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PRODUCTION FUNCTION ANALYSIS OF A
FERTILIZER TRIAL ON BARLEY *

Dr. W. O. McCARTHY
Senior Lecturer in Agricultural Economics, University of Queensland

1. Introduction

Production functions of one type or another have been well
explored and widely discussed, no less in the literature of agricultural
economics than elsewhere. A particularly fruitful area of application in
farm economics is the quantification of the relationship between fertilizer
inputs and crop output. In this context currently in Australia and New
Zecaland, more than passing interest is being devoted to problems of
experimental design and subsequent interpretation of results.! Another
problem area relates to the choice of the most appropriate type of
function to use. This note examines possible relevant functions for
crop fertilization experiments. Subsequently, a set of empirical data are
fitted and the derivation of the more elementary economic optima are
demonstrated.

II. Selection of a Function

What agreement there is in the literature on fertilizer production
functions® suggests that the form of function should be some com-
promise between what is biologically compatible and what is statistically
sound. Less emphasis has been placed on the ease and reliability with
which economically meaningful quantities can be derived from the
function. A practical consideration which must be taken into account
is that time and research funds are not limitless. This is true for
researchers working in a non-academic environment and for some
university personnel. It may be desirable for work to be pressed
forward in seeking an “ideal” function characterizing response of plants
to fertilizer. The fact remains that guidance must be given now to
extension workers and others.

Fortunately, the choice of a suitable form of function is not as

* The author acknowledges the ready co-operation of P, B. Lynch, Department of
Agriculture, Wellington, N.Z., for his careful choice of suitable experimental data.

*See, for example, P, J, Skerman and A. G. Lloyd, “Agricultural Experiments and
their Economic Significance,” Aust. Jour. Ag. Econ., 2 :24-44, 1958.

?Heady, E. O., “Organization Activities and Criteria in Obtaining and Fitting
Technical Production Functions,” Jour. Farm Econ., 39 : 360-369, 1957,

Mason, D. D., “Functional Models and Experimental Designs for Characterizing
Response Curves and Surfaces.” In Baum, E. L., et al.,, Methodological Procedures in
the Economic Analysis of Fertilizer Use Dala, pp. 76-98, Iowa State College Press, 1956.
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difficult as it might appear. The more generally acceptable® types of
functions fall into three groups: (1) exponentials; (2) the power
function (Cobb-Douglas); and (3) polynomials.

(1) Exponentials

The most widely known exponential is the Mitscherlich.*
—c(x+b)
Y = A [1=10" 0 (1)

where Y is product output, A is the theoretical maximum yield, X is
fertilizer input, ¢ represents the efficiency of the fertilizer, and b
measures the amount of fertilizer already present in the soil in control
plots. Spillman® expressed the exponential relationship in another
form—

X

) Y = M —aR (2)

where M represents the limiting or maximum yield, a is the theoretical
maximum increase in yield and R is the ratio by which successive
increments are added to total production. For both functions, the
total product curve is regarded as asymptotic to some maximum yield.
This assumption is not reconcilable with observed phenomena of
negative marginal products found in some fertilizer experiments.
Ratios of successive increments to total yield, per unit increase in
fertilizer input, are assumed equal. Again, this may be true only within
a narrow range of the total product curve. The assumption that the
elasticity of response is less than 1 over all ranges of inputs may not
be realistic at lower rates of fertilization, especially in the case of ap
impoverished soil.

There are also statistical problems associated with the use of
exponential forms. Non-linear parameters are involved and hence trans-
formations must be made before simplified least squares techniques
can be used. While Hartley® and Pimentel-Gomes™ have outlined
methods for reducing the computational burden involved, adequate
goodness of fit tests are still lacking.

Therefore, it appears that for multifactorial fertilizer trials the use of
exponential forms involves not only questionable assumptions con-
cerning plant response, but also places limitations on statistical tests of
significance.

(2) The Power Function (Cobb-Douglas)®
b
Y = aX)Xo . s (3)

Y equals product output, X; ... X, are factor inputs and a, b.....n
are parameters.

* Ruling out such special cases as the Bray modification of the Mitscherlich, Janisch’s

complex exponential on Briggs’ hyperbolic form. .
* I\I/’[itscherlich, E. A., Die Besiimmung des Dungerbedurfnisses des Bodens. P.

Parey, Berlin, 1930. . . e .
S);)illman, W. J., “Exponential Yield Curves in Fertilizer Experiments,” U.5.D.A.

