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AN ALTERNATIVE SOLUTION TO LINEAR
PROGRAMMING PROBLEMS WITH
STOCHASTIC INPUT-OUTPUT
COEFFICIENTS

JOHN A. WICKS and JOHN W. B. GUISE*
University of New England

Deriving acceptable farm plans where input-output coefficients are
stochastic is 2 complex problem. Previous formulations have required
many simplifying assumptions about the stochastic variables in the
analysis. This paper presents an alternative approach based on the mean
absolute deviation, which permits solution by a conventional linear
programming algorithm whilst aveiding some of those assumptions
previously required. The formulation also incorporates a stochastic
objective function. Examples are provided using the situation of sto-
chastic feed supply with reference to representative sheep-grain farms
on the Northern Tablelands of New South Wales. Results from these
suggest that this alternative approach is a distinct improvement on earlier
stochastic formulations which utilize linear programming algorithms.

Introduction

An essential, but often limiting, assumption of conventional linear
programming models is that all objective function, resource constraint
and input-output coefficients are known with certainty. Relaxation of
the assumption for just one of these groups of coefficients greatly
increases the complexity of determining an optimal solution. For the
simplest of these cases—risk in the elements of the objective function—
quadratic programming provides one possible method of solution [4, 21].
However, practical application of the technique has been restricted by
the limited availability of suitable algorithms, and by doubts about its
adequacy as a means of taking account of risk [28]. Consequently,
alternative formulations which are capable of handling this form of
risk within the conventional linear programming framework have
evolved. These include Hazell’s original MOTAD formulation [11],
Hazell and Scandizzo’s modification of MOTAD for the estimation of
(E, V) or (E, o) efficient production frontiers [13], marginal risk con-
straint linear programming [6], focus-loss constrained programming [3]
and separable programming [35].

By contrast, solutions for problems where the risk is contained in
one of the other sets of coefficients (i.e., in the resource supply or
input-output coefficients) are less well developed, and have been con-
sidered in a relatively sparse literature. Sengupta and Tintner [32] have
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suggested that problems with risky resource constraint coefficients can,
in most cases, be solved through the dual formulation of the problem.
However, they also indicate that ‘there are some additional problems
in this case due to the inequalities in the constraint space’, and there-
fore outline some alternative characterizations of the problem.

Solution of problems with risk in the input-output coeflicients presents
a far more formidable problem [1]. In reviewing the various methods
of solution proposed in the literature, it is useful to classify the different
types of problems. Following Hadley [10], stochastic programming
problems may be conveniently divided into sequential and non-sequen-
tial categories. Although this paper is concerned with non-sequential
problems, several of the sequential stochastic programming approaches
are referenced, since these also have treated the problem of stochastic
input-output coefficients.

Further classification of non-sequential problems, on the basis of the
number of constraints involving stochastic input-output coefficients,
isolates the category which includes only one constraint having sto-
chastic coefficients. These problems are solved relatively easily since
in such cases the objective function and the constraint can be inter-
changed, and the problem reduced to one of parametric quadratic
programming [5, 23]. As soon as stochasticity is extended to coeffi-
cients of more than one constraint, this approach is no longer possible.

One approach to the more general situation is to assume that the
multivariate joint probability distribution of the elements of the stochas-
tic constraints is discrete. Solutions can then be obtained either through
a game theoretic approach {22, 26] or by using the active discrete
stochastic programming approach developed by Cocks [7] and extended
by Rae [28, 29]. The game theoretic approach has the advantage of
being solved relatively easily, but also has two distinct disadvantages.
First, a large number of solutions are required to obtain an acceptable
answer to any problem. This results not only in the need for consider-
able computational effort but also in the presentation of numerous
alternative strategies to the decision maker. Second, there is an im-
plicit assumption that the optimal solution associated with one of the
observations on the multivariate distribution is optimal for the decision
maker. Conceptually, the grounds for such an assumption are highly
tenuous,

By contrast, the discrete stochastic programming approach does not
require a large number of solutions but, because of the number of dis-
crete states of nature which must be modelled for any realistic analysis
of risk, it does give rise to a very large programming matrix. In the
discrete procedure used by Cocks [7] and Rae [28, 29], all the varia-
bility of the input-output coefficients is transferred directly into the
objective function of the model, whereas in the present approach, as
in the earlier work of Merrill [23], chance constraints and continuous
distributions are used to represent the stochasticity of the input-output
coefficients. Although Merrill formulated the general problem with m
chance constraints, he in fact only attempted to solve the simpler prob-
lem with a single chance constraint.

