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Revenue and Cost Uncertainty, Generalized Mean-Variance 
and the Linear Complementarity Problem 

In recent years a number of papers have reproposed in this Journal 

the mean-variance (E-V) approach as a means of dealing with uncertainty 

both at the firm (Wiens) and the market level (Hazell and Scandizzo). 

The same method was originally pioneered by Freund about 20 years ago and 

applied by McFarquar and Camm in more realistic contexts. 

As it is usually known, the E-V approach required the restriction of 

uncertainty to elements of the primal activities (either yields or net 

unit revenues). The papers by Wiens and Hazell and Scandizzo follow 

explicitly this tradition. On the other hand, it is generally recognized 

that an important source of uncertainty is represented by risky supplies 

of limiting inputs. This area of inquiry has received wide attention 

since the beginning of the mathematical programming era. The innumerable 

contributions associated with it can conveniently be classified into the 

two categories of stochastic programming--proposed by Tintner, Charnes and 

Cooper~and of penalty cost programming which is principally associated 

with the names of Dantzig and Madansky. 

Relevant papers about stochastic programming familiar to agricultural 

economists are those by Cocks, Maruyama, Rae, Hazell and How. They all 

proposed significant methodological improvements in dealing with farm 

planning under \lllcertainty. The apparent drawback of such approaches, 

however, is that they have not been sufficiently tested by means of 

empirical studies of some realism, possibly because the required dimen-

sionality of the associated problems is still regarded as a heavy 

computational burden. 
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In this paper, a class of hitherto unexplored stochastic programming 

structures is presented and analyzed. Although the problems admitted by 

these structures are not among the most general stochastic programs (a 

nonstochastic linear technology is postulated), they seem to be of consi-

derable interest for both methodological and computational reasons. 

Firstly, they treat stochastic limiting resources in a way analogous to 

stochastic net revenues and yields. This formulation, therefore, allows 

an entirely symmetric interpretation of quadratic programming problems 

and leads to a substantial reduction in computational effort when compared 

with other stochastic specifications. These savings are achieved because 

the proposed formulation does not require either additional constraints or 

variables over and above those involved in the traditional E-V approach 

when uncertainty is confined to only revenues and yields. 

The first stochastic structure presented in this paper is based upon 

a methodological improvement of quadratic programming that occurred in 1963. 

1/ In that year,- Cottle presented the symmetric version of quadratic pro-

gramming. Although he discussed it from a purely formal point of view 

and did not suggest any empirical use of the new specification, it is one 

of considerable empirical potential. Furthermore, another unexplored but 

flexible programming structure, called the linear complementarity problem, 

will be shown to represent farm planning under uncertain revenues and 

costs (of limiting inputs) including interaction between the two components 

of profits. 
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Risky Revenues and Costs Without Interaction 

The setting is that of a farm whose entrepreneur operates in a com-

petitive but uncertain environment. In general, uncertainty affects 

revenues in two ways: through output prices, p, and yields. To keep 

the description to its maximum of simplicity only output prices are con

sidered aleatory.~/ The sources of uncertain costs we are especially 

interested in analyzing here are the supplies of "fixed" or limiting 

inputs, s, that is of those inputs which acts as constraints on the 

production plan. As examples relevant to a farm environment, such aleatory 

supplies might be the amount of family labor determined by the number of 

days allowed by weather conditions; ground water for irrigation as deter-

mined by drought conditions; timing of custom operations as determined by 

the service availability; machine availability as determined by the 

probability of repairs and losses. Uncertain prices and supplies of 

nonlimiting inputs are dealt quite easily in the conventional E-V framework. 

With output activity levels indicated by the letter x and input (shadow) 

prices by the letter y, profits are simp.ly 'IT• p'x - s'y • d'z, where, by 

obvious correspondence, d' = [p', -s'] and z' = [x', y']; the dimensions 

of both d and z are taken to be [(n+m) xl]. Under these assumptions, onl y 

the d vector is stochastic. To adopt the E-V method it is convenient to 

assume also that the d vector is normally distributed as d~N(E(d), E), 

where r • [ :p r: J. In turn, profits will also be normally distributed 
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as n~N(E(n), z'rz) • N(E(p)'x - E(s)'y, x•r x + y•r y), since by assumption, 
p 8 

there is no interaction between output prices and input supplies. 

