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Induced Innovation Tests on Western American Agriculture: 

A Cointegration Analysis 

 

Introduction 

U.S. agricultural productivity has experienced rapid growth for many decades.  The 

average annual rate of total factor productivity growth was 1.99 percent for the period of 

1960-1993 (Ball et al. 1997).  Factor productivity is measured as a ratio of output to input.  

Technological change can lead to productivity growth by either increasing total output or 

increasing usage of relatively cheap inputs and reducing relatively expensive inputs.  

Determination of the magnitude and the direction of technological change in agricultural 

production has attracted much attention and become the subject of intense research efforts 

over the last thirty years (Huffman and Evenson 1993).  This topic is frequently studied in 

two different ways.  One is to consider effects of investment in research and development 

on technological change (Huffman and Evenson 1993; Alston, Craig, and Pardey 1998).  

The other is to explain technological change by testing induced innovation hypothesis 

(Hicks 1932; Hayami and Ruttan 1970; Binswanger 1974; Lee 1983; Kawagoe, Otsuka, 

and Hayami 1986; Clark and Youngblood 1992; Lambert and Shonkwiler 1995).  

The theory of induced innovation, first proposed by Hicks (1932), is the most 

important theory in the field of technological change.  This theory hypothesized that 

changes in relative factor prices will lead to biased technological change.  Based on the 

hypothesis, when relative factor prices change, a cost-minimizing producer will adopt new 
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technology which saves inputs which are relatively more expensive.  So the technological 

change induced by input prices makes the isoquant shift along a long-run equilibrium path.  

Ahmad (1966) introduced the innovation possibility curve (IPC), the envelope curve of all 

the isoquants (representing different technologies), to represent such a path.   

A considerable number of researchers have attempted to test Hicks’ induced 

innovation hypothesis in agriculture and have used a variety of methods.  Hayami and 

Ruttan (1970) made the pioneering contribution in the field of testing the induced 

innovation hypothesis.  Their basic model regressed the logarithms of the factor ratios on 

the logarithms of the factor price ratios using aggregate data of U.S. and Japan for 

1880-1960.  If the coefficient of the relative price ratio is negative and significantly 

different from zero, the result is considered to accept the inducement hypothesis.  

Consistency with induced innovation hypothesis was found in their empirical result. 

Hayami and Ruttan’s tests were ad hoc, and the most important limitation was the 

failure to distinguish between technological change effects and the effects of factor 

substitution under a given technology (Oniki 2000).  In order to distinguish these two 

effects, Binswanger (1974) incorporated a time trend variable (proxy for technological 

change) in a translog cost function.  His tests were based on a two-step process.  He first 

estimated the production technology (primal or dual representation) and computed indices 

of biased technological changes.  He then compared those indices to the indices of relative 

input prices.  Like Hayami and Ruttan, Binswanger found consistency with the induced 

innovation hypothesis.  This approach has been applied in subsequent empirical studies 
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with modest variation (e.g., Kawagoe, Otsuka, and Hayami 1986; Kuroda 1987; Yuhn 

1991; Lin 1991; Terrel 1993).  All of these studies found significant induced innovation. 

Assuming all dependent and independent variables are stationary, a linear 

deterministic time trend has been used as a proxy of technological change in these 

traditional models since there is no direct measure of technological change.  Then the 

technological change bias is measured as the first derivative of input quantity (or share) 

with respect to time.  However, Nelson and Kang (1984) pointed out that spurious results 

may be achieved from estimation procedures inappropriately incorporating time as an 

independent variable.  When some or all of the data in the model are nonstationary, 

coefficient estimates will not have a regular distribution, and the use of normal statistical 

tests may incorrectly reject the null hypothesis (Durlauf and Phillips 1988).   