In this paper an alternative method for solving non-sequential sto-
chastic programming problems of the type originally outlined by Merrill
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[23] is developed. The problem is rewritten in the chance-constrained
form! that the most restrictive constraint must not be violated with
more than some pre-specified level of probability.? Solution is then
achieved by applying Hazell’s MOTAD method for estimating the mean
absolute deviation to a sample set of input-output coefficients for each
constraint and converting this into a standard deviation. The value of
the standard deviation can then be incorporated into the chance con-
straint. Solution is thus achieved by a standard linear programming
routine. Risk may be simultaneously introduced into the objective func-
tion using the procedure outlined by Hazell and Scandizzo [13].

The objective of the proposed methodology is to provide an alterna-
tive: computationally feasible procedure for specifying optimal equilib-
rium activity levels on farms, subject to the usual resource constraints
and to a broader perception of risk by individual farmers than can be
accommodated in the usual quadratic programming or MOTAD
procedures. Although both yield and price variability are reflected in
the sample gross margins of cropping activities producing final products,
in both these formulations of risk programming, only price (cost)
variability typically appears in the sample gross margins in the case of
pasture and feed crop activities producing intermediate products.

Further, because animal activities are typically specified on a per
animal basis, only price variability tends to be reflected in sample gross
margins for livestock activities producing final products. The important
yield variability in pasture and feed crop activities, and the intimately
linked yield variability of animal activities per unit of land area, are
normally excluded from consideration. The methodology developed here
provides a procedure for taking such yield variability into account in
farm planning. It also facilitates the direct consideration of other aspects
of risk associated with the input-output coefficients.

Theoretical aspects of the model are developed in the following
section. An example using three representative sheep-grain farms? on
the Northern Tablelands of New South Wales is given in the third
section. Additional data requirements are defined and solutions obtained
for various levels of risk aversion. This enables the derived plans to be

1 Following Anderson, Dillon and Hardaker [1], two different formulations
of the chance constraints may be constructed, The first,

P(A;,,x,-gbh)B D, ]l:l, 2,..., m;]:L 2,.. .5 R,

implies that the most restrictive constraint must not be violated with more than
some pre-specified level of probability. The second,

P(AleJ € b], Af_)jx_} g bz, . s ay Amjx]' g bm) 2 D, ] = 1, 2, R (N

implies that none of the constraints must be violated with more than some pre-
specified level of joint probability. This paper provides a method of solution for
the former formulation.

2 Choice of the pre-specified level of probability is a decision problem in itself.
No attempt will be made in this paper to solve the problem, but rather a range
of probabilities will be examined.

8 The three representative sheep-grain farms used in the example have been
constructed to represent all such farms on the Northern Tablelands of New
South Wales. The population on which these farms are modelled is defined on
the basis of the Commonwealth Bureau of Census and Statistics [8] definition
of holdings as sheep-grain ‘if the combined receipts from these activities accounted
for at least 75 per cent of the total receipts of the holdings, and if neither
contributed more than four times the other’.
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compared with the actual 1970/71 situation?, providing an approximate
validation of the model [14]. Finally some conclusions are drawn with
respect both to the theoretical aspects of the model and to its practical
applicability to stochastic linear programming problems.

A MOTAD Formulation for Chance Constraints
Consider the general deterministic linear programming problem:

Maximize z — ¢’x subject to Ax = b, x = 0,

where x is an n XX 1 vector of activities,
c is an n X 1 vector of gross margins,
b is an m X 1 vector of resource availabilities, and
A is an m X n matrix of input-output coefficients.

Riskiness in activity returns may be incorporated into this model,
following Hazell [11] and Hazell and Scandizzo [13], if the available
information concerning the vector c¢, instead of being exact, comprises
a T X n matrix of observations, C, of actual values of activity gross
margins per unit of the respective activities.