The dual pair of synunetric quadratic problems describing the uncertain 

problem of the firm can now be stated as follows: 

(1) 

(2) 

max {E(p)'x - (¢/2)x'r x - (¢/2)y'r y} 
p 8 

Primal 

subject to Ax - ¢r y < E(s) 
s -

y ~ O, x > 0 

min {E(s)'y + (¢/2)y'E y + (¢/2)x'r x} 
s p 

Dual 

subject to A'y + ¢E x > E(p) 
p -

y ~ O, x > o. 

The matrix A, of dimensions (mxn), represents the nonstochastic technology 

of the firm. The reason for referring to problems (1) and (2) as "sym-

metric" ought to be clear. Each relation of either problem exhibits the 

same formal structure as the corresponding dual relation. If the variance 

matrix of input supplies, r , is the null matrix, the dual pair (1) and (2) s 

reduces to the familiar asymmetric quadratic programming commonly used to 

analyze the revenue uncertainty in the conventional E-V method. 

The unusual and interesting property of the above model is that, if 

a solution exits, the vector variable y appearing in the primal problem 

represents also the vector of dual variables. To show this, it is suf-

ficient to define the Lagrangean function of problem (1) using y as the 

vector of Lagrange multipliers, and verify that the resulting Kuhn-Tucker 

conditions are indeed identical to the constraints of problems (1) and (2). 

Hence, from the following Lagrangean function 
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(3) L • E(p)'x - (¢/2)x'r x - (¢/2)y'r y + y'[E(s) + ¢E y - Ax), p s 8 

the Kuhn-Tucker conditions are y ~ O, x > 0 and 

(4) 
a1 
~ • E(p) - ¢E x - A'y < 0 dX p -

(5) x'~~ • x'E(p) - ~x'Epx - x'A'y • 0 

(7) y'~~ • y'E(s) + ¢y'Esy - y'Ax • O. 

Clearly, the systems of constraints (4) and (6) are identical to those in 

problems (2) and (1), respectively. 

The economic interpretation of problems (1) and (2) can be based 

upon the conv~ntional specification of E-V programming and on a novel 

reinterpretation of the constraints in terms of chance constrained pro

gramming .1/ According to the first scheme, the primal objective function 

requires the maximization of the firm's expected net revenue minus the risk 

premium that a risk averse entrepreneur may be willing to pay for a certain 

level of monetary receipts. The risk premium is composed of two elements 

ref lectine the double source of uncertainty: (¢/2)x'E xis the subjective 
p 

cost the entrepreneur is willing to pay as a consequence of uncertainty in 

output prices; (¢/2)y'E y is the analogous cost associated with the 
s 

uncertain input supplies. 

The primal constraints represent the teclmological possibilities of 

the firm under a risky environment. When restated as Ax < E(s) + ¢E y 
- s 

they clearly indicate the requirement that the input use, Ax, must be less 

than or equal to expected supplies E(s), modified by a term ~r y, which s 
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constitutes a marginal risk adjustment directly related to the existence 

of uncertain input supplies. In general, nothing can be affirmed regarding 

the sign of this term, implying that risky conditions and risk aversion may 

dictate either a larger or a smaller procurement of inputs. 

The performance function of the dual problem (2) can conveniently be 

viewed as the objective of an alternative entrepreneur who wishes to buy 

out the original owner. In this case, the new entrepreneur's goal is to 

minimize the total expected cost of the firm's aleatory input supplies, 

E(s)'y, as well as the amount of money that he should reimburse the 

original owner for the payment of the risk premium. 

The dual constraints of (2) are more familiar and correspond to the 

traditional E-V analysis. They can be rewritten as A'y > E(p) - ¢L x, 
- p 

indicating that an equilibrium solution is reached when the marginal 

activity cost, A'y, is greater than or equal to expected price, E(p), 

adjusted by a marginal risk premium due to uncertain output prices. 

