variables correspond identically to the primal variables. With 

hindsight knowledge, one might conjecture that the self-duality property 

of the least-square procedure constitutes the reason for the disregard of 

the duality side in statistical and econometric estimation, although one 

can hardly find such a statement in the published literature. It would 

also appear that self-duality has a great deal to do with unbiasedness of 

the estimator. Hence, the question of duality in biased estimators 

springs up naturally. This topic might be the subject of further in-

vestigation. 

2. THE DUAL OF THE LEAST-SQUARES PROBLEH 

Consider the linear model 

y c X8 + e (2.1) 

where y is a vector of n observations, X is an n x £.matrix of rank 

£. of fixed regressors, B is a vector of unknown parameters, and e is 

a vector of random variables with mean zero and homoscedastic vari-

2 ance cr • The problem is to find estimates b of the vector B of 

unknown parameters such that y c Xb + u, and b minimizes the qua-

dratic form u'u of residuals, where u • y - Xb. Equivalently, the 

primal least-squares problem can be formulated as the following 

quadratic programming specification: 
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min (l/2)(u1 - u2)'(u1 - u2) (2.2) 

subject to X(b1 - b2) + (u1 - u2) ~ y 

-X(b - b ) - (u - u ) < -y 1 2 1 2 -

where u = u1 - u2 , and b = b1 - b2 • In order to simplify the nota

tion, the following equivalent formulation of (2.2) will be used 

throughout: 

min (l/2)u'u (2. 3) 

subject to Xb+u=y 

b and u unrestricted. 

The dual of problem (2.3) can be derived according to the usual 

Lagrangean procedure. Hence, choosing TI as the vector of Lagrange 

multipliers, ·the necessary and sufficient conditions for maximizing 

(2.3) are obtained by differentiating the following Lagrangean 

function with respect to u, b and TI 

L • (l/2)u'u + TI'[y - Xb - u] (2 .4) 

and setting the corresponding derivatives equal to zero; that is: 

dL/du • u - TI = 0, 

a1/ab - -x'TI - o, 

a1/aTI • y - Xb - u - o, 

u'(a1/au) • u'u - u'TI • o, 

b'(aL/ab) - -b'XTI - o. 

TI'(aL/dTI) - TI'y - u'u - o. 

By substituting the dual constraints (2.5) and (2.6) into the 

(2 .5) 

(2.6) 

(2.7) 

(2.5.i) 

(2.6.i) 

(2.7.i) 

Lagrangean function, the dual to problem (2.3) can be stated as 
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max L • TI'y - (l/2)u'u 

X'rr -= 0 

u and Tr unrestricted. 

(2. 8) 

(2.9) 

(2.10) 

Two important remarks are in order. Constraint (2.9) establishes 

that the dual variables Tr are identical to the primal variables u 

and, therefore. hints at the· self-duality property of least squares. 

Constraint (2.10) makes explicit the characteristic orthogonality 

between the regressor matrix X and the residuals u, 

As written above. the objective function (2.8) of the dual 

problem is. obviously. a quadratic (concave) function. Notice. 

however. that by successive use of conditions (2.5). (2.7) and 

(2.6). it can be transformed into a linear function as follows: 

max L-= TI'y - (l/2)rr'(y - Xb) using (2,5) and (2.7) 

c n'y - (l/2)n'y + (l/2)TI'Xb 

= (l/2)rr'y. using (2.6) 

(2 .11) 

Thus, the dual of problem (2.3) can be restated as the linear 

program 

max TI'y 

subject to Xb + TI • y 

X'TI - 0 

"' 
""" 

of fl H ) 

·r 
o'- t.S' ) 

(2 .12) 

(2.13) 

(2.14) 

b, TI unrestricted, J.iwe. l>'tfl! ,,., 

"r>• !>fr,.., .. Is rn +- n 

Several remarks come to mind, Clearly• the constraints of (2 .12) v'r• ,,,6) s ( i , 6) , ,SD 

are equivalent to the least-squares estimator. In fact. pre-

multiplying (2.13) by X' one gets X'Xb + X'n • X'y, which in view 

Cpn_Jl-,-,,._,I\ I? A! 