In order to solve this problem, Clark and Youngblood (1992) proposed a time series 

approach to test for induced innovation.  According to their method, if cointegration exists 

among the nonstationary variables, there is no bias in technological change since the 

residual of the translog share function is stationary.  On the other hand, if there is no 

cointegration among the variables, the residual is nonstationary and the technological 

change effects are included in the residual.  They concluded that technological change was 

neutral for central Canadian agriculture by using this time series approach.  Machado 

(1995) and Lambert and Shonkwiler (1995) also applied this method to test the induced 

innovation hypothesis in their empirical studies of U.S. agriculture.  Although Lambert and 

Shonkwiler found technological bias in labor and material factor shares, Clark and 
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Youngblood, Machado found little support for the induced innovation hypothesis.  Some 

other studies also found little evidence to support the induced innovation hypothesis (e.g., 

Olmstead and Rhode 1993, 1998). 

Although Clark and Youngblood proposed a more appropriate way to test the induced 

innovation hypothesis than the traditional model, specifics of their ideas was questioned by 

Oniki (2000).  Oniki argued that the residual of a cointegration part does not represent 

technological change effects.  Therefore, the long-run relationship does not imply a lack of 

technological change.  He concluded that the induced innovation hypothesis is supported 

by the existence of a difference in the elasticities of factor substitution along the isoquant 

curve and the innovation possibility curve.  Thirtle, Townsend and Zyl (1998) also applied 

a time series model to test for the induced innovation hypothesis by comparing long-run 

and short-run effect of changes in relative factor prices.  

Although markedly different from traditional models used to test the induced 

innovation hypothesis, a time series model may misspecify the relationships among prices 

and shares by failing to account for the effects of investment in research and development. 

The reason is that relative price changes are only part of the explanation of changes in input 

ratios.  Research and extension (R&E) expenditures, an important determinant of 

productivity growth, should also be considered in the estimation of technical biases. This 

paper tests for the IIH following the general logic of Oniki’s test procedure. Two 

augmentations are made to Oniki’s method. First, the IIH is tested while simultaneously 

measuring the effect of R&E on input bias. The second augmentation is an empirical 
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objective – to examine the sensitivity of IIH test conclusions to geographic aggregation. 

Because valuable information can be lost in aggregate data for large and diverse areas, the 

consistency of IIH test conclusions is examined for a state (WA), two regions (Pacific 

Northwest and West), and the U.S.  

 The model used to conduct the induced innovation tests is specified in the next section.  

It is sequentially followed by testing methods, data description, and empirical results.  The 

final section concludes. 

Model  

A translog, twice-differentiable cost function is used to estimate factor bias in this 

paper.  The dual cost function provides a useful summary of behavioral responses to 

changes in relative input prices.  Moreover, this model allows us to estimate the effects of 

research investment on input shares. 

We assume that producers minimize a static cost function, C(y, w, R) by choosing 

input combinations that satisfy 

C(y, w, R) = minx{w’x : F(x, y, R) = 0}               (1) 

Where y is output, w is the vector of input prices, R is R&E expenditure (treated as a fixed 

input), and F(⋅) is the production function.  Under competitive, cost-minimizing behavior, 

C(y, w, R) is non-decreasing in y and w, non-increasing in R, concave and homogeneous of 

degree one in w.  

 Considering one output (aggregate of crop and livestock commodities) and two inputs 

(labor and capital), the variable cost function in (1) is approximated by the following 
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translog function: 
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Test Procedure 

Oniki’s (2000) challenge of Clark and Youngblood’s time series method for testing the 

induced innovation hypothesis rested on the argument that the residual of a cointegrated 
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series does not represent technological change effects.  Instead, the short-run effects 

(represented by an isoquant) plus the technical change effects are equal to long-run effects 

(represented by the IPC).  Therefore, Oniki argued that the existence of the IPC is a 

necessary condition for induced innovation, which counters Clark and Youngblood’s 

statement that the existence of the long-run relationship (cointegration) “implies that 

technical change in neutral” (p. 354).  In Oniki’s study, the induced innovation hypothesis 

was tested by comparing the long-run Allen-Uzawa’s partial elasticities of factor 

substitution (AUES) with the short-run AUES.  If the long-run elasticity is greater than the 

short-run elasticity, the curvature of the isoquant is greater than the curvature of the IPC, 

which implies that induced innovation exists in the production process.   

Although Oniki’s procedure for testing the induced innovation hypothesis is an 

important correction to Clark and Youngblood’s time series method, his model didn’t 

include technology variables.  Technology variables, such as research and extension 

investments, could be indispensable for explaining some biases due to technical change.  