The stochastic programming interpretation of problems (1) and (2) 

further supports the use of these structures for dealing with uncertain 

economic problems. In particular, it fully justifies the adoption of 

expected supplies E(s) and the presence of the covariance matrix r of 
s 

input supplies in the primal constraints. Suppose in fact that the entre-

preneur's maximization of (1) is subject to the following chance constraint 

(8) Prob (y'Ax - y's ~ O) ~a, 

where the input supplies s are random variables distributed as s-N(E(s), r ). 
s 

The probability statement indicates that the imputed cost of factor use, 

y'Ax, must be less than or equal to the inputed value of available resources 
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with at least an a probability. In the terminology of stochastic program-

ming, the probability a is referred to as a confidence level, while its 

counterpart (1 - a) is called risk level. It is postulated that the 

entrepreneur, confronted by a _risky environment, chooses risk levels 

acceptable to him. In other words, the risk levels are related to his 

disliking (or preference) for risk: the smaller (1 - a), the smaller 

the propensity for risk-taking of the entrepreneur. From the theory of 

chance constrained programming (Vajda, p. 78) it can be shown t ,hat 

(9) a • Prob [y'Ax - s'y ~ 0) 

=Prob [(-s'x + E(s)'y)/(y'E y) 112 < T ) 
6 - s 

=Prob [E(s)'y - T (y'E y) 1/ 2 < s'y). 
s 6 -

The choice of T is made to satisfy (1 - a) • (l/ITT) 
s 

l 
s 2 

! exp[-(l/2)w ]dw 

where w is a standardized normal variate. When a > 1/2, T < O. Quoting 
s 

Vajda [p. 80), "if y'Ax is not larger than E(s)'y - T
6

(y'Esy) 1/ 2 , then 

it is not larger than any of those s'y which are not smaller than 

E(s)'y - T (y'E y) 112 , and the probability of such s'y is a. Hence, the 
s s 

constraint Prob [y'Ax - s'y ~ O] ~a is equivalent to the nonstochastic 

constraint 

(10) y'Ax ~ E(s)'y - T (y'E y)l/2 ." 
s s 

The relationship between (10) and the primal constraints of problem (1) 

is established via the Kuhn-Tucker condition associated with (1) and given 

in (7). 
1/2 Hence, ~ < -T /(y'E y) • 

- 8 s 
If the E-V problem (1) is solved 

first, the probability a of the associated chance constrained program 

can be derived by computing the value of T as T • -~(y'E y) 1/ 2 and 
s 8 s 

then reading a from a table of the standardized normal variate. Notice 
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1/2 that since (y'l: y) and ~ are both positive (for a risk averse entre-
s 

preneur), the parameter T is negative and the probability a of satisfying s 

constraint (8) is greater than .5. 

It should be emphasized that the stochastic specification is offered 

here as a further justification for the structure of constraints (1) 

rather than as a computational framework. In fact, solving the chance 

constrained problem directly requires the solution of the nonlinear 

constraint (10), a task not easily performed. Here, it is suggested to 

make explicit the relationship between the E-V approach and stochastic 

programming by first solving problem (1) for a given coefficient of risk 

aversion, ~. and then coniputing the risk level (1 - a) compatible with such 

a risk aversion. If this is done, the input use, Ax, is guaranteed to be 

feasible for all those input supply outcomes, s, that will be greater 

than or equal to E(s) + ¢r y. Therefore, the economic-teclmological 
s 

interpretation of the primal constraints (1) can be summarized as follows: 

an entrepreneur with constant risk aversion, ¢, who faces uncertain supplies 

of limiting inputs (normally distributed), may choose to replace the 

unknown constraints (Ax _::. random s) with the structure Ax ~ E(s) + ~l: y," 
s 

requiring the knowledge of the first two moments of the probability dis-

tributions of the input supplies. This problem possesses the stochastic 

programming interpretation given above. 