If the matrix C can then be assumed to be a sample drawn from an
underlying multivariate norma! distribution, and riskiness is deter-
mined on the basis of mean absolute values of negative deviations
about activity expected values, the standard MOTAD model may be
represented as follows:

Problem 1
Maximize z — €Cx
subject to Ax=b
—MCx —1y, =0
ge'y. = o
and x=0,y.=0,

where the estimated standard deviation of total gross margin, o, is para-
metized from zero to a finite upper bound at which risk becomes
irrelevant,

The additional symbols incorporated in this problem comprise:

e aT X 1vector of elements each taking the value (1/7) where T
is the size of the sample of observations on gross margins?®, it
being assumed that T > (n -+ 1),

I. an identity matrix of order T,

M = (I, — Tee’) and creates deviations from sample mean values
with the matrix C,

4 The Agricultural Census data from which the model is constructed related
to 1970/71, and all ten-year averages used in the model are based on the ten
years prior to this date. Even so, a comparison between linear programming
results (these being equilibrium results) and an actual situation can never be
regarded as anytﬁing better than an approXimate validation.

5 Here e’'C = ¢/, where ¢ is the column vector of sample means of the activity
gross margins. If = (< n) of the activities have known returns then these can be
partitioned off from those with stochastic returns and treated as in the usual LP
formulation. In such a case the sample size for stochastic returns need only be
such that T > (n— 1) 4 1.
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y. isaT X 1 vector containing elements representing sums of abso-
lute values of weighted (by the x vector) negative deviations from
sample mean gross margins, and

g is a scalar for transforming mean deviations into standard devia-
tions.®

Solutions to this model should trace out approximately the risk
efficient frontier as defined in the usual expectation-variance framework
and provide an appropriate ranking of farm plans according to their
associated levels of risk [36]. When the normality assumption holds

[11], estimates of o based on mean deviations are somewhat less effi-
cient than estimates based on the usual sum of squares approach.”
Nevertheless, there is a very significant tradeoff in computational

simplicity. when o is estimated from mean deviations since a linear,
rather than a quadratic, programming algorithm suffices for obtaining
problem solutions. All that is required is the addition of T 4 1 rows
and T columns to the programming tableau. Alternatively, if a specific
value for a linear risk aversion coefficient (¢) is known then, rather than
parametizing the problem, one may add a further column, transferring

¢ to the left hand side of the inequality where it appears and adding

the term —og to the objective function.®

In extending the model to incorporate a set of risky input-output
coefficients the case where all resource constraints include such risky
coefficients is developed.? Obviously where some constraints are non-

6 If the expectations and variances of gross margins are _unkn_own (as is typi-
cally the case) but the normality assumption may be validly introduced, then

o = Ad where d is the estimated mean absolute deviation and
A=[T+1—mT + De/QRTT — 1 — n))1z
where  is the mathematical constant. See Barry [2]. Since the MOTAD formula-
tion [11] estimates (-57d and the vector e in our formulation provides for
division by T, the scalar g is given by 2A. In problems where 7 of the gross
margins are non-stochastic (# — r) is substituted for n in the above formula.
71f the normality assumption does not hold, the problem of relative efficiencies

is open to question. Tukey [37, p. 474] states that ‘Nearly imperceptible non-
normalities may make conventional relative efficiencies of estimates of scale and
location entirely useless’, and ‘In small samples, the use of the mean deviation
may be a frequently useful compromise’.

8 When specified values of ¢ (the risk aversion coeflicient) are introduced, it

is vital to include the scalar g in the determination of o. This is because when

the population means and variances of the gross margins are unknown ¢ must
incorporate measures of both the inherent variability of returns and the additional
variability arising from lack of knowledge of the true parameter values; see Klein

and Bawa [18] and Barry [2]. If T s parametized then the same efficient
frontier of solutions is obtained whether or not the scalar g is included, although
the risk associated with particular solutions is liable to be assessed incorrectly
if g is omitted, or incorporated using A = [T#/2(T — 1)]% as suggested by
Hazell [11] and Hazell and Scandizzo [13].

2 At no stage do we consider the situation where elements of the vector b
may be stochastic, The reasons for this are first, that we consider resource availa-
bilities to be a minor part of the uncertainties encountered by a farmer when he
is planning. For example, many resources such as land areas, initial working
capital and building capacities may be known exactly. Second, stochastic resource
availabilities may often have been assumed in the past on the grounds that they
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stochastic these may be treated in the usual LP manner. Since even
resource constraints containing stochastic input-output coefficients in-
clude many exact coefficients, for example, the zero elements, the
minimum sample sizes required for estimating variability of input-
output coefficients will depend on the number of stochastic coefficients
in a particular constraint. Consequently, in what follows we allow
sample size T; (i = 1, .. ., m) to differ for each of the basic resource
constraints and define k;(i = 1, . . ., m) to be the (variable) number
of stochastic input-output coefficients in each constraint.

