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INTERNATIONAL TRADE
AND MATHEMATICAL PROGRAMMING

T. TAKAYAMA
University of New England

In this paper an attempt is made to formulate one type of international
trade problem within a class of mathematical programming models.
A new approach-—from the dual side—to the proofs of existence and
characteristics of the solution of the Koopmans-Hitchcock transportation
cost minimization linear programming problem is presented, and the
same approach is applied to the quadratic programming formulation of
the problem.
Introduction

In the course of the development of economics as a branch of applied
science, a simple theory of comparative advantage proposed by Ricardo
[15] and a location theory proposed by von Thiinen [23] have been
modified, sharpened, and generalized especially in the field of inter-
national trade economics. A line of development by Heckscher [8],
Ohlin [14], Graham [6], Yntema [24], Mosak [13], McKenzie [12],
Samuelson [17], Arrow and Debreu [1], Lefeber [11], Uzawa [22] and
Takayama and Judge [21], represents a general equilibrium approach.
On the other hand, that by Beckmann and Marschak [2], Koopmans
[10], Enke [4], Samuelson [16], and Takayama and Judge [18] [20],
represents a partial equilibrium approach. From the mathematical pro-
gramming point of view the general equilibrium approach is subject to
an intractable programming difficulty. The difficulty lies in the balance
of payment condition. The partial equilibrium approach is free from
this difficulty but can be extended so that it eventually faces the same
balance of payment problem as is shown in the last section of this paper.

To avoid unnecessary complication the mathematical programming
models discussed are restricted to transportation cost oriented models
such as the Koopmans-Hitchcock transportation cost-minimization linear
programming model which is used to facilitate understanding of one of
the Takayama-Judge models to be discussed.

The structure of the paper is as follows: Section 1 sets out the
problems around which the discussion is centred, as well as the assump-
tions of the models to be dealt with. In this section we compare the two
programming models mentioned above and show the internal structure
of the models. New theoretical aspects of the two models are revealed.
In Section 2, examples and their solutions are given. In Section 3,
extensions and modifications of the model and a few programming
difficulties are dealt with.

Section 1

Linear programming methods can be used to solve special multi-
lateral trade problems in circumstances where each country’s total
demand quantity, total supply quantity, and the transportation cost
between any pair of countries is known; and where there are no legal
restrictions to limit the actions of the profit seeking traders in each
country. Under these circumstances we wish to ascertain the quantity
and direction of trade between each possible pair of countries. Under

36



1967

TRADE AND PROGRAMMING 37

normal trade conditions the above model is not acceptable, since it
completely ignores price information. Since this shortcoming will be
overcome when we deal with the Takayama-Judge model, we will be
content with a formal treatment of the linear programming model.

Definitions and notation to be employed are as follows:

i, ] denote the national demand and supply points where
iL,ji=1,2,...,n

X = [x;] denotes a column vector of the n* possible flow activities
between the demand and supply points.

T = [t;] denotes a column vector of the »* transport costs per

unit between the supply and demand points.

P; = [pi] denotes a column vector of the country’s demand prices

standardized by, say, the Australian dollar at the
demand points.

P = [p] denotes a column vector of the country’s supply prices,

standardized in the same way as Pj.

D = [di] denotes a column vector of the fixed demand quantity

S = I[sdl

in each country.

denotes a column vector of the fixed supply quantity in
each country.

The Koopmans-Hitchcock transport cost-minimization linear pro-
gramming problem is formulated as:

Problem I

To minimize

(1)

subject to

(2)
and

(3)

4) G=

T’X = EEtﬁx”

D
ox =[_§]
X =0,
where G is a 2n X n? matrix of the following form:
11 +1 S | T
-1 41 +1
+1 +1 | +1
—1—-1...—1
—1-—-1...—1

—1-—-1... -1
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Further we assume that summed over all supply and demand points:
5) 3dy = Zs;.

For this problem we know that a finite minimum feasible solution,
X*, always exists [S]. The dual of Problem I can be specified as
follows:

Problem 11
To maximize
(6) 2] ;;’ | = =pai— s,
subject to
(7) GP LT
where P equals [P;P,]” and
(8) P> 0.