.;-If Sr- /w .""" - C 6 j .fu~ 
1 ~ ,·rre lw ...... f ' ;.,£ 
+-t"s' /,It rt!,·,..., , 
J1~/t P"°''' t 
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of (2.14) corresponds to the system of least-squares normal equa-

tions. Secondly, the interpretation of (2.12) as the dual problem 

of (2.3) can be illustrated by Figure A. 

In this figure, the traditional primal problem is represented 

by the convex function u'u to be minimized. The dual problem (2.12) 

is represented by the supporting hyperplane, n'y, to be maximized. 

The objective function (2.12) can also be restated in terms of the 

Legendre transformation ¢(g) c u'u - g'b, where g a a(u'u)/ab. The 

maximization of ¢(g) subject to the condition g = O, corresponds to 

minimizing u'u. Obviously, -(a¢/ag) = b, the least-squares estimator. 

Another appealing interpretation of the objective function (2.12) is 

that of maximizing the value of sample information defined as a weighted 

combination of the sample observations, y, with weights TI representing 

the marginal valuation of the primal constraint in problem (2.3). 

Perhaps, one of the most striking features of this LP approach 

is that an unbiased estimate of the variance cr2 can be obtained as 

a simple linear combination of the sample information. In fact, 
~2 

from (2.7.i) such an unbiased estimate is cr • u'u/(n - p) = 

n'y/(n - p). 

Of course, if X is a matrix of full rank, problem (2.12) is a 

2/ LP problem with a unique optimal solution.- That solution must be the 

least-squares solution, as implied by the orthogonality condition (2.14). 

Finally, the self-duality of the least-squares problem can be made 

graphically explicit by considering (2.12), (2.13), and (2.14) as the 

primal problem. Choosing vectors u and d as the dual variables of 
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constraints (2.13) and (2.14), respectively, one obtains the following 

dual problem 

min u'y (2 .15) 

subject to X'u "" 0 

Xd + u c: y 

d, u unrestricted 

which is obviously identical to (2.12). 

3. GENERALIZED LEAST-SQUARES ESTIMATES BY LINEAR PROGRAMMING 

When the error term e of (2.1) is heteroscedastic with full 

rank covariance matrix r. the appropriate least-square procedure is 

to minimize a weighted sum of squared errors defined as (l/2)u'r-1u, 

where !:-l is the inverse of the !: matrix. If !: is not known it can 

be estimated by!: using the solution vector TI of problem (2.12). 

The second stage of the procedure can thus be formulated as the 

following linear programming problem 

subject to 

"-1 
max TI'!: y 

"-1 "' "-1 "-1 
L Xb+L TI•!: y 

"-1 
X' 1: TI "' 0 

"' 
b, n unrestricted. 

(3.1) 

It can be easily verified that the above problem corresponds to the 

generalized least-squares estimator ; • (X'r-1x)-1x•r-1y. The 

interpretation of (3.1) is entirely analogous to that of (2.12) with 

the only difference that the axes of the regressors X have been 

"-1 
rotated by the matrix 1: • 
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4. RESTRICTED LEAST-SQUARES ESTIMATES BY LINEAR PROGRAMMING 

Another interesting problem arises when the parameters of the 

linear model y -= X8 + e (now taken as homoscedastic without loss of 

generality) are subject to linear inequality restrictions such as 

R8 2_ r, where R is a k x £.full rank matrix of known coefficients, 

and r is a known vector of constraints. The primal least-squares 

problem can thus be stated as follows: 

subject to 

min (l/2)u'u 

Xb + u c: y 

Rb < r 

b, u unrestricted. 

(4.1) 

(4. 2) 

(4.3) 

The derivation of the corresponding dual problem requires to dif

ferentiate the following Lagrangean function 

L = (l/2)u'u + n'[y - Xb - u] +~'[Rb - r] (4.4) 

with respect to u, n, b and ~. where ~ is a nonnegative vector of 

Lagrange multipliers associated with constraint (4.3). The desired 

derivatives are as follows: 

a1/au c: u - n c: 0 

aL/cb - -x'n + R'~ - o 

cL/an - y - Xb - u - o 

aL/a~ •Rb - r 2_ O, W'(aL/a~) •~'Rb - ~'r • O. 