Tech. Bull 348, 1933, .
« lzlarlley, H. ©O. “The Estimation of Non-Linear Parameters by ‘Internal Least

S " Biometrika, 35 :32-45, 1948. o .
qu ?’Egisentel—l((}):)nmcs, F., “The Use of Mitscherlich’s Regression Law in the Analysis of

E iments with Fertilizers,” Biomerrics, 9 : 498-516, 1953.
P H. Douglas and C. W. Cobb, “A Theory of Production,” Am. Econ, Rev.,

18, No. 1:139-165 Proceedings.
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The power function presents no computational problems and is
amenable to statistical tests. However, the assumption of constant
elasticity of production, i.e. the percentage increase in yield is constant
for all increments of fertilizer, does not permit negative marginal
products (except when the exponents are negative, in which case positive
marginal products are ruled out altogether). Total yield increases
continuously so that the production surface does not form a peak.
Unlike the Mitscherlich or Spillman functions, no maximum or limiting
yield is envisaged. Allowance is not made for possible yield depression
at high fertilization rates.

Isoquants for the power function are asymptotic to the axes implying
complementarity of inputs, i.e. product is not forthcoming from one
input alone. Furthermore, the isoclines are linear and pass through the
origin. This means that, for a given fertilizer price ratio, the minimum
cost combination of fertilizers for one level of production is also the
least cost combination for all levels of output.

It is suggested that response of plant growth to fertilizer does not
conform to the above patterns.

Relaxation of the assumptions of constant elasticity and symmetry
gives a more flexible predicting function? as follows:

Y == cxfielifixleebeXe  x,3ngbn¥n Q)
Y represents product output, X; ... ... x, are factor inputs, ¢ is the
base of natural logarithms, and ¢, a; ........... ., by ... b, are

parameters. As far as agricultural economists are concerned, it is
unfortunate that the computations necessary for deriving economic
optima become extensive.

Heady'® has suggested the addition of constants to the input
quantities. Thus, for two inputs, equation (3) becomes—

b c
Y = a(p + X1) (@ + Xo) i (D
p and g being arbitrary constants,

The isocline equation (the ratio of the marginal products equated
to a fertilizer price ratio r) may be solved for X; to give—

rb rb
X, = (2P F () X e (6)
The isoclines'! no longer pass through the origin but through the X,
or X, axis (depending on the sign of the ( _r‘gg - p) term); therefore

the same combination of fertilizer inputs is no longer required to be a
least cost one for all levels of output.

(3) Polynomial Functions

Polynomial equations for one input X, usually include a linear term,

9 Halter, A. N., Carter, H. O., and Hocking, J. G., “A Note on the Transcendental
Production Function,” Jour. Farm Econ., 39 :966-974, 1957.
1 See Footnote 2,

11 The slope of the isocline is equal to (?)
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positive in sign, which “explains” yield increases caused by the variable,
and a higher order term, negative in sign, which accounts for diminishing
returns. Signs are reversed when increasing returns are present. Thus,

if X is used as a linear term, X/, X7/4, or X 4 might be selected to
represent diminishing returns. Conversely, when X represents diminish-
ing returns X: or X% might be chosen for a linear term. For a two
variable input case, the most widely used forms'? are either—

Y = a4+ bX;, + ¢Xo —dX, — eXo + X3 Xo ... (7)
or

2 2
Y =a+4 bX;, +cXo—-dX; —eXe + fXiXo (8)

where Y is total yield, a represents the yield intercept term, X; and X.
. are fertilizer inputs and b, c, d, e and f are parameters. Use of the
square root function is usually restricted to cases where the soil is
initially low in plant nutrients or where marginal products are large at
first but decrease rapidly. In such situations, isoclines would be
expected to pass through the origin and this in fact is the pattern
followed by square root function isoclines. Isoclines for the quadratic
function intersect the axes. However, for polynomial forms in general,
isoclines converge to a point on the input plane which represents the
fertilizer combination required to maximize physical product. Con-
sequently, production surfaces achieve a definite peak thus conforming
to some input-output theories.

By contrast with some of the functions discussed, polynomial models
are easy to fit and permit adequate statistical tests. They are flexible in
the sense that terms can be added or dropped without complete
reworking of the regression problem. Furthermore (and probably most
important) no assumptions are made about the elasticity of response.
In the quadratic form, for example, negative marginal products are
allowed for by the inclusion of a squared term with a (theoretically)
negative sign.'?

