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ASSESSMENT OF THE OUTPUT
OF A STOCHASTIC DECISION MODEL

J. B. HARDAKER and A. G. TANAGO*
i University of New England

" The concept of stochastic dominance is described and its use is illus-
trated in relation to the evaluation of the output of a systems simulation
model of lucerne haymaking in south-west Spain. Two alternative
machinery systems are ranked for various lucerne areas using the
criteria of stochastic dominance, and these results are compared with
those obtained using mean-variance analysis.

Background

In a discussion of the interpretation of systems simulation output for
managerial purposes, Dillon 4] notes that it is generally not valid to
draw blanket recommendations for managerial action from such output.
In principle, the beliefs and preferences of the individual manager are
paramount. But as a practical matter, in an agriculture comprising
many family-sized firms, the development of general recommendations
for complex stochastic decision problems may be a necessary expedient
to spread the costs of analysis. In such circumstances, it is clearly
desirable that the recommendations made should be as general as
possible in terms of the implied assumptions about decision makers’
attitudes.

One method of general assessment of risky decision strategies that
has been quite extensively used in agricultural analyses is mean-
variance (E-V) analysis [3, pp. 27-31]. By use of E-V analysis the set
of available strategies can be partitioned into ‘efficient’ and “inefficient’
sub-sets. A strategy is E-V efficient if no other (pure or mixed) strategy
can be found that gives a greater expected payoff with the same variance
or the same expected payoff with a lesser variance. By identifying the
E-V efficient strategies the choice problem is simplified, if not always
resolved, for risk-averse decision makers. Although the use of E-V
analysis in agricultural applications has been defended by Anderson [1],
the method has some important theoretical limitations [7]. For E-V
analysis to be strictly valid either the distribution of outcomes must be
normal, or the decision maker’s utility function for the payoffs must be
quadratic with risk aversion. Otherwise its use may be justified as an
approximation by appeal to the Taylor series expansion [3, p. 25] when
derivatives of the utility function beyond the second are small. Empirical
evidence indicates that many agricultural systems do not generate out-
comes that are normally distributed (e.g. [3]), while introspection
suggests that the quadratic function is unlikely to be an appropriate
representation of commonly-held risk attitudes, since it implies increas-
ing risk aversion as the magnitudes of the payoffs increase [9].

* The authors are indebted to Jock Anderson and John Dillon for helpful
comments. The comments of the anonymous referees for this Journal are also
gratefully acknowledged. A. G. Tanago’s graduate work at the University of New
England, of which this note is a part, was made possible by the financial support
of the Agencia de Desarrollo Ganadero, Ministerio de Agricultura, Spain.
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An alternative method of identifying an efficient sub-set of strategies
under risk is provided by stochastic dominance analysis. One strategy
stochastically dominates another if it would be preferred by all decision
makers whose utility functions conform with certain qualitative condi-
tions to be outlined later. First, second and third-degree stochastic
dominance have been defined [6, 10, 12].

First-degree stochastic dominance (FSD): the probability function
f(x) dominates the probability function g(x) by FSD if, and only if,
Fi(y) < Gy(y) for all ye[a, b], with F;(y) < G;,(y) for at least one
value of y.

Second-degree stochastic dominance (SSD): the probability function
f(x) dominates the probability function g(x) by SSD if, and only if,
Fa(y) << Go(y) for all ye[a, b], with Fo(y) < Gs(y) for at least one
value of y.

Third-degree stochastic dominance (TSD): the probability function
f(x) dominates the probability function g(x) by TSD if, and only if,
Fi(y) < Gs(y) for all yefa, b], Fo(b) << Gza(b), with Fs(y) < Gs(y)
for at least one value of y.

In the above, x is a continuous random variable of outcomes of the
risky prospects; the closed interval [a, b] is the sample space of both
prospects; Fn(y) = f"F,_:(x)dx, F,(y) = f(x), and similarly for
Gu(y). Corresponding definitions can be derived for the case where x
is a discrete random variable.