By the duality theorem of linear programming [3] we know that
Problem II has a finite maximum feasible solution P* equals [P *P,*]

and
(9) rx =Py [_2]
= 3p;*d, — 3p™*s'.

We also know that the optimum demand price is always equal to the
optimum supply price in each country. This reduces the right hand side
of equation (9) to 3p;*(d; — s;), which is a rather troublesome ex-
pression. Let us assume there exists another solution of the form p,* -+ r,
for all i, where r is a finite constant. Unfortunately this solution satisfies

a;l the conditions that P* satisfies. For instance, equation (9) is satisfied
since

2(p - r)(di— 1) 3pi*(di — 8;) 4 r3(d; — s0)
2pi*(d; — ) -+ r(3d; — 3s:)
2pi*(di — 5i).

Thus the solution for the dual problem is not unique. From the
applied programming point of view the non-uniqueness of the optimum
prices is not satisfactory.

With this much background about the simplest type of transportation
cost oriented trade model, we move to a more interesting, and more
realistic, problem of the Enke-Samuelson [4] [16] spatial (partial)
equilibrium type which plays an important role in international trade
theories [9].

Consider n (> 2) countries trading homogeneous products. Each
country constitutes a single and distinct market separated from the
others but not isolated because transportation activities are carried on
beween them with a transportation cost per physical unit of product
which is independent of volume. Assume there are no legal restrictions
against the profit-seeking traders in each country. For each country a
demand function and a supply function are given as a linear function
of the domestic price of the product. Given these conditions, we wish
to ascertain:

I
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(i) the real net price in each country;
(ii) the quantity of exports or imports for each country; and

(iii) the volume and direction of trade between each possible pair
of countries.

Takayama and Judge [18] formulated this problem as follows:

Problem II

To maximize
(10) F(P) = Sap; —338:i(p:)? — 20p' —  33y:(p')?

=[5 le-ar[ 6]

subject to restrictions (7) and (8), and where
(1) rdy a Br 0 ... O [P
dz (07 0 ,32 BN 0 P2
D = . o . —_— N . . . = a — ﬁPds
0o ... is,,J

and

(12) 51 91 Y1 0 e 0 J2
[S2 ] 05 -| [0 Y2 .. 0 —I Do _| .
. =|. + 1. . . . 1= 04 yPs

LB L

To show the similarity between this problem in quadratic form and
Problems I and II, let us reformulate the problem in the following way,
assuming that there exists a solution P equals P*:

Problem IV
To maximize

SO ] S N B s o I S
= 3d*p; — 3s*p*

subject to restrictions (7) and (8), where, as a conclusion of our
primal-dual programming formulation if a regular solution exists for
Problem III [18], 3d;* equals Zs;*. :

The above problem has a solution' at P equals P* [18]. Problem 1V
is exactly the same as Problem II except that the optimum price vector
P* is already specified in this problem.

The dual of Problem IV provides us with the quantity solution we
wished to ascertain. The dual is as follows:

1 Due to the observation made on the solution of Problem II, the optimum
solution for Problem IV is not unique. However, we can always find a solution
which is the same as P*.
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Problem V

To minimize
(D) T X
subject to 0 Dt

o B x __

(14) ex=[_g]-1 6,17 =[ 5]
and restriction (3).

Because of the nature of the G matrix, (14) can be written as

(15) s X = oy — Bip,* = d;* for all j,
g=1
and
(16) —E Xy = —0; — yp™* = —s* for all i,
: Pl

Inequalities in (15) and (16) will be replaced by equalities cor-
responding to (11) and (12) in our primal-dual quadratic programming
formulation [18] which is presented as follows:

Problem VI
To maximize
a7 V' X = —33vx;; =0
subject to
(18) GPLV =T,
a9) ox =[5 |- [8°
and
(20) P=0, X=0, V=0,

where V is a slack vector with #* components v;; arranged in the same
order as the X vector.

Problem VI, once solved for the optimum P and X, provides such
information as:

(i) the real net price in each country, P*;
(ii) the quantity of exports and imports for each country?; and
(iii) the volume and direction of optimum trade between each pos-
sible pair of countries, i.e. x;* for all i and j.

