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A GENERALISED MAXIMIN APPROACH
TO IMPRECISE OBJECTIVE FUNCTION
COEFFICIENTS IN LINEAR PROGRAMS

ROSS G. DRYNAN
University of Queensland, St Lucia, Qld 4067

Modelling uncertainty, and attitudes to uncertainty, within a linear
programming framework has long interested agricultural economists.
An early, simple and enduring suggestion for accommodating
uncertainty about the objective function coefficients (and subsequently,
others) of a linear program involved defining a discrete set of possible
coeflicient vectors. This structure for uncertainty has been combined
with various decision criteria or models of risk attitudes: maximin,
MOTAD, focus loss and expected utility maximisation. In this paper,
the more general case of linear partial information on the objective
function coefficients is considered. That is, the objective function
coefficients are no longer restricted to a set of discrete possibilities, but
are assumed to lie within a convex space defined by a set of linear
inequalities. A generalised maximin problem that can be solved as a
linear program is formulated.

The traditional maximin programming model (see for example,
Mclnerney 1969) with which farm management economists will be
familiar has the form:!

(D max y
X,y

subjectto AX <b
QX —y =0 k=1,...k*
X=0
y unconstrained.

Each Q, defines a possible set of gross margins for the different
activities; and the solution maximises the smallest Q.’X value, or total
gross margin, subject to AX < b.

As a first step towards the generalisation to be presented, it is useful to
extend the interpretation of this formulation. Since any convex
combination of satisfied constraints (of the same direction) in a solution
of a linear program is also satisfied by the solution, it is clear that the
solution to formulation (1) also maximises the minimum Q’X value
when Q is constrained to lie in the convex space defined by the vertices,
Qi k=1, ... k* Thus, in effect, in solving a discrete possibilities
maximin problem, a particular continuous possibilities problem is also
solved. In the following section, more general continuous coefficient
space problems are formulated directly and solved by linear
programming.

1 Vectors are denoted by bold characters. Upper case italicised symbols denote other
matrices, and lower case italicised symbols denote scalars.
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The Continuous Possibilities Case
Consider the standard linear programming problem:

) max C’X
X
subjectto AX <b
X =0

where X and C are (nx 1) column vectors, b an (mx 1) column vector
and A4 an (m x n) matrix. Suppose the objective function coefficients are
not precisely known, but specified by the following linear partial
information:

3) GC=d

where G is a (kx n) matrix and d a (kx 1) column vector. With C not
uniquely specified, (2) cannot be solved. But the maximin decision rule
suggests itself as a possible means of resolution. Despite the lack of a
firm theoretical foundation for the rule, and its well-known inability to
mimic certain decisions, it commands attention because of its
simplicity in interpretation and in application. These characteristics of
convenience carry over when the rule is applied in the present
context.
The following problem is posed for solution:

4) max min X
X C|IX

subjectto AX <b
¢C =d
X=0

A ‘Dualised’ Linear Programming Solution Method

The maximin problem (4) is easily solved as a linear program after
making use of duality theory. First note that the solution to (4) is
necessarily at a vertex of the C space since C is selected, conditional on
X, in an inner linear programming problem:

(5) min (0. ¢
CIX
subject to GC =d

where X is given. On the other hand, the solution will not usually be ata
vertex of the X space because the outer problem for X is not a linear

program. ) o
By replacing the inner linear program with its dual, namely:
(6) max vid

v|X

subjectto G'v = X
v=0
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the following problem is obtained:

(N max max vd
X v|X

subjectto AX <b
Gv—X =0
X,v=0

Since problem (7), in which v is chosen so that v'd is a maximum for
given X, and X is chosen so that this conditional maximum is an overall
maximum, is linear in v and X, a simultaneous maximisation over X
and v must yield the maximum value of v’d achievable. But this is also
the highest minimum value of C’X as required in (4). Thus (7) provides a
simple linear programming formulation for (4).

In solving (7), most interest will lie in the solution vector X and the
objective value itself. The vector v, interpreted as the marginal
improvements in the worst scenario for C’X (conditional on the optimal
X) obtainable through marginal changes in the information about C, will
generally be of lesser significance. This worst C scenario will be revealed
in the shadow prices of the G’v — X =0 constraints.

Variations and Particular Cases

Non-negativity of objective coefficients

In some cases, the linear partial information on C may include the
non-negativity condition, C =0. The dual in (6) and the linear
programming formulation (7) then involve inequality constraints,
G’v <X, rather than equality constraints.

Equality information constraints

The linear partial information may itself involve equality constraints,
GC=d. These can be accommodated by treating them as two
inequalities, or, alternatively, by treating those v variables in (6) and (7)
corresponding to the equality constraints as unconstrained in sign.

Infeasibility and unboundedness

With respect to X, if there is no feasible solution for (4), then (7) has no
feasible solution either. But if there is a feasible X, (4) may have a finite
solution, an unbounded solution, or no solution depending on the inner
linear program.

If the inner linear program (5) is unbounded for some X, its dual (and
(7)) are necessarily infeasible (see, for example, Hadley 1962) for that X.
If the inner linear program is unbounded for all X, (7) has no feasible
solution. But if there exists any X for which it is bounded, then (7) has
the corresponding feasible, finite solution.

On the other hand, if (5) is infeasible for any X, it is infeasible for all X
since X does not affect the constraints of (5). The solution to (4) is also
infeasible. The dual of (5) for each X may be either infeasible or
unbounded. If the latter occurs for some X, the solution to (7) is
unbounded; otherwise there is no feasible solution.
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In summary, when (4) has a finite solution, (7) yields a finite solution.
When there is no feasible X solution to (4), (7) is infeasible. When there
is no feasible solution to (4) because of inconsistency in the information
about the coeflicients, (7) yields either an infeasible solution or an
unbounded (negatively) solution. When the solution to (4) is unbounded
(negatively), (7) yields an infeasible solution.

