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ABSTRACT

Consistent Aggregation of Linear Complementarity Problems
by
Quirino Paris

Aggregating linear complementarity problems under a general definition
of constrained consistency leads to the possibility of consistent aggrega-
tion of linear and quadratic programming models, Under this formulation,
consistent aggregation of dual variables 1is also achieved. Furthermore,
the existence of multiple sets of aggregation operators is illustrated
with a numerical example. Such multiple operators allow considerable

flexibility of the microstructures admitting consistent aggregation.
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Consistent Aggregation of Linear Complementarity Problems

Constrained consistency—rather than total consistency--was suggested
in this journal by Guccione and Oguchi [2] as the proper framework to analyze
the aggregation of linear programs. They dealt, however, with a very special
case of constrained consistency and, furthermore, they did not consider the
aggregation of dual wvariables.

In this note we discuss the aggregation of linear complementarity (LC)
problems under a definition of constrained consistency which is more general
than that suggested in [2]. Yet, it is empirically applicable, as demon~
strated by a numerical example. We achieve the following results: (a)
aggregation conditions are extended to cover any LP problem, symmetric and
asymmetric quadratic programs of any structure, and two-person-non—zero-sum
games; (b) perfect aggregation under constrained consistency includes that
of dual variébles in all the models admitted by the LC problem; (c) further
restrictions on the structure of the LC problem allow the interpretation of
the aggregation conditions within a variety of empirical contexts; (d) a

numerical example illustrates the feasibility (in principle) of the approach.

Specification of the Aggregation Problem

The micro linear complementarity problem to be aggregated is defined
as follows: find vectors z and w such that
-q = =y + Mz, w>0, z >0, (1)
and
z'w = 0, (2)
where q is a [(mtn)x1l] vector of known coefficients and M is a given

[(@mn)x(min) ] positive semidefinite matrix.



Instead of solving problem (1) and (2), it is desired to consider a
problem of the same form but of smaller dimensions such as: find vectors

z and w_ which solve
a a

Ty T M * Haza' ¥a 2.0 Za 20 (3)
and
zw =0, (4)

where q, is a [(h+k)x1l] arbitrary vector of known coefficients, M; is a giv-

en [(h+k)x(h+k)] positive semidefinite matrix and, of course (h+k) < (m+n).
The aggregation problem relating (1) and (2) to (3) and (4)--as indi-

cated by Guccione and Oguchi [2]--must be considered under some condition

of constrained consistency. This notion was originally introduced by

Ijiri [4] in his masterful survey of aggregation theory. It should be clear

that an appropriate defintion of constrained consistency will allow to

achieve the solution of the aggregation problem under empirically flexible

structures. Thus, our choice is the following: the domain of the micro-

variables q, w and z is restricted by linear rules such that

q = Uq, (5)
wk = Uw: (6)
z* = Tz: (7)

where U and T are nonnegative linear operators of full rank and of dimensions
[ (m#n)x(h+k) ]; the starred elements are solutions of the respective LC pro-
blems. Under this specification, any arbitrary choice of the vector T is
admitted. This, in turn, will generate a wide spectrum of solutions

(z:, w:) of the aggregate LC problem (3) and (4). The stringency of the

restrictions on the domains of themicrovariables q, w and z, imposed by
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the linear rules specified above depend upon the structure of operators
T and U. Guccione and Oguchi chose to work with very simplified operators
requiring a proportionality relation between the micro and the macroelements
of their LP problems. In this paper, this proportionality relation is un-
necessary.

It is now possible to state the perfect aggregation problem under
constrained consistency: for any set of microvariables (q, w*, z*) satisfy-

ing (5), (6) and (7), the following relations must hold

q, = T'q (8)
w: = T'w* (9)
£} = U'z*, (10)

Therefore, the conditions imposed upon the structure of problems [(1), (2)]
and [(3), (4)] for achieving exact aggregation as defined above are given
in the following
Theorem. Perfect aggregation of LC problems under constrained consistency
is obtained if and only if
M'T = UM (11)
T'U=1 (12)
where I is an identity matrix.
~ Proof. (Necessity.) Premultiplying (1) by T' and substituting (10) into
(3) we get
T'(=q) + T'w = T'Mz (13)

| = - ]
9, -+ v, HhU e (14)

