|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Australian Journal of Agricultural Economics, Vol. 21, No, 2 (August 1977),
pp. 111-118.

ON THE COMPETITIVE FIRM UNDER
PRODUCTION UNCERTAINTY*

RULON D. POPE#** and RICHARD E. JUSTY
University of California

Risky production functions which are commonly in use are shown to be
very restrictive. In particular, such functions cannet describe technologies
where inputs marginally reduce risk. A simple production function
which avoids these restrictions is posited and alternative estimation
procedures are discussed. Both maximum likelihood and multistage
estimators are discussed.

Recently, a number of authors have discussed comparative static
results under price uncertainty for the single-product firm (Sandmo [18],
Leland [14], and Blair [2]). In agriculture, however, production uncer-
tainty must also be considered an important aspect of the firm’s
environment. A number of authors have investigated some special cases
of technological or production risk in various contexts (e.g., Stiglitz [ 19].
Feldstein [7], and Rothenberg and Smith [16]). This paper attempts to
investigate the effects of production uncertainty on factor use under a
more general (and plausible) case of stochastic technology. Results
indicate that risk aversion does not necessarily imply less factor usage
as compared to the risk-neutral firm. Furthermore, characteristics of
inputs will be established for which input use is generally greater than
(less than) the risk-neutral case. It is further argued that these results
may be anticipated from mean-variance utility analysis. As a by-product
of the investigation, insight is gained concerning more flexible functional
forms for theoretical and empirical investigations of economic behavior
under technological risk.

Supposedly, the competitive firm is faced by three major sources of
uncertainty: output price uncertainty, input price uncertainty, and pro-
duction response uncertainty. The effects of random output prices have
been examined by Sandmo, and the effects of random input prices by
Blair. The indication of Sandmo’s work is that the risk-averse firm
chooses an optimal output, g*, such that E(P) > (’(g*) where
C’ (.) denotes marginal cost as a function of output and E(FP) de-
notes expected price!. In applying this result to factor demands, an
assumption of complementarity among inputs is sufficient to ensure that
all inputs move in the same direction as output—i.e., factor use will be
diminished as a result of risk aversion (Ferguson [8]). Assuming random
input prices, on the other hand, Blair found that the risk-averse firm
produces with MRP; — E(MFC;) > 0, where M RP, is marginal revenue
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! It is assumed that C’(.) is positive,
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product of factor i and MFC; is marginal factor cost. The case of tech-
nological uncertainty, however, has not been examined on an equally
general basis.

To examine technological uncertainty, let profits be denoted by
N
n=Pg— I 74
i=1

where P is the fixed price of output, ¢ is output, y; are fixed factor prices,
and X, are factor quantities. Let ¢ = F(X;... Xy, &) denote random
technology where ¢ is a random disturbance. Finally, let U be the pro-
ducer’s risk-averse utility function defined over profits. First-order con-
ditions for expected utility maximization are (second-order conditions are
assumed to hold)?

E{U () (PF; — )1 =0, j=1...N (1)

where U'(z) > 0 is the marginal utility of income, and F; (= d¢/3X}) is
the random marginal product. Rewriting (1) by adding and subtracting
E[U’'(n) PE(F})] yields

E{U'(x) [PF, — PE(F)} + [PE(F) — pJEIU'(m)] = 0,
j=1...N (2)

where the first term in (2) can be written as
PE{U'() — U'[E®)]} [F; — E(F)]} 3

by adding and subtracting E{U’[E(z)] F;} and noting that U'[E(n)] is
nonrandom.