The extended model with risky input-output coefficients (MOTAD
with RINOCO) may be represented as follows:

Problem 2
Maximize z = e’'Cx —4;:
subject to  EA*x +Hw=b
——MCX ‘_‘I(ryc é 0
ge'y, — =0
M*A4*x [y, =0
GEy, — IL,w =0

andx=0,06=0, .= 0, yo = 0, w= 0.

Additional notation incorporated in this problem comprises:

E an m X XT; matrix having T; non-zero ¢lements in each row,
each taking the value 1/7;, these being placed block diagonally,
A* a XT; X n matrix containing in the first T, rows the sample ob-
servations on the elements of the first row of the matrix™ and
so on for each of the m sets of coefficients defined in A,
M* a LT; X XT, matrix with submatrices M;; down the diagonal and
zeros elsewhere, where each submatrix M,; has the same structure
as M (defined previously for Problem 1) but is of order T},
I*  the identity matrix of order XT,,
I, the identity matrix of order m,
G an m X m diagonal matrix with elements g; which are esti-
mated by g;; = 2 [(T; + 1—k) (T; + Do/ QT (Ti— 1-k;)) 1%
The g;; transform mean deviations into standard deviations,
ye a ZT; X 1 vector containing elements representing absolute sums
of weighted (by the x vector) positive deviations of input-output
coeflicients from their sample means,

were analytically more tractable, when in fact stochastic input-output coefficients
were appropriate. This we consider, and hope to show, should be unnecessary
in future, Third, where uncertainty may be significant, as in the case of labour
availability, the simplest approach is to define a level of the resource known to
be available with high probability and then add a resource hiring activity to the
set of intermediate activities to meet any deficit. A parametric run on the level of
the resource available, after each basis change in the parametization of the
standard deviation of total gross margin, should allow a thorough analysis of the
tradeoffs involved in reducing the level of probability with which the resource
constraint can be satisfied.

10 Non-stochastic elements of the matrix 4 are treated as if they were repeated

T. times in A*. Consequently EA* — A where A4 is the matrix of sample mean
values of the input-output coefficients.
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w anm X 1 vector of estimated standard deviations for requirements
of each resource, and
an m X m diagonal matrix of risk aversion coefficients (7;)
associated with the individual resource constraints, these reflecting
the permissible probability of each particular constraint being
violated.!!

Given the definition of the matrices G and H as diagonal, it is obvious
that two basic statistical assumptions of the model are (a) that each
of the m sets of 7T; rows in the matrix 4* may be regarded as a sample
drawn from an underlying multivariate normal distribution, and (b)
that each such multivariate normal distribution is distributed indepen-
dently of all other such distributions, thus making each subset of
aggregate random variables in the vector y, independent of each other
subset. The validity of these assumptions is open to empirical examina-
tion in any particular context. While instances of their non-applicability
may be proposed involving jointly distributed chance constraints pos-
sibly of non-normal form, these assumptions seemed appropriate to
the empirical situation we were considering, and were also analyti-
cally tractable.?

A simple example of the matrix structure associated with the
estimation of mean absolute deviations of input-output coeflicients is
set out in Table 1. This involves a sample of four observations on
cach of two stochastic coefficients in each of two resource con-
straints. Naturally one enters only the numerical result of evaluating
(ai;(¢)—a;;) in the computing tableau. With 7; = 4 and k; — 2 the
non-zero elements of the matrix product GE are all equal to 1:21. The
7 values have both been assumed to be 1-17 in this example. A more
comprehensive example which utilizes this matrix structure is presented
in the following section.

An Application Involving Northern Tableland Representative
Sheep-Grain Farms

The representative farms used in this example were selected from
those included in the revised version of APMAA?™ described by Walker
and Dillon [38]. To permit sufficient possibilities for diversification in
the farm plans, whilst being able to capitalize fully on available data,
the three representative Northern Tablelands sheep-grain farms were
selected for analysis. Classification of these was on the basis of total
area, and they will be referred to here as small, medium and large.