Hence, in view of (8) and (9),

2'M'T = z'UH; (15)

l S
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and (11) follows because (15) must hold for any z satisfying (1) and (2)

under parametric variation of q as defined by (5) (recall that 9 is arbi-

trary). Condition (12) is easily obtained by premultiplying (5) and (7)
by T' and comparing the result to (8) and (10), respectively.
(Sufficiency.) If (11) holds, any solution (z, w) of the expanded
LC problem (1) and (2) which also satisfies (5), (6) and (7), produces a
solution (za, “5) for the aggregate problem (3) and (4). 1In fact, assume

that (z*, w*) represents a solution to (1) and (2). Then, z: > 0 and
w;'z 0, since T and U are nonnegative operators, and

MUY = %! ' = k"™ M'"T = (=" *1 [e—— ]
z} HA z UHa z*'M'T = (-q' + w*")T q; + w; (16)

which establishes the feasibility of z; and w:. To show that they con-
stitute also a complementary solution satisfying (4) it is sufficient to
recall that (z*, w*) is a complementary solution (by assumption) and

z;'w; = zk"UT'w* = z&'yx = Q (17)

because UT'w* = Uw: = w*, according to (6) and (9). Q.E.D.

Implications

It is interesting to note that the essential role of constrained
consistency is required only for proving the complementarity of the ag-
gregate solution in the sufficiency part of the theorem. For problems
such as Leontief input-output analysis, where complementarity is trivially
satisfied, it is not necessary (Hatanaka [3]) to invoke any form of con-
strained consistency to achieve the solution of the aggregation problem.

Another implication, especially important for empirical applicatioms,
concerns the multiplicity of the aggregation operators T and U. Hence,
any other pair of matrices (T*, U*) such that (6), (7), (11) and (12) are

satisfied, constitutes an alternative pair of aggregation operators.
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The LC problem encompasses several mathematical programming struc-
tures. It is, thus, of interest to analyze the aggregation conditions
more explicitly. To begin, let us consider the dual pair of symmetric

quadratic programming problems formulated by Cottle [1]:

max {c'x - x'Qx -y'Ey} (18)
subject to Ax = 2Ey < b Primal
and =>0;, 920

e min {b'y + x'Qx + y'Ey} (19)
subject to A'y + 2Qx > ¢ Dual
and x>0,y2>0

where Q and E are known positive semidefinite symmetric matrices of order
n and m, respectively; ¢ and b are given vectors of coefficients which admit
parametric variations. It is easy to show that this specification may
be stated as a LC problem when the following correspondence is established
b y 2E  =-A v
q= s Z = s M = s W=
-c x Al 2Q u
where v and u are vectors of slack variables associated with the primal and
dual constraints, respectively. For this symmetric quadratic programming
structure the aggregation operators T and U are specified as block-diagonal
matrices
) T= » U= . (20)
& 0O D 0 G

The submatrices W and P are of dimensions (mxh), while D and G are of

dimensions (nxk), h < m, k < n. The aggregation condition (11) now becomes

— - -

2E A W

|
- |
o

2E A
a

- (21)

-A' 29| |o | |0 ¢|[-A" 29
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or, equivalently
EW = PE_ (22)
A'W = GA; (23)
AD = PA_ (24)
QD = GQa- (25)

The matrices Ea and Qa are symmetric and positive semidefinite of order

h and k, respectively, and belong to the aggregate symmetric quadratic pro-
gramming problem. The matrix Ah is of dimensions (hxk). The aggregation

condition (12) corresponds to
W'P = Ih (26)
D'G = I (27)

where Ih and Ik are identity matrices of order h and k, respectively.

Notice that if E = 0 and Ea = (0, condition (22) vanishes and the remaining

relations constitute the conditions for aggregating the traditional asymmetric

quadratic programming problem. Furthermore, if also Q = 0 and Qa = 0, rela-
tion (25) vanishes and the residual relations express the requirements for
aggregating linear programs,

Further insight into the structure of conditions (22) through (25) is
achieved, if by using (26) and (27) as needed, we restate the aggregation

conditions as

W'EW = Ea (28)
D'A'W = A; (29)
W'AD = A (30)
D'QD = Q.. (31)




This set of relations provides the fundamental guidelines for construct-

ing consistent aggregate structures. In order to compare the generality of
these conditions with those suggested by Guccione and Oguchi notice that, for

them, E = 0, Ea =0, Q =0, Qa = 0; the operators D and W are composed of

identity submatrices stacked atop one another, and the matrix A is block
diagonal with identical submatrices along the diagonal. None of these
restrictions are implied by the above development. Finally, motice that

exact aggregation of dual variables in quadratic programs is also achieved.