Full information

Suppose that full information is available about C. That is, C=C*.
The linear program (7) becomes:

8) max C*v
X,v
subjectto AX =<b
v—-X =0
X =0

v unconstrained in sign.

Here the simple constraints relating v and X allow one of the vectors to
be eliminated. Eliminating v, the problem reduces to the standard linear
programming model (2) with known objective function coefficients.

Combining full and partial information

Suppose full information exists for the (rx 1) sub-vector C,, but only
partial information for the complementary vector C,. That is,

)] C, =C*
G.C, = d,

where there are p constraints defining C,. Formulating (7), partitioning v
into v; and v,, and again eliminating those v elements (v,) corresponding
to C,, the linear program reduces to:

(10) max C]’Xl +V2’d2
X,V2

subjectto AX <b
Gz’Vz - Xz = 0
X, v, =0

In general, a linear program (2) in which 7 objective coefficients are
fully known, and n—r are known only to lie in a space defined by p
constraints, can be resolved using the maximin criterion by augmenting
the original problem with p extra activities and n—r extra
constraints.

Relationship to standard discrete space maximin models

The model presented here differs conceptually from the traditional
maximin model in that discrete possibilities for the objective function
coefficients are replaced by a continuous space. But in that the discrete
formulation has a continuous space interpretation as indicated at the
beginning of the paper, the present model also generalises the traditional
D
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formulation. The latter is the ‘dualised’ linear program corresponding to
a particular case of the general maximin model (4), namely:

(1 1) max min Cl’Xl +C2’X2

i

subjectto AX =<b

[ =] 1€

X =0
C; =0
Xz =0

C, unconstrained.

where i is a unit vector. The X, vector of activities could be dropped
from (11) because it is identically null. Its inclusion serves only to
emphasise that (11) is a particular case of (4).

The dual of the inner problem is:

(12) max 0dy+d
d,,d|X

subject to I 0 dy
-V i d

dy, d unconstrained.

=

X

The first set of equations establishes direct correspondence between dy
and X,. Eliminating dy, removing the null vector X; from the model and
partitioning A, yields the ‘dualised’ problem:

(13) max d
X.d
subject to AX, <b
VX, —id =0
X, =0
d unconstrained.

Apart from notational differences, this is precisely the problem
formulated in (1).

It is worth emphasising that the dependence between activity gross
margins, captured in the traditional model by specifying possible
combinations of gross margin values, is not lost in the generalised
continuous space model. Dependence is captured directly by specifying
linear relations between gross margins.

Although the traditional model (1) can be viewed as the ‘dualised’
formulation of one case of the general maximin model (4), it is also true
that any problem (4) can be solved as a problem of type (1). In particular,
the Qs of (1) have to be selected as the vertices of the feasible space for
C, namely the vertices of GC=d. But this would represent an
inefficient means of solving (4) because of the large number of vertices
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which would have to be explicitly located and included as
constraints.

Relationship to game theory

The problem addressed here can be regarded as a two-player game.
But it differs from the standard game in two respects. First, the actions
available to each player are not limited to a finite discrete set, but form
the continuous, linearly defined X and C spaces. Second, there is
asymmetrical information in that one player (C selector) is assumed to
know the other’s selection. Thus the former’s optimal strategy is the
pure one of selecting the action (C) known to be best for himself.
Similarly, knowing this strategy, the second player’s optimal strategy
will also be a pure strategy, some particular X value.

These pure strategies contrast with the mixed (or probabilistic)
strategies of the common solution of the standard matrix game (for
example, von Neumann and Morgenstern 1947; Hadley 1962).

Nevertheless, there is some algebraic similarity between the
problems. Any choice of X can be regarded as a selection of a convex
combination (but no longer probabilistic) of the discrete actions
represented by the vertices of the X space. The same holds for any C
choice. A matrix of payoffs can be constructed from the X vertex-C
vertex combinations, and the players’ problem defined as that of
selecting normalised weights to place on their vertices. The X player is
free to select any combination, but the C player is confined to collapsed
weights such that all weight must be on one vertex. Algebraically, the
present model has the form of a restricted version of the standard matrix
game.

Concluding Remarks

The generalised maximin formulation has been introduced in the
context of farm planning under gross margin uncertainty. But before it
can be applied in a realistic farm planning situation, research is needed
to determine how well uncertainty can be represented through linear
partial information and to determine how best to elicit such
information. A tutorial example of the maximin formulation is
presented in Drynan (1984).

However, the model is not confined to farm planning problems. It
applies to any linear programming model for which there is only partial
linear information about the objective function coefficients. Its
applicability is limited only by access to this kind of information and by
the appropriateness of a maximin criterion.

The model is more immediately applicable in contexts where the
linear partial information is objective. Drynan (1983) has shown how
the detection of dominated cash flow streams under various
informational assumptions about the discount factors reduces 1o a
maximin problem. Drynan and Sandiford (1985) have applied the
model in a ‘minimax deviation’ goal programming analysis of the
Scottish inshore fishery. Optimal fishery policies were derived under
different assumptions concerning the level of information about the
trade-offs between cost, regional employment, and catch objectives.

Even within the field of planning under uncertainty, the potential of
the model extends beyond maximising minimum income. Drynan
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(1984) outlines how to derive a bound on the cumulative distribution
function for total gross margin in a wait-and-see stochastic
programming model, how to determine the worst gross margin scenario
that could confront the decision maker and how to handle some forms
of uncertainty in constraints.
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