One of the most popular theoretical and empirical production functions
is of the form

q = F(X) = f(X)g(e) @

(see Stiglitz [19], Walters [20]; Rothenberg and Smith [16]; Blair and
Lusky [3]; and Zellner, Kmenta, and Dreze [22]). For this form, setting
F, = dq/dX; and E[g(¢)] = u, one obtains

[F, — E(F)]lg — E@)] = [g(e) — uI* fif. &)

Clearly, for f,, f > 0, equation (5) implies that g > E(g) whenever
F; > E(F;) and, hence, = > E(n) and U'(n) < U'[E(n)] (since U” < 0).
Conversely, ¢ < E(q) whenever F; < E(F;) and, hence, n < E(n) and
U'(n) > U’[E(n)]. Thus, (3) is negative and since E[U'(x)] > 0, one finds,
using (2), that

PE(F)) > v; (6)

2 Second-order conditions dictate that

s Z_dX, JEU)
i

X ¥ ax,
be negative or
a*rn ér on

b E[U’(ﬂ)m + U”ﬁ;ﬁ}] dx,dXx; < 0.
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at the optimum.? In other words, all factor uses are less under risk aversion
than under risk neutrality.*

It is often argued, however, that risk can have the effect of stimu-
lating factor use (Carlson [4], Just and Pope [12]). For example, the
risk associated with machine failure may cause the firm to acquire
capital to be held in reserve for such failures. Additional labor may also
be acquired because of either random availability or random trans-
mission of labor services to output. There are a number of similar inputs
in agriculture. For example, use of pesticides, irrigation, frost protection,
and disease-resistant seed varieties, and certain forms of capital all tend
to reduce risk—at least in some cases. But for these cases, it is possible
that inputs are used in greater quantities under risk aversion than under
risk neutrality. Unfortunately, the commonly used multiplicative speci-
fication in (4) does not admit the possibility of decreasing risk. Indeed,
(4) implies that changes in variance are positively related to factor
changes, i.e.,

[0V (90 X;] = 2f (X) f(X)V [g(e)] > O

under the usual assumptions (f,f; > 0). But this property has a direct
correspondence with the arguments made above, since from (5)

Elg — E(@)][F; — E(F))] = Cov(g, F}) = (1/2)[¢V (g)/0X;].
That is, if for all states of nature g > E(g) whenever F; > E(F,), then
Cov(g, F}) and, thus, d¥(q)/0X; are always positive (and conversely).
A number of functional forms are capable of admitting decreasing

risk and its associated response but one simple form possessing the needed
generality may be represented as

g = F(X) = f(X)+ KX)e, E(e)=0. (7
In this case, ¢ — E(q) = h(X)e and F; — E(F;) = hc. Therefore, if b > 0
and h; < 0,thene > E(¢)implies that g > E(q), F; < E(F)),and n > E(n);
hence, U'(n) < U’[E(n)]. Conversely, if ¢ < 0 then F; > E(F)), ¢ < E(g),
and © < E(n); hence, U'(nr) > U’[E(n)]. But it is immediately evident in
this case that (3) is positive and, since E[U’(n)] > 0, optimal use for factor
J satisfies

P EF;) <y,

Thus, factor use under risk aversion exceeds risk-neutral factor appli-

cation for those factors with 4 > 0, #; < O (this also holds for 4 < 0,
h; > 0).

* This same property can also be shown for the random coefficient model investigated
under expected profit maximization by Feldstein. For example, consider the simple

case with
q = F(X)=f(X)et*, ¢~ N(O, o)
(e.8., ¢ = Z%*® = 7% & where X = In z). In this case

Fy = () = fxe — eowtra) + T oex _ o)

4 — E@@) = f(X)(e* — e9*/2).
Clearly, both F; — E(F)) and g — E(g) have expectation zero and are increasing in ¢.
Thus, following Blair’s method, the expectation of (5) is a covariance and must be
positive.
4 One can also make inferences about the effects of increasing risk by making stronger

assumptions than have been made here concerning the concavity of 8U/8.X ;in ¢ (Roths-
child and Stiglitz).
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Although it may seem odd to one accustomed to usual stochastic
specifications that marginal physical productivity may be negatively
correlated with output, this is indeed plausible. Consider an agricultural
example where ¢ is a measure of the goodness of weather. It is reason-
able to suppose that a ‘high’ value of the state of nature implies large
output. However, at the margin, the productivity of frost protection and
irrigation variables are probably quite low when optimum weather con-
ditions are realized (where ¢ and thus g are large. Conversely, the
marginal productivity of irrigation would be great in a situation of
drought, and the marginal productivity of frost protection would be
great when damaging frosts occur (where ¢ and thus g are small). Such
a relationship between output and marginal productivity would imply
that the risk-averse firm purchases relatively more of these factors—a
result which seems to be in accordance with observed behaviour but
inconsistent with theoretical specifications such as (4).