For this application of the model only the non-zero input-output

i1 Given the underlying assumption of multivariate normality, the estimated
standard deviation for constraint i must be associated with a standardized t-
variate. If a, represents the permissible probability of constraint i being violated
then the diagonal elements in the matrix H are n;; — F-1(1 — «,;) where F(.) is
the cumulative ¢ distribution with (71 — k) degrees of freedom. An alternative
approach suggested to us by Hazell involves the use of Herrey’s H-statistic [15]
in direct conjunction with estimated mean deviations. The two approaches should
give identical results. We preferred to retain the estimated standard deviation with
t-variate approach since it is more widely understood.

12 Methods of handling chance constraints which are jointly distributed and
may involve non-normal distributions are discussed by Sengupta [31].

13 APMAA is an acronym for the Aggregative Programming Model of Aus-
tralian Agriculture developed at the University of New England.
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coefficients associated with intermediate activities producing feed for
livestock have been assumed to be stochastic. A priori, this aspect of
variability in the input-output coefficients of the linear programming
matrix would be expected to be very important in farm planning on
the Northern Tablelands. While livestock demands for feed can reason-
ably be treated in a deterministic manner, the production of feed from
pastures, forage crops and feed grain crops, because of its direct
dependence on weather conditions, must be treated as stochastic in any
realistic mode! of farm planning in this region.™*

Four new sets of constraints were therefore included in the models
to account for the variability of contributions to seasonal feedpools in
spring, summer, autumn and winter, respectively. With feed production
and utilization constraints for each season of the year, and an indication
of the proportion of years in which farmers are typically willing to
provide supplementary feed for each season (over and above normal
purchases and provisions), the major additional requirement was the
need to estimate the parameters of the distributions of total seasonal
feed supply. These naturally vary with the optimal composition of
farm activities. The MOTAD approach was therefore utilized to obtain
these changing mean and standard deviation estimates required by the
chance constraints. The feasibility of this approach depended upon the
availability of simultaneous samples of observations on all the stochastic
output coefficients.

Available sample data commonly reflect either the average pattern
of seasonal production [16] or, if for a number of years, annual pro-
duction [19]. Consequently, such data are unsuitable for representing
quarterly variability in production. For this reason a simulation ap-
proach based on the work of Keig and McAlpine [17], Smith and
Johns [33] and Smith and Stephens [34] was utilized to generate
appropriate data. This involved the simulation of seasonal production

14 Basic matrix structure followed that of the earlier version of APMAA
described by Monypenny and Walker [24], with the exceptions that behavioural
constraints and related activities were excluded and other sectors were refined.
Grazing land was split into three categories, dependent on the extent to which
development had taken place. These were land on which forage crops could be
grown, land which had been cleared and sown to pastures, and land on which
no clearing had taken place. The area of each of these types of land was fixed but
the composition of activities on any land type allowed to vary. Improvement was
permitted to land in the final category through the application of superphosphate.
Also, in the original formulation, only two feedpools, critical and non-critical,
were defined. As this implied a certain level of prior knowledge for each situation,
four feedpools (spring, summer, autumn and winter) were defined for the revised
version.

Other modifications, relevant only to this analysis, were made to the structure of
the representative farm matrices as follows, Three transfer activities were intro-
duced to allow feed to be transferred between any pair of successive seasons
other than winter to spring, a period for which feed transfers would never occur
in this area. The coefficients used for these transfers were obtained from Rickards
and Passmore [30].

Additional constraints were imposed to limit expansion of sheep and cattle breed-
ing units fo not more than 20 per cent of the level initially set in the matrix.
When the problems were solved, only cattle proved to be limited by these con-
straints. All variation in livestock units occurred in sheep. These solutions are
consistent with post 1970/71 developments. Improved native pasture was limited
to 50 per cent of the total area of native pasture, a proportion characteristic of
the aggregate of the Northern Tablelands.,
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by various grazing and pasture activities for a given set of years from
readily available climatic data. To contain the size of the final linear
programming matrix, whilst ensuring a reasonable number of observa-
tions for the MOTAD-style sample, estimation of dry matter production
was restricted to the ten years up to spring 1970. Activities for which
coefficients were estimated in this way were improved sown pasture,
improved native pasture, unimproved native pasture, grazing oats and
lucerne.’®