Based on the Oniki’s testing logic and explicitly incorporating R&E investments in the 

model, we test the induced innovation hypothesis on domestic agriculture by the following 

procedures. 

First, since cointegration techniques are used to determine whether long-run 

relationships exist among the variables, stationarity properties of the data series in equation 

(5) are checked to determine whether each is nonstationary and integrated of the same 

order.   
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The augmented Dickey-Fuller (ADF) test is commonly used to test for the unit root of 

the series.  This test is generated from the following regression: 

t

k
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tjtt XXX εφρδ +∆++=∆ ∑
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−

1
1            (9) 

where X represents the variables (input share, input prices, output level, and R&E 

expenditure) in equation (5), ∆Xt = Xt - Xt-1, and k is the lag order chosen such that 31/ tk →

0 as k and t → ∞ and regression residuals behave like a white noise series.  The ADF test 

statistic is the ratio of ρ to its standard error.  The null hypothesis of this test is that a 

process has a unit root (nonstationary), and it is rejected when the test statistic exceeds the 

critical value at the specified significant level (α) or the p-value is less than the specified 

significance level.  The deterministic part, δ, can be zero, a constant, or a constant plus a 

linear time trend.    

A problem with the ADF test is that the stochastic trend is the null hypothesis.  This 

ensures that a unit root is accepted unless there is strong evidence against it. One way to 

overcome this weakness is to increase the specified significance level (type I error) which 

can lead to a decrease of type II error.  Then the power of a test (1 - type II error) will 

increase.  The other way is to reverse the null and alternative hypotheses.  Kwiatkowski 

and colleagues (1991) provided a test (KPSS) in which the null hypothesis is stationary (no 

unit root).  When both ADF and KPSS tests are applied, consistent results (the null 

hypothesis of ADF is not rejected and the null of KPSS test is rejected or the null 

hypothesis of ADF is rejected and the null of KPSS test is not rejected) will increase the 
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reliability of either test.  However, we may also get inconsistent results when the null 

hypotheses of both tests are rejected or both are not rejected.  In this situation, the tests give 

indeterminate results and we can’t conclude whether or not the time series is stationary.  In 

order to simplify the test procedures, we use the first method to increase the power of the 

ADF test.  We use a 10% rather than a 5% significance level for our ADF tests. 

Second, based on the outcome of the unit root tests, a cointegration test can be applied 

to determine whether there exists a linear combination of variables that are integrated to the 

same order.  Johansen’s cointegration test is used to estimate all cointegrating relationships 

and conduct tests for the number of cointegrating vectors under a multivariate framework. 

Consider a vector of n time-ordered variables Xt, where Xt follows an unrestricted 

vector autoregression (VAR):  

tptpttt XXXX εµπππ +++++= −−− ...2211             (10) 

where each of the πi is an n×n matrix of parameters, µ is a constant term and εt are 

identically and independently distributed with zero mean and contemporaneous covariance 

matrix Ω.  The above VAR system can be written in error correction form (ECM) as: 

t
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where Π  =I - π1 - π2  -…- πp, and Γi = [(I + π1), (I +  π1 +  π2), …, (I + π1 +  π2 +…+ πp)], 

and p is chosen so that εt is a multivariate normal white noise process with mean 0 and 

finite covariance matrix.  The rank of Π, r, can be used to investigate the cointegration 

relationship.  If r = n, the variables in levels are stationary.  If r = 0, none of the linear 
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combinations is stationary.  When 0 < r < n, there exist r cointegration vectors or r 

stationary linear combinations of Xt.  The matrix Π can be factored as Π = αβ’, where both 

α and β are n×r matrices, and β may be interpreted as the matrix of cointegrating vectors 

representing the long-run relationship, and α is the matrix of adjustment parameters.   

Johansen suggested two statistics to test the null hypothesis that there are at most r 

cointegration vectors in the system.  One is the maximal eigenvalue test and the other is the 

trace test.  The alternative hypothesis is that there are exactly r+1 cointegration vectors for 

the former while there exist more than r cointegration vectors for the latter.  The statistic for 

each test follows a non-standard distribution.  The critical values for the tests were 

simulated by Johansen and Joselius (1990).  We apply both tests in this study. 