By analogy, a chance constrained prograrmning representation is readily 

available also for the dual constraints of the E-V problem. The stochastic 

specification corresponding to constraints (2) is thus 

(11) Prob (p'x - y'Ax ~ O) ~ 1 - B 
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where the output prices, p, are distributed as p-N[E(p),r ]. The economic 
p 

interpretation is that an entrepreneur would accept events where total 

revenue, p'x, may be less than or equal to total imputed cost, y'Ax, with 

a probability (1 - B), or smaller. Repeating the logical process outlined 

above, choose T such that 
p 

(12) 1 - B • Prob[(p'x - E(p)'x)/(x'E x) 1/ 2 < T) 
p - p 

• Prob[p'x < E(p)'x + T (x'E x) 1/ 2 ]. 
- p p 

Therefore, the stochastic constraint Prob(p'x ~ y'Ax) < (1 - B) is equiv-

alent to the nonstochastic constraint 

(13) 
1/2 y'Ax > E(p)'x + T (x'r x) • 

- p p 

Again, the relationship between (12) and constraint (2) of the E-V problem 

is obtained via the complementary slackness condition of problem (1) given 

by (5). It follows that~< - T /(x'r x) 112 • 
p p 

Solving the Generalized E-V Problem 

The solution of problem (1) may be attempted with standard QP packages 

based, for example, on the Frank-Wolf algorithm, but this procedure is 

inefficient because it requires treating the dual variables y as primal 

variables. The size of the problem, then, becomes [(2m+n)x(2m+n)] with 

the introduction of auxiliary dual variables, say w, which in the end, 

will turn out to be equal to y. 

Fortunately, a more efficient algorithm developed by Lemke is available. 

This algorithm was proposed for solving the linear complementarity problem 

(LCP). Hence, to use this solution procedure it is necessary to restate 

problem (1) in the form of the LCP. 
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The linear complementarity problem is defined as follows: find vector 

z such that 

(14) q - Mz ~ O, z > 0 

and 

(15) z'(q - Mz) • O, 

where Mis a square matrix of dimensions [(m+n)x(m+n)] and q is any real 

vector, qcRm+n. For positive semidefinite matrices M, Lemke's algorithm 

guarantees to find a solution (if it exists) of the LCP. 

To transform problem (1) into the structure of (14) and (15) it is 

sufficient to notice that the Kuhn-Tucker conditions associated with it 

are necessary and sufficient for a global maximum since the covariance 

matrices L and L are positive semidefinite. Hence, the K-T conditions 
p s 

(4) through (7) can be rearranged into the structure of (14) and (15) by 

making the following correspondence: 

[

E(p) J 
q .. -E(s) , [

ct>E 
M • p 

-A 
A']. 

cpr 
s 

The matrix M is positive semidefinite for any matrix A. 

Constant Risk Aversion Utility Functions and the Generalized E-V Approach 

The traditional E-V model, as proposed originally by Freund, was 

associated with a class of utility functions exhibiting constant absolute 

risk aversion. The generalized E-V model presented here is related to 

the same class, via the expected utility hypothesis. 

Following Freund, the entrepreneur is assigned a concave utility 

function conveniently specified as 
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(16) U(n) • 1 - exp(-¢ir), ~ > 0 

where ~ is a subjective and constant coefficient of risk aversion and n 

represents profits as defined above. The entrepreneur is assumed to choose 

those levels of inputs and outputs which maximize the expected utility of 

his profits; that is 

(17) EU(n) • 1 - exp(-~[E(n) - ~ VAR(n)]) 

with E indicating the expectation operator. 

Maximizing this monotonically increasing function is equivalent to 

finding z'•(x',y') 2:_ 0 such that 

(18) max {E(n) - ~ VAR(n)} •max {E(d)'z - ! z'Ez} 
2 

s max {E(p)'x - E(s)'y - 1 x'E x - 1 y'r y} 
2 p 2 s 

• max {q'z - (1/2) z'Mz}. 

Problem (18) is equivalent to problem (14) and (15) which, in turn, 

is equivalent to problem (1). This proposition is easily demonstrated 

by indicating that the K-T conditions of problem (18), taken in the form 

of the last expression, are precisely relations (14) and (15). Hence, 

the dual of 

(19) 

problem (18) is 

min {1 x•r x + ! y'r y} 
2 p 2 s 

subject to (14). The objective function (19) is naturally interpreted as 

the minimization of the risk premium the risk averse entrepreneur would be 

willing to pay for the certainty of being guaranteed a level of satisfaction 

equivalent to the maximum utility of expected profits. In other words, 

the quantity (19) is the difference between E(U(n*)) and U(E(n*)) where 

n* is the value of profits which maximizes (18) subject to z > O. 