Results

Solution of the problems was complicated by lack of empirical
evidence concerning farmers’ attitudes to both the riskiness of total
gross margin (represented by the risk aversion coefficient ¢) and the
riskiness of not being able to feed livestock (represented by the risk
aversion coefficients »y4, i = 1, . . ., 4). Thus in order to illustrate the
spectrum of possible results, and also to obtain possibly one correspond-
ing reasonably well to reality, several solutions were required. In order
to contain this number at a manageable level, the simplifying assumption
was made that one value be common to the pasture risk aversion
coefficients (5;) in all seasons. Further, extension of the analysis to
include the riskiness of gross margin was restricted to the medium
representative farm. Then, in common with other similar analyses
[12, 25, 27], solutions were obtained for seven different values of ¢,
and %4 namely, 0-0, 0-39, 0-78, 1-17, 1-56, 1-95 and 2-33.

These values yielded seven solutions involving only feed supply risk
for each of the three representative farms and a further forty-two solu-
tions involving feed supply and gross margin risk for the medium rep-
resentative farm. Tables 2, 3 and 4 show the main results obtained for
the case of risk in feed supply alone for small, medium and large
representative farms respectively, together with summary statistics of
the actual 1970/71 situation. Some caution should be exercised when
making comparisons since linear programming results reflect the long-
run partial equilibrium situation, assuming expected gross margins
remain at the level set for the solutions. Even so, useful comparisons
can be made between the solutions and the actual situation, especially
with respect to the total number of livestock units and the areas of
various grazing crops.

Simultaneous examination of these three tables reveals several points

15 Modification of the coefficients for seasonal dry matter production to reflect
the actual situation was required, since the simulation model generated maximum
potential growth with superphosphate non-limiting, subject to the climatic variables.
Dr R. C. Smith (University of New England) in a personal communication
provided the basis for the necessary modification, as well as the data on native
pasture species which were not discussed in [34]. A further adjustment was
required to account for losses during grazing [39], after which the data were
converted into seasonal livestock feed units, Expected vields for both the feedpool
constraints and estimation of deviations were calculated as the ten-year averages
of these ‘actual’ data. The only exception to this process was hay, where aggregate
production data could be obtained from the relevant Statistical Registers [9].
Use of aggregate hay production data was preferred because of the relative ease
of utilizing this information to derive yield deviations, However, the problems
associated with using such information for estimating standard deviation of yield
should be acknowledged, since it is highly unlikely that the conditions for avoiding
bias as outlined by Hazell [12] are fully satisfied.
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TABLE 2

Estimated Results and Actual Data for the Small Representative
Sheep-Grain Farm (200 ha)

Coeflicient of risk aversion for pasture 7«

- Actual

Activity 0-0 0.78 1-17 1-56 2.33 1970/71
Crops (ha)
Wheat 47 47 47 47 47 14
Grain oats 33¢
Grazing oats 1 141
Hay 6 6 4 1
Lucerne for green

fodder 26 20 20 22 25 12
Livestock (livestock units)
Total sheep® 635 539 435 348 178 387
Total cattle” 111 111 111 111 111 96
Gross margin ($)
Expected 5321 4766 4491 4212 3914 na.
Standard deviation 1688 1592 1490 1418 1268 na.

Mean absolute deviations
(differences between
modelled and actual

values)
Crops 15.7 13.7 13.7 14.3 15-3
Livestock 131-5 83.5 31-5 27.0 112-0

i

* Total number of sheep estimated directly from the composition of Merino
and First Cross Lamb activities. One sheep is equivalent to one livestock unit.

b Total number of cattle estimated directly from the appropriate activities and
multiplied by 8 to give livestock units.

¢ Defined in the CBCS data as ‘Other Grain Crops’. The principal one only
of these is included in the model.

9These two categories are not separate in our analysis of the Agricultural
Census data.

na. Not available.

of interest. First, the only grain crop in any of the plans is wheat. It
seems likely that the lack of diversification in cash cropping is at least
in part a consequence of the implied assumption of risk neutrality with
respect to the gross margins. Second, examination of the grazing crop
and livestock components of the model shows (on the basis of
the mean absolute deviations) the greatest correspondence between
modelled and actual values to occur for the small and medium repre-
sentative farms at an s, value of 1-17, and for the large representative
farm at an 5, value of 1-95. These results respectively correspond to
an aversion to having to provide additional feed more than one year
in six, and one year in sixteen. A priori, such values appear highly
plausible, Third, as the values of each of the coefficients »; increase,
the representative farmer’s response is both towards diversification in
feed supply production and reduction in the total number of livestock
units carried.