Third, if there exists cointegration among the variables in equation (5), the short-run 

and the long-run relationships of the variables can be estimated by the error correction 

model (ECM).  If all variables are integrated to the order d, the pth order of the vector ECM 

for the translog share input equations can be represented by the following equation: 
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A is the loading matrix of adjustment parameters. 

Suppose all the variables are integrated to the first order and the lag order is 1, i.e., d = 
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p = 1, equation (12) can be rewritten in the following form: 

ttRtytwttRtytwt RywsRyws εβββγγ +−−Β−−Α+∆+∆+∆Γ=∆ −−−− )( 11101        (13) 

The differenced terms in the above model are stationary (I(0)) and cover the short-run 

situation while the terms enclosed in parentheses are I(1) and describe the long-run 

relationship.  As the relative factor prices change, the input shares s will change 

immediately owing to the substitution effects (short-run effects), which are reflected by the 

matrix of Γw.  According to Oniki, the stochastic part, δ=A(st-1 - β0 - Βwwt-1 - βyyt-1- βRRt-1), 

represents the technological change and its value tends to zero in the long-run equilibrium.  

In the short run, changes in relative factor prices will make δ non-zero, which shifts the 

short-run production process until the shares reach a new long-run equilibrium, where δ = 0.  

Therefore, the long-run effects of relative factor price changes are Bw while the short-run 

effects are Γw.   

The curvature of the isoquant and the IPC can be represented by the short-run AUES 

and the long-run AUES, respectively.  From equation (8), the short-run and long-run AUES, 

respectively, of factor i for factor j are estimated by: 
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where γij and βij are the ijth element of the matrix Γw and Βw, respectively, in equation (13).  

Following Oniki (2000), technological change is the difference between the long-run and 

the short-run production process.  Therefore, induced innovation exists if the estimated 
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long-run elasticities of substitution are significantly greater than the estimated short-run 

elasticities. 

Based on equation (13), biased technological change can be induced by changes in 

output levels and by R&E investments in addition to changes in relative factor prices.  The 

possibility of output- and R&E investment-induced technological change can be tested in a 

similar way to testing for price-induced innovation.  If the long-run input-output elasticity 

is significantly greater than the short-run input-output elasticity, output-induced 

technological change occurs.  Similarly, R&E investment-induced technological change 

exists when the long-run input-RE investment elasticity is significantly greater than the 

short-run input-RE investment elasticity. 

Data 

Annual U.S. and state-level data for the period, 1960-1999, were used in this study.  

The data source was Ball’s (2002) agricultural output and input series for the U.S. and the 

contiguous 48 states.  State-level data were used for 11 Western states – AZ, CA, CO, ID, 

MT, NV, NM, OR, UT, WA, WY.  This data set includes price and quantity data for 26 

individual inputs (25 for WA, 20 for the U.S.) and 20-75 individual outputs for each of the 

Western states (68 for the U.S.).1  Although the number of outputs varies considerably 

among states, virtually every Western state produces one or more commodity within the 

broad categories of livestock, milk, poultry, feed grains, food grains, oilseeds, vegetables, 

                                                        
1 The number of outputs in each state are: AZ – 34, CA – 75, CO – 36, ID – 30, MT – 20, NV – 22, NM – 28, OR – 42, UT 
– 29, WA – 43, WY – 21. 
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fruits and nut crops.2  Detailed input data cover the broad categories of labor, capital, land, 

chemicals, energy, and materials.3   

The research and extension investment data for the period, 1927-1995, were from 

Huffman (2002).  Current investments in research and extension are very unlikely to affect 

current production technology and costs.  It is the cumulative effect of lagged investments.  

Research and extension investments incurred at least seven years earlier and sometimes as 

much as 25-30 years earlier have been estimated to affect agricultural production costs in 

the United States (Evenson and Pray 1991, Pardey and Craig 1989, Chavas and Cox 1992).  

A seven-year lag was considered in this paper.  In other words, current investments in 

research and extension are expected to affect production technology seven years later. 