Empirical Possibilities
Since the general functional form in (7) leads to more plausible theoretical
results than some of the popular and widely used functions, it is also

interesting to consider empirical possibilities. For example, the Cobb-
Douglas function with log-linear disturbances,

g = AX?%", E(e) = 0, (&)

is perhaps the most widely used empirical production function. However,
letting ,
f(X)=AXx* ®
g(e) = €
one finds that equation (8) is clearly a special case of equation (4) and,
hence, all of the criticism relating to that popular theoretical formulation
(noted above) is applicable. This is also clearly true for any empirical
production function with a multiplicative disturbance of the form in (9);
hence, the criticism developed above applies also for the usual stochastic
specification of the translog [5], and generalized power production func-
tions (which includes transcendental functions, see [6]) as well. It thus
seems that empirical use of the general specification in (7) is also desirable.
Unfortunately, however, empirical use of (7) is somewhat more
cumbersome. For example, if f in (7) follows any of the conventional
neoclassical log linear forms (e.g., Cobb-Douglas, translog, trans-
cendental, etc.), then estimation by linear methods is no longer possible
except in the special case where & = f. That is, one can rewrite (7) as

g =71+ 100

Ing =(nx)o + &* (10)
where

or

J(X) = exp (x'a)
h(X) ]
e* = ln[l + -
Fx°
_ {ln X for the Cobb-Douglas
(In XIn? X) for the translog
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where

In? X = [(In X;)?...(n X, X)) ... (In Xy)?]
As Kmenta [13] has pointed out, linear estimation of (10) in this case
generally leads to bias and inconsistency even for « since E(e*) depends
on X (unless 1 = f).

Nevertheless, two general approaches to estimation of (7) are pos-
sible. The first involves a three-stage estimation procedure suggested by
Just and Pope [12] which first estimates f, then &, and finally uses the
estimate of 4 to develop an asymptotically efficient estimate of f.The
second method involves iterative calculation of maximum likelihood
estimates for « and f simultaneously. Assuming that both f and 4 follow
a log-linear form (e.g., Cobb-Douglas or translog generality),

F(X)=e= 11)
hX) = eli2x'8 (12)
these two approaches can be briefly outlined as follows.

A Multistage Estimator
Let the sample corresponding to (7) be written as
q. = (X)) + h3(X)e,, & ~iid0,1),t=1,...,T. (13)
Applying the results of Malinvaud [15] it can be shown that nonlinear
least squares estimation of

g =f(X)+&  EE)=0, (14)
produces a consistent estimate of « so long as f and X are such that 4 is

uniformly bounded. Hence, since &, = q, — f(X,) = A(X,)e,, is consistently
estimated by

g =g — e¥id (14%)
it seems reasonable to consider a second stage regression equation where
&, is regressed on A(X,) along the lines proposed by Hildreth and Houck

[11]. With log-linearity of 4 this can be accomplished using a linear re-
gression equation

loglg| = 1/2x" .8 + w,. (14)
As in the Hildreth and Houck case, this regression attains consistency
for B. Finally, one can form a feasible Aitkens estimator for « in (14).
Since consistency for £ is sufficient to allow a consistent estimate of the
covariance matrix for &, this third step leads to asymptotic efficiency for «
as in the general feasible Aitken’s procedures proposed by Zellner [21]
and by Gallant [9].

It has recently been proven by Harvey [10], however, that the multi-
stage approach gives inefficient estimates of fin a log-linear case. Assum-
ing normality, he shows that maximum likelthood (ML) estimators are
twice as efficient as the Hildreth-Houck type of approach (which estimates
B in the second stage). Thus, when normality holds, ML estimation may be
more desirable.