(4.5) 

(4. 6) 

(4. 7) 

(4. 8) 

Using conditions (4.5) through (4.8) in (4.4) as appropriate, the 

dual objective function of problem (4.1) can be stated as 

max (1/2)[n'y - ~'r]. (4.9) 
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Hence, the following linear programming problem can be regarded 

as the dual of (4.1): 

subject to 

max {n'y - lJJ 'r} 

Xb+n .. y 

X'n - R 1 1/J a: 0 

-Rb > - r 

~ .::_ O, b, 'IT unrestricted. 

(4.10) 

(4.11) 

(4.12) 

(4 .13) 

The objective function (4.10) can now be interpreted as maximizing 

the value of sample information, n'y, minus the value of the exoge-

nous information, lJ! 'd, or, in other words, maximizing the net value 

of sample information. Judge and Takayama, in their famous paper on 

regression analysis with inequality restrictions, formulated the same 

problem as a quadratic program and stated (p. 169): " ••• since the 

objective function (of the least-squares problem) is a quadratic form 

in B, use of the linear programming approach is precluded." To verify 

the correspondence between problem (4.10) and the least-squares estimator 

restricted by linear inequalities, it is sufficient to notice that a 

solution b, n, and~ satisfying constraints (4.11), (4.12), and (4.13) 

corresponds to the desired least-squares estimator. In fact, premulti

plying (4.11) by X' one gets 

X'y • X'Xb + X'n • X'Xb + R' ~ 

which can be solved for b to obtain 

b .. (X'X)-lX'y - (X'X)-lR'~ 

• b - (X'X)-lR'~ (4.14) 

easily recognizable as the least-squares estimator restricted by 
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linear inequalities. In this case, an unbiased estimate of cr2 is 

given by the linear function 
... 2 
a m (n'y - ~'r)/(n + k - p). 

5. CONCLUDING P.EMAR.KS 

All the estimators in the above specifications are of the least-

squares type. Except for the restricted case, when the error term, e, 

possesses a homoscedastic variance the associated estimator is best linear 

unbiased, in the sense that it is characterized by minimum variance 

among the class of linear unbiased estimators. In this case, the 

estimator possesses all the properties of a maximum likelihood 

estimator. If the variance of e is heteroscedastic, the correspond-

ing estimator is only asymptotically unbiased. These properties, of 

course, are well known. What does not appear to be equally known is 

the fact that, although least-squares procedures can be formulated 

as a self-dual mathematical programming problem, the duality of min-

imizing the sum of squared errors (with or without inequality re-

strictions on the parameters) corresponds to a LP problem whose 

geometric interpretation fits the notion of duality in the sense of 

the Legendre transformation of minimizing the sum of squared error. 

The orthogonality between regressors and the residual errors, char-

acteristic of least-squares estimators, allows the conversion of the 

Legendre transformation to a linear function interpreted as the 

supporting hyperplane to the convex set inscribed by the sums of the 

squared errors function. It is worth noticing again that this 
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approach suggests the novel feature of obtaining an unbiased esti-

2 
mate of the variance cr as a linear combination of the sample obser-

vations. Finally, the linear programming algorithm naturally implies 

a step-wise regression procedure, as at each iteration, that variable 

which most increases the value of sample information is introduced 

into the basic solution. By duality, increasing the value of infor-

mation corresponds to reducing the sum of squared residuals. 

jma 12/8/78 

l 
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FOOTNOTES 

1/ Sielken and Hartley (see reference, p. 639) state that, to 

their knowledge, their two algorithms "are the only such 

algorithms which have been proposed and proven to be unbiased." 

(Emphasis is not mine.) 

~/ If X is of rank r < p one can either use the reparametrization 

approach traditionally used in least-squares theory, or allow 

the LP program to select a suitable basis. Usually, the re

parametrization involves a subjective choice of the regressor(s) 

to be eliminated from the X matrix . This arbitrary choice may 

often imply elimination of unnecessary sample information. On 

the contrary, the LP formulation does not involve any a priori 

arbitrary choice and will eliminate regressor(s) according to 

the objective of retaining the largest amount of information. 



FIGURE A. Illustration of Duality in Least-Squares Theory 

- primal function 

n'y - dual function 

0 
b - leaet-squaree estimate b 

J 
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