12 

A Digression on the Coefficient of Risk Aversion 

The only characterization of the parameter ~ made so far is that, for a 

risk averse entrepreneur, it is a positive constant and represents his 

subjective evaluation of the importance of uncertainty. Freund pointed 

to the difficulty of obtaining adequate estimates of this coefficient, 

simply because of its subjective nature. In his empirical work he adopted 

a value of ~ equal to 1/1250, rushing to advise that "any chosen value is 

exceedingly difficult to defend" (p. 258). This opinion seems overly 

pessimistic. Recently, Wiens has proposed than an average estimate of the 

same coefficient may be obtained by using the dual constraints of the E-V 

method in association with market as well as actual farm information. He 

noticed that for those activities operated at positive levels the cor-

responding constraints of type (4) are binding and, therefore, can be 

solved for the ~ coefficient as 

where aj is the jth activity (assumed to be operated at positive level), 

E(pj) is the jth expected output price, and rpj is the jth row of the 

variance matrix r ; r is the vector of market prices for the limiting 
p 

inputs and "f is the vector of actual levels of activities operated by 

the entrepreneur. The subjective information derived from the entre-

preneur is entirely ncorporated in the vector ~ of personal choices of 

activity levels carried out in the uncertain environment as perceived by 

him. 

The suggestion of Wiens has some merit if the information about the 

individual activity levels is available; but it requires also that the 
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estimated ~ not be used in conjunction with the data it was estimated 

from, as Wiens did. To begin with, his exclusive reliance on the dual 

constraints for the estimation of the risk aversion coefficient is in-

·complete. The same coefficient can be estimated from the primal constraints 

(2) corresponding to positive shadow prices of the limiting inputs. In 

this case, the following relation is obtained: 

(21) ~F=Cai~ - E(si)J/rsir, 

where a! is the ith row of the teclmological matrix A, si is the ith input 

supply, rsi is the ith row of the variance matrix rs; r and ~ are the 

same as in {20). This second, or better, primal way to estimate¢, either 

may reinforce the consistency of the estimates of ¢ obtained from (20) or 

it may generate an embarrassment of choice. Obviously, this is an empirical 

dilemma. In any event, the two relations (20) and (21) taken together 

constitute a rather stringent test of the consistency of the risk averse 

entrepreneur. They contain, in fact, all the information necessary to make 

an optimal decision. If the estimates of ¢ obtained from them are con-

sistent (that is, are almost the same), it should be concluded that the 

entrepreneur's actual choices of output levels are optimal and no need 

exists to perform further optimizations. In other words, the utilization 

of the estimated ¢ in the quadratic programming model (in conjunction with 

the same data used to compute ¢) merely corresponds to a tautological 

4/ exercise.- The assumption of constancy of ¢ implies that a meaningful 

use of it requires a variation in either the technological or economic 

environment. 
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The reinterpretation of the E-V model in terms of chance constrained 

programming offers an alternative~and perhaps, more interesting~way to 

determine the coefficient of risk aversion ¢. Such measures would naturally 

be defined as 

and 

¢F • - a /(x.!.r x_)1/2 F t· p Y , 

where r and ~ have the same meaning as above, while TF and eF are para

meters chosen to correspond to the subjective levels of probabilities 

a and B set by the firm's entrepreneur as a requirement for the fulfillment 

of constraints (8) and (11), respectively. Notice that in the above 

measures, the problem of multiple estimates of ¢ encountered in Wiens' 

method is avoided. Furthermore, the direct implications. of using a linear 

technology (usually defined by the researcher rather than by the entrepreneur) 

are also eliminated. The parameters TF and eF replace the specification of 

the technology as an information tradeoff. Thus, it may be easier to elicit 

information from the entrepreneur concerning acceptable (to him) risk 

levels (1 - a) and (1 - S), rather than either a detailed description of his 

input-output technology or a direct estimate of ¢. 