In this study, all outputs were aggregated into one group and inputs were aggregated 

into two groups (labor and capital).  In order to examine the sensitivity of IIH test 

conclusions to geographic aggregation, four geographic entities were tested: (1) 

Washington State, (2) Pacific Northwest (PNW) – WA, ID, and OR, (3) Western States, 

including CA, AZ, NV, UT, MT, WY, CO, NM, plus WA, ID, and OR, and (4) the U.S. 

Commodity group and regional price indices were created as Törnqvist indices 

                                                        
2 For example, in Washington, outputs include: cattle, hogs, lamb, wool, honey, milk sold to plant and dealer, milk 
utilized on farm, broiler, chickens, eggs, corn, oats, barley, wheat, hay, fresh asparagus, processed asparagus, processed 
green beans, carrots, fresh sweet corn, processed sweet corn, processed cucumbers, dry beans, lettuce, peas, onions, 
potatoes, apples, apricots cherries, cranberries, grapes, peaches, plums, pears, strawberries, filberts, sugar beets, hops, 
mint, mushrooms, forestry, and nursery.  California’s larger number of outputs are mainly vegetables, fruit and nuts. 
 
3 Except as noted, separate data series are included in each state for the following inputs: hired labor, self-employed labor, 
automobiles, trucks, tractors, other machinery, inventories, buildings, land, Bureau of Land Management public land (not 
in Washington), Forest Service public land, fuel (composite of four types), electricity, feed, seed, purchased livestock, 
fertilizer (hedonic index of N,P,K), pesticides (hedonic index of 34 herbicides, insecticides, and fungicides), equipment 
repairs, building repairs, custom services, contract labor, storage-transportation-marketing services, irrigation, insurance, 
miscellaneous inputs. 
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computed by the following formula:  

Dt = exp 







+ −
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where sit = (pitxit) / (ptxt), pit and xit are the price and quantity for individual commodity or state 

i in period t, i = 1,2,…,K, and K is the number of outputs, inputs, or states in the respective 

category.  The year 1987 was used as the base year for computing group and regional price 

indices.  The aggregate group or regional quantity indices were computed by dividing 

output revenue or input expenditure by the corresponding group or regional price indices. 

Empirical Results 

The time series properties of the variables (labor cost share, logarithm of relative 

labor:capital price, logarithm of output, logarithm of R&E investments) were examined 

first.  Using the relative labor:capital price is a consequence of maintaining linear 

homogeneity of the cost function in input prices.  Because of the singularity of the share 

equations (Anderson and Blundell 1982), it was unnecessary to examine the capital share 

equation.  

The ADF unit root test results are reported in Table 1.  All three cases (zero mean, 

non-zero mean, and non-zero mean with linear trend) in equation (9) were considered since 

each variable may or may not have a constant or a trend, which alters the distribution of the 

statistic under the null hypothesis.  Test statistics and P values for the four variables in each 

region indicated that the null hypothesis of a unit root could not be rejected at the 10% 

significance level for any variable.  That is, the implication of these tests is that all the 
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variables are nonstationary.   

Further tests rejected the presence of unit roots in first differences for each variable 

(Table 2).  This means that all the data series of each region are nonstationary in the levels 

but stationary in first differences, i.e., the series are integrated to order one, I (1).   

Concluding that the variables were integrated to the same order, we proceeded with 

Johansen’s cointegration tests to determine whether cointegrating vectors existed which 

would imply non-spurious long-run relationships among the variables.  The results of the 

cointegration analysis are presented in Table 3.  Test statistics from both the maximal 

eigenvalue and the trace tests were consistent in suggesting that there is one integrating 

vector among the variables in Washington and the West and two integrating vectors among 

the variables in the PNW and the U.S.  Therefore, it was concluded that there existed 

long-run relationships among the labor cost share, relative input price, output level, and 

R&E investments for each geographic unit examined.  Specifying labor cost share as the 

normalized variable, the estimated cointegrating vectors were [1, -0.24, 0.11, 0.02] for 

Washington, [1, -0.19, 0.06, 0.12] for the PNW, [1, -0.20, 0.02, 0.10] for the West, and [1, 

-0.29, -0.06, 0.18] for the U.S.  Thus, the long-run relationship among the four variables 

was very similar for the three regions – Washington, the PNW, and the West.  The sign on 

the output variable caused these to be fundamentally different from the long-run 

relationship among the four variables for the U.S.   