The chief criticism of such functions is that only linear and interaction
terms can be justified as far as plant growth is concerned. The same
cannot be said for squared or cubed terms, or terms raised to some
power, e.g. square root transformations.

Thus, inconsistencies of one sort or another can be found in all these
functions seeking to quantitfy input-ouput relationships. Eventually a
choice, not based entirely on objective grounds, must be made. As far
as the present study is concerned, a polynomial function with an
interaction term was used. Specifically, its form is as follows:

Y—=—a-+bP4+cN~dP2-eN2-+ fPN ... ... (8a)

This is function (8) with P and N (representing phosphorus and
nitrogen) substituting for X, and X..

12 Heady, E. O., et al, “Crop Response Surfaces and Econemic Optima in Fertilizer
Use,” Iowa Ag. Expt. Stn. Bull. 424, 1955,

3 When the regression problem has been worked through, the signs do not always
work out to be negative, in which case the problem for adjusting for diminishing

returns remains unsolved.
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1II. Empirical Analysis
1. Source of Experimental Data

The experiment from which the data were obtained was a barley
fertilization trial carried out at Rangiora, N.Z., by the N.Z. Department
of Agriculture in the 1957-58 season. The design was a 4 x 4 factorial,
replicated 3 times giving a total of 48 observations. Three of these were
checks. Phosphorus and nitrogen in the form of “triple” superphosphate
(P), and ammonium sulphate (N) respectively were each applied at
4 levels (0, 112, 224, 336 lbs. per acre). The soil type was Temuka
silt loam which had been unfertilized for the previcus three years.
Kenia Barley was sown at the rate of 100 lbs. per acre. Table 1
includes the yields for each replicate of the experiment.

Table 1
TEMUKA SILT LOAM—YIELDS OF BARLEY, 1958
(bushels per acre)

Level of Fertilization* Replicate 1 Replicate 11 Replicate 111
P N
0 0 82.4 71.6 69.5
1 0 88.1 80.0 77.6
2 0 84.0 77.6 81.6
3 0 80.8 85.7 824
0 1 - 80.8 82.4 73.5
1 1 88.1 81.6 71.6
2 1 90.5 105.0 87.3
3 1 83.2 87.3 84.0
0 2 84.0 80.8 74.3
1 2 87.3 85.7 81.6
2 2 93.7 93.7 90.5
3 2 94.5 85.7 87.3
0 3 88.1 77.6 69.5
1 3 85.7 89.7 80.8
2 3 88.9 937 921
3 3 93.7 954 90.5
* Coded. Code Lbs. Applied
Per Acre

0 0

1 112

2 224

3 336

The yields range from 69.5 to 105.0 bushels per acre with an
average of 84.8 bushels and are thus considerably higher than average
New Zecaland figures.

2. Regression Analysis

Equation (9) is the least squares regression function derived from the
data in Table 1.

A
Y = 76.094437 4 .067381P + .031533N - .000152p2
—.000079N2 4 .000082PN ... ... ... (9)

A

Y is the expected yield and P and N are the fertilizer inputs.
Both squared terms are negative—hence negative marginal products
are allowed for. The value of R? is .855, indicating that the fit
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of the regression plane is good. The overall significance of the
regression was tested by means of the F ratio (the null hypothesis is
by, = by, etc. = 0).

Table 2 includes the analysis of variance for the yicld data corres-
ponding to the regression equation:

Table 2
TEMUKA SILT LOAM, 1958. ANALYSIS OF VARIANCE FOR BARLEY YIELDS

Source of Degrees of Sum of Mean Sq. F
Variation Freedom Squares
Total 47 | 2288.48 48,69 B
Replicates 2 318.50
Treatments { 15 1466.00 97.73 5.82%%
Due to regression 5 1253.44 250.69
Lack of fit 10 212.56 21.26
Error 1 30 | 503.98

** Significant at the 1% level.

The F value in Table 2 is significant at less than the 1% level. A
further criterion of goodness of fit of a function!* is that the lack of fit
term should be of the same order of magnitude (or less) than the
experimental error. In Table 2 the lack of fit term is considerably less
than the experimental error. On the basis of these tests it is assumed
that the quadratic function characterizes the data adequately.

Table 3 includes t values for individual terms in equation (9):

Table 3
t VALUES AND PROBABILITY LEVELS FOR TERMS IN EQUATION (9)

‘ t Value ! Approximate
Probability Level*
P 4.19 .001
N 1.96 .05
P? 355 .001
N* | 1.84 .05
PN ‘ 2.39 025

* Probability of drawing a t value as large or larger by chance, gives the null

hypothesis.