Each of these dominance criteria divides the set of possible strategies
into efficient and inefficient sub-sets, where a strategy is efficient if, and
only if, it is not dominated by another strategy. FSD implies SSD which
implies TSD, so that more strategies can be ordered by TSD than by
SSD which in turn can order more strategies than FSD.

The use of stochastic dominance is not restricted to distributions of
any particular form. However, the existence of a utility function for the
decision maker that conforms with the usual axioms of Benoullian
theory [5] is assumed. Moreover, the criteria depend upon certain
assumptions about the form of this utility function. FSD requires only
that utility shall be a monotonically increasing function of the payofi,
ie. Ui(y) > O, ye[a, b] SSD requires also that the function shall be
everywhere risk averse, i.e. Uj(y) > O and Ux(y) < O, ye[a, b], and
TSD requires the additional condition of decreasing risk aversion, i.e.
Ui(y) > 0, Uz(y) < O and Us(y) > O, ye[a, b], where U, (y) is the
n-th derivative of the decision maker’s utility function.

The formal proofs of FSD and SSD are provided by Hadar and
Russell [6], and Whitmore [12] gives a proof of TSD. In this note we
confine oursclves to an informal interpretation of FSD and SSD. (For
TSD we find an intuitive interpretation inappropriate and must rely on
reference to the formal proof.)

The definition of FSD means that the cumulative density function
(CDF) of the preferred prospect must lie in part to the right and
nowhere to the left of the CDF for the dominated prospect, as illustrated
in Figure 1. When the CDFs show one or more intersections, as illus-
trated in Figure 2, the condition for FSD is not satisfied and the distri-
butions must be examined in relation to the criteria of SSD or TSD.

For a simple illustration of FSD, consider two risky prospects s; and
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Fl(y), Gl(y)

Figure 1-—First-degree stochastic dominance.

Fl(y), Gl(y)

FIGURE 2—No first-degree stochastic dominance.
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s2, each with uncertain payoffs of a and b, a < b. Assume the existence
of a monotonically increasing utility function u such that u(a) < u(b).
Suppose the probability of payoff a for prospect s; is p and for s, is q.
Then the utilities of the two prospects are given by their respective
expectations:

u(s;) = pu(a) -4 (l-p)u(b)

u(sz) = qu(a) 4 (1-q)u(b)
The rule for FSD in this simple situation is the self-evident condition
that s; will be preferred to s, if, and only if, p < q. That is, all decision
makers who prefer more payoff to less will prefer the prospect for which
the probability of receiving the lesser payoff is lowest.

Consider now an extension of the above situation where we have not
two but n possible payoffs for each prospect. Denote these payofs,
arranged in increasing order of magnitude, by Xi, Xs, . . ., Xo. Under the
same assumption of a monotonically increasing utility function, u, we
have u(x;) < u(x2) < ... < u(xy), i.e. u(xy) < u(x;) if, and only
if, 1 < j. Let the respective probabilities for s; be py, ps, - . ., pn and for
s2 be q1, g2, . . ., Qo. We can now deduce from the simple example above
that s, will be preferred to s, if p; < q; and px > g, where k > j with
pi = q: for all i £ j,k. That is s, will be preferred if it bears a lower
probability than s, of one less favourable payoff, with a correspondingly
increased probability of one more favourable payoff. This is a particular
example of the general condition for FSD, which for this discrete case
can be written as

by r
S < S guforr=1,2,...,n
i—1 i=1
with strict inequality for at least one value of r. This condition implies
a consistent weighting of probabilities towards the more favourable
payoffs for s; compared with s,.