Equivalent short-cut formulations of Problems I, II, III can be given
by using an excess supply or demand concept. An equivalent short-cut
formulation of Problem I is given as:

Problem VII

To minimize
(21) T, X,
subject to

2Le. Zxy* for all i with js4i, and Z x* for all j with is£ .
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(22) G X, =[D—S5l =[di—s] = les] = E
and
(23) X, =0

where E is a column vector, X, is the (n2 — n) column vector formed

by removing xj, for all i, from the vector X, G, is a n X (n* —n)

matrix of the following form:

—1—-1...—-1+41 cee 1

-+1 —1—1...—-1... 41
+1 +1 |

24) G, =

. . - +1
| +1 +1 —1—1...—1]
and T, is the (n* — n) column vector formed by removing ¢;, for all i,
from the vector T and arranging the elements in the same order as
in X,. The dual is given by:
Problem VIII3

To maximize

(25) H(P) = E'P; = 3Sep;
subject to
(26) Go’ Pd g To
and
27) P; = 0.

The quadratic programming counterpart of Problem VIII is given by:
Problem IX

To maximize
(28) F(P) == (a—e)’Pd—%Pd'(B‘!"Y)Pd

= 2(o; — 0:)pi — 3(Bi 4+ i) (pi)?

subject to
(29) G/ P T,
and
(30) P, = 0.

Problem IX has the same constraint set as Problem VIII. However,
because of the nature of the objective function, the optimum price set
is given uniquely so long as 8; + y; > 0 for all . Complete information
on the optimum prices and export and import quantities of each country

31t is casy to see that the feasibility set P = {Pag G'.P.<T, and P; =0}
is a polyhedral parallepiped containing a line L(P) = {Pa|pi=ps— . . . = pa}
passing through the origin, if T, 2> 0. Thus the feasibility set P is non-empty. Since
Ses=[erez...e[11...17 =0, vector E=1leies...e:] is perpendicular to
L(P) and the whole hyperplane of the form (25) is parallel to the edges of the
feasibility set P. This proves the existence and non-uniqueness of the solution for
Problem VIIIL.
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with other countries can be obtained by solving the quadratic primal-
dual formulation [18].

The quadratic programming formulation of partial equilibrium models
of international trade presented in Problems III and IX can be modified
to incorporate import tariffs, export subsidies, import quotas, etc. Some
such problems will be presented in the following section in the form of
simple numerical examples along with their solutions.

Section 2

A very simple problem in the form of the Koopmans-Hitchcock
transportation cost-minimization linear programme will be dealt with
first, followed by the Takayama-Judge quadratic formulations.

Let us assume that there are three countries involved in trading one
commodity under the following conditions:

(i) Excess supply or demand condition (d; — s;):

country 1 country 2 country 3
34-7619 —69-0476 34:2857

(ii) Transportation costs:
te == f1= 2} tig = t5n = 2; fos = f5z = 1.
Problems VII and VIII can be written as follows:

Problem VII

To minimize
31 T, X, = 2x12 4 2x13 + 2x21 + Xog -+ 2x31 + Xa2
subject to

X1z
—1—1 1 1 X13 34-7619
32 X21 = 4_69:
(32) 1 11 1 Xos = 690476
X31 34-2857
1 1 —1—-1 X32
and
(33) X,>=0.

Problem VIII

To maximize
(34) H(P) = 34-6719p; — 69-0476p;, - 34-2857p,
subject to

—1 1 M [ 2
—1 1 P 2
(35) 1—1 s | < 2
—1 1 1
1 —1 ||Pe 2
_ 1—1 AL | [ 1

and
(36) p; =0, for all i =1, 2, 3.
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The exact solution is
pi* = 24 p*; pp* = r=0; pt = 14 po;
X2* = 34-7619; xp5* = 34-2857.
Model I

Let us turn to a more interesting problem in which both the demand
and the supply functions for each country are given as linear functions,
such as in the following case:

country 1 country 2 country 3
d; = 200 — 10p, de — 100 — 5p» d; = 160 — 8p;
§; = —50 4 10p,; s; = —50 4 20p. ss = —50+4 10ps.
The excess supply conditions are derived from the above as:
country 1 country 2 country 3
e = dy — 5y e = ds — S es — ds — 53
= 250 — 20p, = 150 — 25p, = 210 — 18ps.