All terms are significant at the 5% level or less and on this basis are

retained.

3. The Nature of the Production Surface

Regression equation (9) was used to derive expected barley yields

for various phosphorus and nitrogen levels.

" Refer footnote 2 — (Mason).



These are shown in Table 4:

Table 4
EXPECTED YIELDS OF BARLEY (BUSHELS PER ACRE) FOR VARIOUS
P AND N LEVELS (lbs./acre)

P| N 0 84 168 252 ‘ 336
0 76.09 78.18 79.16 79.03 77.76
84 80.68 8335 8491 85.35 84.66
168 83.12 §6.37 88.50 89.53 89.42
252 83.42 87.24 89.96 91,57 92.03
33 81.57 85.97 89.27 91.45 92.50

The data from this table have been used to construct the production
surface of Figure 1. With P held at zero level, application of
increasing amounts of N raises barley yield to a maximum of 79.16
bushels. Further top-dressing with N fertilizer then actually decreases
total yield. However, the higher the level that P is held constant
with increases of N levels, the greater the total barley yield. Thus,
with P held at 168 Ibs. per acre, an increase of N from 84 to 336 Ibs.
per acre increases output by 3.05 bushels. On the other hand, with
P at 336 Ibs. per acre, an increase of N from 84 to 336 lbs. per acre
increases yield by 6.53 bushels.

If N is held at zero level and P increased, barley yield is maximized
with an application of 252 Ibs. per acre of P. Thereafter, increasing
amounts of P depress total yield. As the level at which N is held
constant is raised, response to P also increases. Thus, with zero N,
an increase of P level from zero to 336 lbs. increases yield by 5.48
bushels, while if N is held at 336 lbs., an extra 14.74 bushels results
from increasing P from zero to 336 lbs. per acre.

4. Yield Isoquants
Isoquants were derived from production function (9) by assuming

A
values for one fertilizer and yield (Y) and solving for the other
nutrient. The isoquant equation for P is given in equation (10).

A
P = (.067381 4 .000082N) = \/050805 — .000608Y -+ .000008N
000304

This equation was used to derive the isoquants shown in Figure 2
which predict various combinations of P and N required to produce
barley yields of 78, 80, 82 and 84 bushels per acre. The isoquants are
convex to the origin confirming diminishing marginal rates of substitu-
tion. The change in slope from left to right becomes more gradual with
increasing yield, indicating that N and P are better substitutes at higher
than at lower levels.

A returns to scale test line would show decreasing returns. This is
particularly noticeable at low N rates when successively larger
increments of P have to be applied to maintain the two bushel increment
in yield.

5. Yield Isoclines

Yield isoclines (least cost expansion paths) were derived by equating
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the marginal products of basic function (9) to a given nutrient price
ratio and solving for one nutrient. Thus:

A
dyY
—— = .067381 — .000304P —+ .000082N ... (11)
dpP . '
A
dy
—— = .031533 —~ .000158N + .000082P ............... (12)
dN
The isocline equation then becomes:
067381 — .000304P + .000082N
=oa (13)

031533 — .000158N -+ .000082P
“a” represents a given nutrient price ratio.
The equation was then solved for either P or N. A series of isoclines

are shown in Figure 2.
————— Ridge lines
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FIGURE 2. Y!ELD ISOQUANTS, ISOCLINES & RIDGE LINES FOR BARLEY TRIAL.

The intersection of an isocline and an isoquant gives the lowest cost
combination of fertilizers required for a particular yield. For example,
when the ratio of the price of P and the price of N is 3 : 1 (on current
prices the actual ratio is approximately 2.5) the lowest cost combination
of P and N to give an 82 bushel yield of barley is 46.5 Ibs. of P and

95 Ibs. of N per acre.
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On any production surface where the yield attains a maximum, the
family of isoclines converge to a point. The point is where the partial
derivatives of both inputs are zero. In the case under consideration the
maximum yield of 92.66 bushels of barley is obtained with application
of 320 1bs. of P and 364 lbs. of N per acre. Thereafter, increasingly
large amounts of fertilizer depress total yield. The dotted lines are
ridge lines—along these lines the marginal rate of substitution between
P and N equals infinity (top ridge line) or zero (lower ridge line). The
ridge lines define the technical limits of replacing one fertilizer with the
other to attain a specified output. They connect the points on the
isoquants where the two fertilizers become technical complements.
Isoquants become vertical along the upper ridge line and horizontal
along the lower ridge line.