For an interpretation of SSD it is convenient to rewrite the condition

as

afyFI(X)dX - afyGl(X)dX < 0.
In applying this rule to the situation shown in Figure 2, and taking the
particular value of y = y/, illustrated, we can divide the interval [a y']
into two at ¢ where the curves intersect. The condition for SSD can now
be expanded to give

[ofF1(x)dx — .f°G1(x)dx] + [J¥Fi(x)dx — J"'G,(x)dx] < 0.
The term in the first set of square brackets is the negative of area A in
the figure, while the term in the second set of square brackets is the area
B. The condition for SSD is least likely to be satisfied for the value of
y' shown, and we have therefore deduced that the probability function
f(x) will dominate the function g(x) by SSD if the area A is not less
than the area B.

For an explanation of this result we need to recall that SSD requires
the assumption of diminishing marginal utility (U.(y) < 0). Assume
prospect s; has payoffs distributed according to f(x) and prospect s»
has payoffs distributed according to g(x). Then the utility gain for s,
over sp associated with the reduced probability of low payoffs repre-
sented by area A must be less than the utility loss associated with the
higher probability of intermediate outcomes represented by area B, since
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area A > area B and the marginal utility of x is greater in the interval
[a c] than in the interval [c y'].

Application

Both E-V analysis and stochastic dominance analysis were applied
in the assessment of the results of a systems simulation model of lucerne
haymaking on irrigated farms in south-west Spain. The objective of the
study was to choose between two alternative sets of haymaking equip-
ment. The system was stochastic, being affected by random weather
variables. The principal output variable of interest was gross margin,
which was measured in replicated experimental treatments for each
machinery system on a number of representative farm areas. More
complete details of the model are provided elsewhere [11].

For E-V analysis the first two moments of the distribution of out-
comes were estimated directly from the experimental results for each
treatment. Since only two strategies were considered for each farm area,
any E-V ordering resulted in the identification of a single E-V efficient
strategy. E-V analysis proved capable of ordering the machinery systems
for five of the ten farm areas considered. However, inspection of the
sampled outcomes indicated that the payoffs were not normally distri-
buted, so that strictly valid use of the E-V criterion depended upon the
assumption of quadratic utility functions.

Application of stochastic dominance analysis involved the steps
described below.

(1) The cumulative density function (CDF) for each experimental
treatment was estimated from the set of outcomes obtained from the
model using a procedure for smoothing sample data [2].

(2) The CDFs for both machinery systems were plotted on the same
graph for each farm area considered. Cases of FSD could then be jden-
tified by visual inspection. For example, Figure 3, which corresponds
to an area of 30 ha, shows that the values of the CDF for machinery
system 2 are everywhere larger than those of machinery system 1. Thus
system 1 is stochastically larger than system 2 and dominates in the
sense of FSD. Where FSD did not occur, as illustrated in Figure 4,
which relates to a lucerne area of 40 ha, further analysis involving
SSD or TSD was needed. In fact, the mechanization strategies could be
ranked by FSD in all cases but one.!

(3) The analysis of SSD was accomplished by dividing the range of
X into a large number of discrete intervals of width Ax. The area under
the CDF curve was then estimated as the sum of the series of rectangles
of width Ax and of height equal to the ordinate of the midpoint of
each interval.2 i.e.

' The reason for this favourable result was that the shapes of the distributions
were similar for both systems but as the harvest area was varied, the relative
average fixed costs were affected. In terms of the FSD analysis, this resulted in
shifts in the relative positions of the two CDFs with clear dominance for system 1
on the smaller areas and for system 2 for larger areas.

* This approximate method was used since algebraic functions for the CDFs
were not fitted. Had such algebraic functions been obtained, direct integration
might have been possible.
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n
Fo(yn) = Ax 3 Fo(x; — % AX),
x—=1
where x; = x;,_; 4+ 'AX;
R = (Jo — Xo)/AX;

YuelXo, X1+« oy Xpl;
X, = a;
Xp = b.

The estimates F5(y) and G:(y) were compared for each value of y for
assessment of SSD. In the case studied, SSD was not found, so further
analysis using TSD was needed.