An Example of Exact Agpregation Under Constrained Consistency

Tables 1 and 2 present a numerical illustration of the consistent
aggregation outlined in this paper. The example hypothesizes a block
diagonal matrix of the microtechnology A with unequal submatrices along the
diagonal. We assume that the two submatrices A1 and Az represent the tech-
nologies of two firms (regions, sectors) of different dimensions. The first
activity of each firm is assumed to correspond to a homogeneous commodity
whose quantities are, therefore, aggregated in terms of their original
units (the weights of the G matrix are unitary). The first reSOurces-(land)
of each firm are imperfectly homogeneous but it is desirable to aggregate
them into a single measure. Hence, it is necessary to transform the original
measures of the resources into efficiency units. For this reason, the non-
zero weights of the W matrix are not unitary. The programming problems
considered in this example are asymmetric quadratic programs with different
matrices Q1 and Q2 corresponding to the quadratic forms in the objective
functions of the two firms.

It is also of interest to show the existence of multiple sets of aggre-
gation operators, as stated above. The structure of such alternative

matrices can be judiciously chosen for the purpose of allowing greater




TABLE 1:

Aggregation of Quadratic Programs

Under Constrained Consistency

Aggregate Firm 1 Firm 2
A}, k=a,l1,2 2 3/2 49/36 49/10 12/5
3 4 — 21/5 16/5
- I 359/3600 5/16 21/160
Wmber Y Feled . )
70 10 - 21/160 1/10
c,» k=a,1,2 2 31/12 1/24 111/32 31/12
b, k=a,l1,2 5 9 13/12 254/35 36/5
1 x¥, k=a,1,2 .4875 1.8844 .2089 .2787 1.8842
v, k=a,l,2 0.0000 .5333 .0000 .0000 .6667
zi=ri, k=a,l1l,2 5.3215 .0044 5.3171
c,» k=a,1,2 31/9 31/12 217/216 1519/288 31/12
b,s k=a,1,2 7 12 5/3 352/35 48/5
2 x¥, k=a,1,2 2.8571 .8571  1.2245 1.6326 .8571
v}, k=a,1,2 1.3036 .0070 .5587 .8147 .0087
z¥=r¥, k=a,1,2 10.6322 1.0806 9.5516
c,» k=a,1,2 2 31/12 1/24 111/32 31/12
b, k=a,1,2 607/28 55 59/84 1676/49 44
3 x¢, k=a,1,2 .4866  12.5530 .2089 .2783 12.5519
v}, k=a,l1,2 .0000 .0000 .0000 .0000 .0000
zx=r* k=a,l,2 16.6993 .0044 16.6949

k "k’
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o TABLE 2: Consistent Aggregation Operators
Aggregation Operators Firm 1 Firm 2
3/7 0 5/8 0
W, k=1,2
—_— -— 0 5/4
3/7 0 4/7 0
2 Dk’ k=1,2
-— -— 0 1
2/3 -1/2 5/4 3/8
Rk’ k=1,2
— - 0 :
2r3 -1/4 8/7 6/35
Sk’ k=1,2
-— - 0 4/5
1 0 1 0
G, , k=1,2
% - —— 0 1
1344/1801 0 1960/1801 0
Ps k=1,2 —_— —-— 0 4/5
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flexibility of the microtechnologies. For example, we hypothesize that the

S 0
matrix U* = is an alternative aggregation operator fulfilling the
0 R

same role as the matrix U previously defined. To be such an operator, the

submatrices S and R must satisfy conditions (21) or, more explicitly

BV = SE_ (32)
) A'W = RA! (33)
AD = SA_ (34)
QD = RQ, (35)

and condition (12), or

w's = Ih (36)

D'R=T. (37)
Notice that if relations (32) and (34) are premultiplied by W' and relations
(33) and (35) by D, the same conditions (28) through (31) are obtained.
Table 2 presents a set of aggregation operators which satisfy conditions
(32) = (37). Table 1 exhibits the structural elements and optimal primal and
dual solutions of the micro and macroproblems relative to three different
sets of b and c vectors. These values were selected to represent the fol-
lowing cases: (a) boundary solution for firm 2 and interior solution for
firm 1; (b) boundary solution for both firms; (c) interior solution for both

firms. It can be verified that the aggregation is exact in all three cases

for both primal and dual variables.

8g
4/5/18
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