Risky Revenues and Costs with Interaction 

The assumption of zero covariance between revenues and costs was 

convenient for maintaining a certain degree of simplicity. It is not, 

however, empirically satisfactory. If it had to be maintained because of 

the structure of either the symmetric QP or of the LC problem, it would 
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almost nullify the significance of both programming frameworks. All 

published papers dealing with either market or farm planning in an E-V 

context have always glossed over the subject. This is a consequence of the 

structure of traditional E-V analysis and asymmetric QP problem. Uncertain 

supplies of limiting inputs will presumably interact with aleatory yields, 

rendering farm decisions even more challenging. In this section, therefore, 

the environmental uncertainty is redefined to include nonzero covariances 

between revenues and costs. Specifically, the covariances involve output 

prices and input quantities. Thus, the relevant variance matrix is now 

specified as ! c [_::p -::•], where, as before p and s are output price 

and input supply subscripts, respectively. The procedure to incorporate the 

nonzero covariance matrix r into the generalized E-V method is slightly ps 

different from that presented in the previous sections. It is convenient 

to consider the expected utility model first. Then, the bilinear form 

¢x'r y, involving the covariance matrix appears in both primal amd dual ps 

objective functions corresponding to (18) and (19) above, as an additional 

component of risk premium. The crucial aspect of this more general des-

cription of uncertain economic environments is the way the new matrix 

r enters the primal and dual constraints. The relevant primal problem 
ps 

(analogous to (18) above) is now to find z > 0 such that 

(22) max [E(n) - ! VAR(n)] •max {E(d)'z - ! z'rz} 

•max {E(p)'x - E(s)'y - 1 x•r x - 1y•r y + ¢x'r y} 2 p 2 s ps , 

•max {q'z - (l/2)z'Mz} 
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4>!: A'-4>!: p ps 
where now the M matrix is defined as M • • Relation 

-A-<t>E 4>!: sp s 

(22) remains a concave function because z'Ez (or, equivalently, z'Mz) is 

a positive semidefinite quadratic form. The K-T conditions associated 

with this specification are again given by (14) and (15) or, more 

explicitly: x ~ O, y ~ O 

(23) Ax + 4>!: x - 4>!: y < E(s) sp s -

(24) A'y - ¢!: y + 4>!: x > E(p) 
ps P -

(25) y' [Ax + ¢!: x - ¢!: y - E(S)] • 0 sp s 

(26) x'[A'y - ¢!: y + ¢!: x - E(p)] • O. ps p 

The difference between this set of restrictions and those presented in (4) 

through (7) is that the covariance term E appears explicitly either to 
sp 

impose further restrictions on the input use, or to relax their binding 

availabilities, depending upon the sign of the term E x. In a perhaps 
sp 

more illustrative expression, constraints (23) may be restated as 

Ax + ¢!: x < E(s) + ¢!: y. The left hand side indicates that the input 
sp - s 

use Ax, must now be properly adjusted to account for the interaction 

between output prices and input quantities. It should be transparent 

that, in general, the level of output, x, admissable by the system of 

constraints will be either larger or smaller than that corresponding to 

E • O, depending upon the sign of E x. In a similar restatement of 
ps sp 

constraints (24), A'y - ¢!: y > E(p) - ¢!: x, the marginal activity cost 
ps - p 

must be adjusted by the marginal risk factor 4>!: y, depending exclusively ps 

upon the nonnegligible interrelation between input supplies and output 

prices. The right hand side is, again, unchanged. 
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The dual to problem (22) is easily obtained by using the K-T conditions 

associated with it. It can easily be verified that this calculation cor-

responds to 

(27) min {(~/2)x'r x + (~/2)y'r y - ~x'r y} p s ps 

subject to (23) and (24), together with x ~ 0, y ~ O. As before, (27) is 

to be interpreted as the minimization of the risk premium corresponding to 

this more complex environment. 

The check of consistency of the risk averse entrepreneur according to 

Wiens' suggestion becomes even more formidable than in the previous case. 

As before, for binding primal constraints and positive output activity 

levels, it is possible to compute the risk aversion coefficient of the 

individual entrepreneur in two quite different but strictly related ways: 

from (23) and the ith (assumed) binding constraint the following is obtained 

Similarly, from (24) and the jth (assumed) positive activity level: 

where r and 1r have the meaning already established. Caution ought to be 

exercised in the use and interpretation of these relations. Failure to 

obtain close values of ~ from the two formulas should not be immediately 

considered as an inconsistency of the entrepreneur; it may be due to the 

particular technological matrix, A, chosen by the researcher. 