(4) The analysis of TSD was accomplished by estimating the area
under the relevant curves using the same method as for SSD. i.e.

n
F3(yu) = Ax 3 Fp(xi — } AX),

1=

1.0 .

System 2

System 1

240 280 320 360 y

FiGurRe 3—Cumulative density functions fitted to assessed fractiles
(area of 30 ha).
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where terms are defined as before. The results of this analysis enabled
the decision strategies for the remaining case to be ranked since it was
found that for a lucerne area of 40 ha, system 1 dominated system 2
by TSD.

Discussion

A comparison of the results obtained from E-V and stochastic dom-
inance analysis is presented in Table 1. It can be seen that, in this
application, stochastic dominance criteria were able to identify the
optimal strategy for all ten cases considered, whereas E-V analysis
could rank the strategies in only half the cases. The generality of this
apparent superiority of stochastic dominance over E-V analysis must
be suspect since it is somewhat at variance with the results of Porter
and Gaumnitz [8] who concluded, on the basis of a more comprehensive
analysis than ours, that except for highly risk-averse decision makers,
the choice between the two methods of analysis was not critical.

LG, G, (¥)

1.0
B 1
System 2
I
! System 1
.6 1
N
.20
g r v T v .
260 300 340 380 4

FicURe 4—Cumulative density functions fitted to assessed fractiles
(area of 40 ha).
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TABLE 1

Efficient Strategies for Each Area Identified Using
Different Methods of Analysis®

Area E-V Analysis Stochastic Dominance
(ha) FSD SSD TSD
1¢ 1 1 1 1
20 1 1 1 1
30 1 1 1 1
40 0 0 0 1
50 0 2 2 2
60 2 2 2 2
80 2 2 2 2
100 0 2 2 2
120 0 2 2 2
150 0 2 2 2

* The numeral 1 indicates that machinery system 1 dominates system 2, while
the numeral 2 indicates that the reverse applies. Zero is used when the criterion
does not lead to the selection of a unique efficient strategy.

An important difference between the two methods is the ability of
stochastic dominance analysis to eliminate low return, low variance,
E-V efficient strategies [8, p- 445]. On the other hand, as Whitmore
notes [12, p. 458], there are many practical situations where preference
between two risky prospects cannot be established by stochastic dom-
inance analysis. For example, prospect s; may appear attractive relative
to prospect s, except that there is a small, but non-zero probability of
payoffs for s, more adverse than the worst payoff for ss. Regardless of
the rest of the distribution of the payoffs of the two prospects, stochastic
dominance criteria will never establish that s; is preferred to s,. In such
cases E-V analysis may provide a reliable ranking of the two prospects.

In this application stochastic dominance analysis has been shown to
advantage partly because only two decision options were considered. In
other applications with more than two options it is to be expected that
the stochastically dominant set will contain more than one strategy.
Identification of the single optimal strategy will then require either a
subjective appraisal by each individual decision maker, or more com-
plete specification of each decision maker’s utility function. Note too
that the valid use of stochastic dominance analysis, like E-V analysis,
requires the distributions of payoffs to conform with the decision
maker’s subjective beliefs. Such a requirement is likely to be satisfied
only when the decision model has been developed using the individual
decision maker’s subjective probabilities, or when the decision system,
including the stochastic components affecting it, is well understood, so
that the distributions of outcomes can be regarded as ‘public’.

Although not presenting any severe operational difficulties, stochastic
dominance analysis is perhaps not quite so simple to apply as E-V
analysis. Certainly, there is no obvious way in which the criteria can
be incorporated into a mathematical programming model, as is possible
with E-V analysis. However, the chief merit of stochastic dominance
over E-V analysis lies in the greater generality of the underlving
assumptions. The theoretical superiority of the technique and its
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relatively straight-forward application, indicate that it deserves more
attention as an analytical approach to decision making under risk.
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