Inclusion of stochastic gross margins in the model produces the
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TABLE 3

Estimated Results and Actual Data for the Medium Representative
Sheep-Grain Farm (553 ha)

Coefficient of risk aversion for pasture 7,

Actual

Activity 0.0 0.78 1-17 1.56 2-33  1970/71
Crops (ha)
Wheat 105 105 105 105 105 58
Grain oats 47°
Grazing oats 1 300
Hay 15 15 12 f
Lucerne for green

fodder 43 36 36 36 43 21
Livestock (livestock units)
Total sheep® 1517 1308 1011 796 329 929
Total cattle® 416 416 416 416 416 344
Gross margin ($)
Expected 12998 11643 10861 10087 7919 na.
Standard deviation 3829 3622 3340 3160 2796 na.

Mean absolute deviations
(differences between
modelled and actual

values)
Crops 25.7 20.7 20.7 21.7 25.7

Livestock 330.0 225.5 77.0 102.5 336-0

» ® ¢ and % Footnotes as in Table 2.
na. Not available.

results for the medium representative farm shown in Table 5 (this
table lists some only of the pivot point solutions obtained). In spite
of the complexity associated with interpreting the volume of information,
a few salient points can again be made. First, tabulation of the mean
absolute deviations for crops and for livestock, as shown in Table 6,
suggests that, at least for the farm type considered here, the risk of
not being able to feed livestock is more critical in deriving an acceptable
farm plan than the risk associated with the gross margin.

Second, the solutions which have the lowest values for the mean
absolute deviation also exhibit highly plausible values for ¢ and Nii
Clearly the solution in which ¢ = 1-17 and »; — 1-56—corresponding
to a desire not to have to provide additional feed more than one year
in ten—is easily the best when considered in terms of the goodness of
fit for both crops and livestock. The ¢ = 1-17, 5; = 1-95 solution
is slightly better with respect to crops but far worse for livestock,
whereas the ¢ = (-39, 5; = 1-17 solution—that is, one year in six—
is slightly worse on both counts. Any conclusions about relevant values
of ¢ and the »; must be tentative at this stage, awaiting further research
in this area.

Third, reference to Figure 1 shows the tradeoff between expected
gross margin (E) and standard deviation of gross margin (o) for various
C SL T
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TABLE 4

Estimated Results and Actual Data for the Large Representative
Sheep-Grain Farm (1687 ha)

“ Coefficient of risk aversion for pasture 7.
. Actual

Activity 0.0 0.78 1-56 1.95 2.33  1970/71
Crops (ha)
Wheat 191 191 191 191 191 111
Grain oats 80°
Grazing oats } a
Hay 49 49 41 66
Lucerne for green

fodder 125 76 76 84 59
Livestock (livestock units)
Total sheep® 3775 3775 2639 1934 1192 2273
Total cattle® 1000 1000 1000 1000 1000 832
Gross margin ($)
Expected 29452 29115 24073 21503 18207 na.
Standard deviation 7848 7848 6751 6163 5663 na.

Mean absolute deviations
(differences between
modelled and actual

values)
Crops 68-3 48.7 32.3 32.3 35.0
Livestock 835.0 835.0 267.0 253.5 624.5

*, ®, ¢ and % Footnotes as in Table 2.
na. Not available.

levels of aversion to the possibility of not being able to feed livestock.
Clearly a considerable amount of trade-off is possible. Using the
measures of goodness of fit given in Table 5, it is clear that one should
anticipate the actual situation to be one of farmers being willing to
receive a lower expected gross margin, for a given standard deviation
in gross margin, in return for a reduction in the possibility of having
to provide additional feed. It seems feasible that this additional dimen-
sion of risk, which was not considered by Lin, Dean and Moore [20],
may have been a factor in their finding that, although Bernoullian
utility performed best, no form of utility measure was able to predict
actual farmer behaviour well.