Notice that introduction of nonzero covariances between input quanti-

ties and output prices prevents the restatement of problem (22) in the 

form of symmetric quadratic .programming. It does not prevent, however, its 
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transformation into a corresponding linear complementarity problem. The 

matrix M remains a positive semidefinite matrix since z'Mz • ~z'tz 2: O, 

for any z. Hence, Lemke's algorithm is guaranteed to find a solution 

to the LC problem, if one exists. 

Empirical Issues and Conclusions 

The analysis presented above was focused entirely on methodological 

issues. The empirical implementation of any of the models, however, was 

always kept in mind. Indeed, this is the main reason for dealing with 

uncertain environments within an E-V framework rather than with more 

flexible but more demanding approaches. The inevitable question, there

fore, looms on the horizon: how can the variance of input supplies be 

estimated? One would feel tempted to reply: in the same way the variances 

of either output prices or yields are computed. Upon further reflection, 

though, it must be admitted that, typically, data collectors pay a dis

proportionately large attention to the revenue side of the economy with 

the cost aspect well underdeveloped. The question is, therefore, legitimate 

although only a few hints can be offered to alleviate the informational 

imbalance. It may be hoped that once models of cost uncertainty will be 

developed in large numbers, the need for accurate and suitable cost informa

tion will become self evident also to the data gathering bureaucracies. In 

the meantime, one must use ingenious devices such as Boisvert and Jenson's 

idea for estimating the variance of family labor on small Minnesota farms. 

They suggest that the expected field days of the farm family and their 

variance be computed from records of monthly weather information. Another 

suggestion deals with water. With drought having affected various parts 
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of the country in recent years, an analogous method can be perfected for 

estimating means and variances of available water supplies. At the aggregate 

level~not· discussed in this note~other appropriate suggestions can be 

formulated for the variances of, say, energy, labor supply, financial 

capital and so on. One thing ought to be emphasized. The initial lack 

of empirical procedures cannot deter any researcher from developing and 

presenting unusual but more realistic models. 

The great surprise of this development is the realization that either 

quadratic programming or the linear complementarity problems are very 

suitable structures to deal with rather complex problems. Their flexibility 

to handle a variety of meaningful economic problems has been barely tapped 

by the treatment presented in this note. I would expect that many other 

and more meaningful uses of both symmetric QP and LC problems are awaiting 

to be dusted from the shelves of intellectual neglect. 

gg 
9/18/78 
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FOOTNOTES 

'};./ During the sixties, Cottle presented the same symmetric QP 

specification in at least five different papers. 

];_/ One simple way to include stochastic yields into the framework 

was suggested by Hazell and Scandizzo. 

1_/ At first sight it might seem natural to interpret the primal 

problem in terms of penalty cost programming, but this viewpoint is mis-

leading for several reasons. First of all, penalty cost programming 

presupposes that decisions in the face of uncertainty are made in two 

stages: the first decision occurs prior to the eventuating of the uncer-

tain outcome (input supplies) when a level x, of activities x is chosen; 

the second decision, concerning an adjustment between the realized input 

supplies, s, and the prior decision, AX, is perl'lissible only at a cost. 

This structure requires the equality of primal constraints and, eventually, 

the knowledge of the realized input supplies, s. None of these conditions 

are present in the above formulation where all decisions are made without 

the exact knowledge of the eventuating outcome. 

4/ Wiens concludes (p. 633) " ••• the risk aversion model accords 

quite well with the average behavior of sampled peasants. Primal solutions 

in general call for full diversification among the three crops in proportions 

close to those observed." This statement represents a clear illustration 

of the tautological use of the estimated cp. The discrepancy between actual 

and optimal activity allocations reported by Wiens is due, on one level, 

to the use of only the dual constraints in the estimation of cp (in other 

words, he did not utilize the available information on input supply E(s); 

on the other, to the averaging performed on the sample information. 
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