The transportation costs are assumed to be the same as those for the
previous example. The quadratic primal formulation takes the following
form:

Problem IX
To maximize
(37)  F(P) = 250p; — 10(p1)*® + 150p> — 12-5(p=)® +
10ps — 9(ps)?
subject to (35) and (36).
The quadratic primal-dual formulation takes the following form:

Problem X
To maximize
(38) —XV, = Ixvi; <0, i %]
subject to (35) where V, is the slack vector associated with (35)
and

- Xso
—1—1 1 1 §13 250 — 20p] ey
(39) 1 —1 —1 1 x‘:; =150 —25p. 1 =1|e.
1 1 —1 —1 X31 210 — 18p5 €3
| X32 |
or
(X127
—1 -1 1 1 X13 20 P 250
N1 —1-1 L] 25 e |=|150
1 1 —1—1| 18 210
X31 D3
| X32 |
and

(40) X,=0, P,>0, V,>0.



44 AUSTRALIAN JOURNAL OF AGRICULTURAL ECONOMICS  JUNE
The solution is:
p¥ = 10-7620; p2* = 8-7620; ps* = 9-7620;
X1 ¥¥= 57-6190; x12F = 0; x13¥ = 03
X * = 34-7619;  x**= 56'1905; xs3* = 34-2857;
X3 = 0; Xa0® = 0; X33 *= 47-5190;

where the double starred figures are computed from the assumed demand
and supply equations.

In the following examples we will consider situations involving
import tariffs, quotas and export subsidies. It is in these cases that the
quadratic primal-dual formulation shows its power and flexibility.

Model Ila

We use the same demand and supply functions and transportation
costs as in Model I but assume that country 1 imposes import tariffs,
denoted by 8; and 8, both equal to 1-0 per unit of product. The
problem is as follows:

Problem Xla
To maximize (37) subject to

11 B e . 2 7
—1 1 ts 2
1 —1 Pl |mdsa | _ [2+1
(41) —1 1 2 S |t — |1
1 —1 || P tar - 8a1 241
1 —1 i | 32 _1 B

and (39’) and (40). The solution is as follows:

p* = 11:-1587; pe = 8-1487; s = 101587,
x115F—= 51-5873; x12¥ = 0; xi3¥ = 0y

.X'21* = 268254; JC22**: 592064; x;gg* = 2714—29,
.7631* = 0; x32* = 0, X33**: 51-5873.

Model 11b

Let us assume that country 2 provides export subsidies, denoted by
721(=0-5) and r23(=0-5) per unit of product to help the industry.

We can formulate and solve this problem as follows:

Problem XIb
To maximize (37) subject to

1 1 7T o W 110 "2
—1 1 Pz | ~ f13 2
(42) 1 —1 ps | |t — T 2—-05
—1 1 123—723 = 1 —05
1 —1 31 2
| 1 —1 1 L | 39 [ 1 _
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and (39’) and (40). The solution is:

TRADE AND PROGRAMMING

pi¥ = 10-5635; p2* = 9-0635; pa* = 9:5635;
x11**= 55-6349; x12* = 0 x5 = 0;

Xor¥ = 38-7302; Xo0¥*= 54-6825; Xos® = 378571,
x5, = 0 x32¥ = O X33 = 45-6349.

Consistency of the solutions so far obtained with commonsense in
the so-called “partial equilibrium short-run” framework of international
trade theory is rather obvious.

The next model provides an analytical tool for solving a problem with
import quotas imposed by some importing country or countries.