Maximum Likelihood Estimation

In the case that normality applies in (13) with functional definitions
given by (11) and (12), the likelihood function can be written as

D1
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T !
L = QI)~T2( 1 exB)~112e~1i2 5, (g, — e¥¥)Ze™ 1%,
t=1 t=1

Thus, maximizing L is equivalent to minimizing the concentrated likeli-
hood function,

T T
L* = X X'\f + T (g — ey <P, (15)
t= t=1

The concentrated likelihood function is not readily optimized by modi-
fication of computerized nonlinear least squares procedures because of the
présence of the Jacobian [the first right hand term in (15)] although the
same general gradient and search principles are applicable. A general
procedure which can be used in problems such as this, however, is the
iterative method of scoring (see Harvey for an application of scoring to
the multiplicative heteroscedastic case). That is, suppose

=)

B
and 7, is used to denote the estimate of y at iteration j. Then the estimate

7; produced by the iteration

. [ £ 82L*] -1
) = ), + —_ i ~
Yi+1 Vi ayay y="%
converge to the appropriate ML estimator so long as the initial estimate
of y, say 7, is consistent (which would be the case if the multistage

estimator above is used as a starting point). In this case, however, the
information matrix is block diagonal and, in point of fact,

92L% | oL T :
i x'1(2a— By x|
P%j Gade | ool | _ | 2O 0
apey| | rLx i PLr| 0 1Y e
'—aﬁa“, i 3ﬁ5ﬁ' i 3 t2=1 XX ¢

Hence, consistent and asymptotically efficient estimation of both « and f
can be accomplished by alternating iterations

T . “irr . s -
Ljpy = &; — [Zlex':(m—ﬁj)xtx't] [El eX =80 (g, — ex'm)xt] (15)
t= b=

. . T —ir .
Bos = B+ | £ x| |2 [1 - @ - eviiperinx) 16)
t—1 =
with consistent starting values possibly given by the multistage procedure.
It has further been observed that the iterative scoring procedure attains
asymptotic efficiency after only one iteration (with both (15") and (16))
when consistent starting values are used for the parameters involved
[10]. This suggests several ways in which the Multistage and ML pro-
cedures above can be combined into an asymptotically efficient four stage
procedure. The two possibilities are given as follows:

Stage 1. Nonlinear least squares estimation of (14) producing a consistent
estimate, say &.

Stage 2. Linear least squares regression of log |£| on 1/2 In X, according
to equation (14’) where £, is given by (14*). This produces a
consistent estimate, say ﬁ
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Stage 3. At this stage asymptotic efficiency can be attained for « either by
computing a feasible Aitken’s estimator for equation (14) as in
the multistage procedure or by setting & = & and f, = § in
equation (15).

Stage 4. Finally, asymptotic efficiency for £ can be attained by substituting
a for &; and g for f; in equation (16).

Alternative Procedures

For controlled experiments, it is often possible to estimate variance
of output at various levels of the variable input. These variance estimates
have then been regressed against polynomials in the input to determine
its effect on output variability (Kmenta [13, p. 256], Anderson [1]).
From the foregoing analysis, however, such an approach apparently
attains efficiency for neither o nor g even asymptotically. This is because
the information in the sample for one parameter vector is not taken into
account in estimating the other. As described above, the multistage
procedure attains asymptotic efficiency for a only in the third stage
where sample information on 8 is considered. In the ML approach,
asymptotic efficiency is attained for a (8) only by considering sample
information in relation to the other parameter vector 8 (a).

Summary

In conclusion, the effect of risk aversion on factor use is not positive
for all inputs in general but rather depends on the nature of the pro-
duction process and the input involved. However, functional forms
often used (such as (4)) for investigation of behavior lack this flexi-
bility and always imply the result that a risk averter uses less of each
factor than the risk-neutral firm. It thus seems that the greater generality
provided in (7) is desirable for both theoretical and empirical work.
On the basis of initial examinations, estimational procedures are readily

available for estimation of (7), although they are somewhat more com-
plicated than traditional methods.
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