6. Economic Optima

Consider the situation in which a farmer concerned with maximizing
profits from a barley crop wishes to apply the optimum amounts of
fertilizer. Possibly an extension worker requires similar information
for use in advisory work. The optimum combination of fertilizers will
depend not only on the price of barley but also on the prices of P and
N. Profit maximizing quantities of fertilizer are obtained by setting the
partial derivatives of production function (9) with respect to P and N
equal to the corresponding nutrient/barley price ratio and solving
simultaneously. The general equations are as follows:—

P
p

067381 — .000304P +4 .000082N = — ... . (14)
Pp
PN

031533 — .000158N - .000082P = — ... (15
Pp

Pp and PN represent the prices per Ib. of P and N fertilizer respectively
and P is the price per bushel of barley.

Profit maximizing rates of fertilization are shown in Table 5.

Table 5

PROFIT MAXIMIZING RATES OF P AND N FERTILIZATION FOR
VARIOUS BARLEY AND FERTILIZER PRICES

Price . i Profit max. Barley Ner profit*
barley/ Pr:tfce fertilizer quantity of vield shillings/
bushel per ton fertilizer bushel/acre acre
P | N P (b) | N (b)
6/- 9 20 210 120 88.2 491
6/- 12 25 178 56 85.6 483
6/- 15 30 146 0 82.7 471
6/- 15 20 176 102 87.1 481
6/- 9 30 180 10 83,7 485
8/- 9 20 237 181 90.2 670
8/- 12 25 213 133 88.7 657
8/- 15 30 190 86 86.9 647
8/- 15 20 212 168 89.5 658
8/- 9 30 215 99 87.6 657
10/~ 9 20 254 218 91.1 852
10/- 12 25 235 180 90.1 836
10/- 15 30 216 142 88.9 822
10/- 15 20 233 207 90.6 838
10/- .9 30 236 152 89.4 834

* Gross return per acre minus fertilizer cost per acre.




11

The data in the table confirm elementary input-output theory. As
the price of barley increases with the price of N and P remaining
constant, profits are maximized by increasingly heavier fertilizer appli-
cation,

Thus, when the price of barley is 6/- per bushel and P and N are
£9 and £20 per ton respectively, 210 lbs. of P and 120 Ibs. of N per
acre maximize profits. However, if the price of barley rises to 8/- per
bushel, a further 27 1bs. per acre of P and 61 Ibs. of N increase profits
by 179/- per acre. When barley is selling at 10/- per bushel, an
additional 17 1bs. of P and 37 lbs. of N per acre again raise profits
by 182/- per acre.

On the other hand, if the price of barley remains constant but the
prices of both fertilizers rise, profits are maximized by cutting down
fertilizer use. With barley at 8/- per bushel, a rise in price of P from
£9 to £12 per ton requires a reduction of the rate of application from
237 to 213 1bs. per acre if net profits are to be maximized.

The table illustrates a fundamental principle in the economics of
fertilizer use which is sometimes overlooked by extension workers, This
is that the combination of fertilizers which maximizes yield may not
necessarily be that which maximizes net profits. Whether profits are
increased by applying the yield maximizing amount of fertilizers will
depend entirely on the prices of the crop and the fertilizers. Reference
to Figure 1 indicates that yield is maximized with the application of
320 1bs. of P and 364 Ibs. of N per acre (to give a return of 92.66
bushels of barley). With barley at 10/- per bushel and N and P at
£20 and £9 per ton respectively, net returns arc 836/- per acre. This
represents a decrease from the possible maximum net returns of 852/-
obtainable by applying 254 1bs. of P and 218 1bs. of N, as indicated in
Table 5.

IV. Conclusion

Through the use of production function techniques, greater precision
than currently evident can be incorporated into fertilizer use advice.

There are dangers in using production function data for predictive
purposes. (These dangers are inherent in whatever type of inferences
are drawn from fertilizer trials.) The fundamental weakness is that
ex post experimental knowledge is used as a basis for ex ante advice to
farmers and others. Also, recommendations are sometimes made on
the basis of one experiment carried out under particular environmental
conditions in a single year (unlikely as this may seem). But, unless the
circumstances are similar in future years, rates of fertilization suggested
may not maximize profit. If data are built up for various soil types under
changeable environmental conditions, greater predictive accuracy can be
achieved.