Model 111

Imposition of an import quota by some importing country or countries
takes us out of a rather comfortable world, in which the existence and
uniqueness of the solutions are known, to a challenging one where we
know very little. A typical semi-definite quadratic programming problem
of this more realistic type is as follows:

Assume that country 1 and country 2 restrict their imports of the
product to 30 units and 20 units respectively. This makes us modify
our formulation to the following:

Problem XII
To maximize

(43) F(P) = 250p; — 10(p1)? + 150p> — 12-5(p=)* +
210p; — 9(p3)* — 30py — 20p;
subject to
—1 1 e ] e 1. [20]
—1 1 —1 Dz Vis 2
(44) 1—1 -1 Ds T Vo1 . 2
-1 1 -1 Da Vag o 1
1 —1—1 DPs V31 2
| 1—1 b | Vas .1
and
(45) V,>=20, and P, =0

WhCI.‘C.Pa e_quals (P15 P25 P3s P4 ps)’ and p, and ps can be considered
administrative costs of the imposition of the import quota by country 1

and country 2 respectively.
For completeness, the quadratic primal-dual formulation of Problem

XII is given below.

Problem XIII
To maximize (38) subject to (44) and

- ] ]
—1—1 1 1 xizw 250 — 20p,
| 1 —1—-1 1 150 — 25ps
X .
(46) 1 1=l e (T [210—18p
1 —1 . —30
31
1 1 o ~20
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or
_ 4 A a o -
—1—1 1 1 ;‘12 20 P1 250
1 —1-1 1 x;f 25 P 150
(46,) 1 1—1——1 Xos + 18 Pa — 210
—1 -1 0 —30
1 Xa1 D4
i -1 — 1 x| | O~ | ps | __2O_j
and
(47) Voz0, P, =0, V,=0.
The solution is:
Pt = 11:0; p2* = 80; ps* = 10-5555;
ps* = 1:0; ps* = 1-5555;
© x1**= 50-0; Xt = 0; x* = 0;
Xo1* = 30-0; Xoo™*= 60-0; Xa3™ = 20-0;
x31* = 0; x32* = 0; X33**= 55-5555.

By virtue of the non-vacuousness of the constraint set R of (35)
and also (44), if the objective function is only concave or negative
semi-definite, then a solution or a unique solution always exists for our
price formulation, Models I through III. If further, we allow slack
variables, say Y, corresponding to Y in [18], for the second constraint
such as (39’) and (46’) in the quadratic primal-dual formulation, then
we will always find a solution if the objective function is negative semi-
definite. This statement, given without rigorous proof, forms a strong
basis for the efficiency of our programming formulation of the type of
problem dealt with in this section. Further extensions to encompass
multi-product multi-country cases, changes of exchange rates, adminis-
tratively fixed prices, etc., can be solved effectively [18].

Section 3

There are nearly as many different problem formulations (models) as
there are specialists in any economic field. In the framework of trans-
portation cost oriented partial equilibrium models, an intertemporal
partial equilibrium model [19] has opened up a way to solve one of the
knotty problems in the field of spatial intertemporal analysis.

Another extension of spatial equilibrium models can be found in a
quadratic programming formulation of an interregional activity analysis
model proposed by Takayama and Judge [20]. Since it is difficult to
treat this problem in a simple manner, I will not discuss this model in
mathematical terms. Aside from the practical solvability of program-
ming problems, it was proved by McKenzie [12] and Uzawa [22] that
generally there exists a general equilibrium solution for a model in
which either well-behaved demand functions for all commodities exist
[12] or there is a well-behaved welfare function and the supply of all
commodities is generated by the Koopmans-type activity analysis model
[22].

From the mathematical programming point of view, proofs for the
existence of a solution based on the so-called “fixed point theorem”
employed by McKenzie [12], Arrow-Debreu [1] and Hadley and Kemp
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[7]1 do not help in analytically approaching the equilbrium solution (if
there is one) for problems which contain the “balance of payment” of
each country as one necessary condition.

In most of the mathematical programming models, we face the
situation in which the primal variables are the activity levels or the
quantities of production and the dual variables are the shadow prices
of resources (as in Problems I and II, for instance), or vice versa (as
in Problems III and V). In such situations it is not possible to control
the value represented by the sum of products of the primal variables
and the dual variables of the model.* A method of attaining the balance
of payments has been suggested [21] but has not been tested for its
efficiency.
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