Conclusions

In this paper an alternative method for solving non-sequential sto-
chastic linear programming problems, where the stochasticity is in the
input-output coefficients, has been developed. The method used extends
the MOTAD approach of Hazell to incorporate other important aspects
of risk in farm planning. The solutions obtained represent estimated
partial equilibria for given expected gross margins, resource avail-
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TABLE 6

Tabulation of the Mean Absolute Deviation for Each of the
Combinations of Values of ¢ and »; for the Medium
Representative Sheep-Grain Farm

“For Crops
o R4
) c.0 0-39 G-78 1-17 1.56 1.95 2.33
0.0 25.7 25-3 20-7 20.7 21.7 23.0 25.7
0-39 25.7 25-3 25.3 13.8 21.7 23.0 25.7
0.78 25.7 13.0 25.3 21-3 21.7 23.0 25.7
1.17 36.7 29.3 29.3 29.3 13.0 12.7 16.3
1-56 36.7 29.3 29.3 277 26.0 29.3 277
1.95 36.7 29.3 29.3 277 27.0 31.3 34.0
2-33 36.7 29.3 29.3 27.7 39.7 377 34.0
For Livestock
T4

¢ 6.0 0.39 0.78 1-17 1-56 1.95 2.33
0.0 330.0 306.0 225.5 77-0 102.5 220-5 336.0
0-39 330-G 304.0 143.0 68.5 111.0 220.5 336.0
0-78 330-0 330.0 330.0 188.5 111-0 220.5 336-0
1-17 330.0 330-0 330.0 225.0 38-0 183.5 313.0
1.56 330.0 330.0 330.0 198.¢ 84.5 182.5 319.0
1.95 330.0 330.0 330.0 198.0 93.0 233.5 363.0
o

-33 330.0 330.0 330.0 198-0 202.0 292.0 3860

abilities and attitudes to risk, and can be readily updated when any of
these components change significantly.

Theoretical advantages of the formulation which individually are
shared by some other approaches are as follows:

(a)

(b)

(c)

There is no need to assume that the joint probability distribution
of the stochastic coefficients is discrete. Each set of observations
is assumed to be a single random sampling from a continuous
multivariate population.

If the decision maker’s attitude to the forms of risk under study
is known, the optimal strategy can be derived from a single linear
programming solution. Even where this prior knowledge is lacking,
only the diagonal elements of the matrix H together with ¢ need
to be varied over a range of specific values to obtain a complete set
of solutions. With most modern algorithms this can still be
achieved with a single run of the linear programming algorithm.
The decision-making sequence may be contrasted with that used
in game theoretic approaches. In the present approach, as in other
optimizing approaches, the decision maker’s attitude is first de-
termined, either explicitly or implicitly, and inserted into the linear
programming framework to estimate directly the optimal solution.
Thus a major objection to the game theoretic approach is overcome.
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13,

124

11

1%

EXPECTED GROSS MARGIN
($'000s)

STANDARD DEVIATION OF GROSS MARGIN
($'000s)

FIGURE 1—(FE, ¢) indifference curves for various levels of risk aversion for
pasture production, .

(d) Estimation of risk attitude coefficients can often be directly related
to concepts readily understood by the decision maker. For instance,
in the example used in this paper, the coefficients are derived from
the attitudes of farmers (the decision makers) toward having insuffi-
cient feed from normal sources for their stock. All that is required
is an estimate of the frequency with which they are prepared to
meet this situation, a fact which it should be reasonably easy to
elicit.

Computationally, the method has two important advantages.

(1) Solution to the problem can be achieved by using a conventional
linear programming algorithm. Further, in spite of the additional
constraints and variables required, the formulation proved to be
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highly tractable with respect to computing requirements.}® This is

considered to be of prime importance when determining the via-

bility of any alternative approach.
(2) The only effect of extending the formulation to an additional
constraint is to increase both the number of constraints and number
of activities in the model by (T 4 1) for each new constraint
with stochastic input-output coefficients (where T is the number
of sets of observations). A similar addition is required to intro-
duce stochasticity into the objective function. The solution pro-
cedure always remains unaltered.

From the practical viewpoint the formulation provides a method for
solving an important class of risk problems. Further, it highlights the
importance of including more than one aspect of risk within the farm
planning context, particularly in situations involving livestock feeding
based on weather-dependent fodder sources.
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