Having determined that the variables are cointegrated, we next estimated the error 

correction model (ECM).  Based on the AIC criterion, the “best” estimated lag length of the 



 17

underlying vector autoregression (VAR) was estimated to be one for each variable in each 

geographic unit.  Since all the variables were integrated of order one, the specified dynamic 

form of the model for each geographic unit was equation (13).  This model allowed us to 

separate the short-run and the long-run effects of changes in relative input price, output 

level, and R&E investments on the cost share.  The estimated results of the ECM model are 

presented in Table 4.  The differenced terms in equation (13) represent short-run effects 

because they are stationary and the lagged terms within the parentheses represent the 

long-run effects since they are nonstationary.  Except for the PNW, the estimates of 

long-run effects of relative input price, output level, and R&E investments were 

statistically significant at the 5% level.  Except for the U.S., the estimates of short-run 

effects were not significant.  

As previously noted, greater curvature of the isoquant curve than the curvature of the 

IPC implies the existence of induced innovation (Oniki 2000).  The curvature of these 

curves can be measured by the short-run and long-run elasticities of substitution.  If a small 

change in relative prices gives us a large change in the factor input ratio, the isoquant is 

relatively flat which means that the elasticity of substitution is large.  Therefore, in order to 

test for the existence of the induced innovation, we only need to test whether the long-run 

elasticity of substitution is significantly greater than the short-run elasticity of substitution.  

 By equation (13), it can be inferred that biased technical change can be induced not 

only by changes in relative factor prices but also by changes in output level or R&E 

investments.  The formulas for the short-run and long-run elasticities of the ith factor with 
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respect to output level y was derived by Oniki (2000):   
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Similarly, the formulas for the elasticities of the ith factor with respect to R&E investment R 

are: 
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 Since all elasticity functions are nonlinear of parameter estimates, the Delta method 

was used to compute standard errors and confidence intervals for the short-run and 

long-run elasticities.  This method is based on a first-order Taylor-series approximation to 

the statistic and was used to find standard errors of the nonlinear functions of parameter 

estimates.  Confidence intervals were then derived based on the estimated parameters and 

estimated standard errors.  Confidence intervals for the estimated elasticity of substitution, 

output elasticity, and R&E investment elasticity are presented in Table 5.4  Since the 

estimated AUES in the long-run was significantly greater than those in the short-run in the 

three regions of Washington, PNW, and the West, we conclude that induced innovation 

existed in their production processes.  However, for the most aggregated data (U.S.), the 

elasticities of substitution in the short-run and in the long-run were not significantly 

different, which means that the induced innovation hypothesis was not supported with the 

national data.  None of the long-run output elasticities or long-run R&E investment 

elasticities were significantly greater than their corresponding short-run elasticities.  This 
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finding implies that neither output nor R&E investment changes induced technical change 

in any of the four geographic units.    

Conclusions 

 A variety of methods have been applied to test the induced innovation hypothesis (IIH) 

in agriculture.  The traditional method, which has used a time trend as a proxy for 

technology in estimating technical biases, has previously been discredited when the time 

series properties of variables were not considered. 

 This paper tested for the IIH following the general logic of Oniki’s (2000) recent time 

series test procedure with two augmentations.  First, research and extension (R&E) 

investments were included in the time series model. Second, the sensitivity of IIH test 

conclusions to geographic aggregation was examined.  The consistency of the IIH test 

conclusions was examined for a state (WA), two regions (Pacific Northwest and West), and 

the U.S.  A translog, twice-differentiable cost function with one output and two inputs 

(labor and capital) was used to estimate factor biases.  An error correction model was 

implemented to separate short-run and long-run effects of relative price changes as well as 

changes in output level and R&E investments.  A significantly larger elasticity of factor 

substitution along the innovation possibility curve than along the isoquant would imply IIH.  

Significantly larger factor elasticities with respect to output level or R&E investment along 

the IPC than along the isoquant would imply that those respective variables also induce 

innovation. 

                                                                                                                                                                     
4 The mean values of the variables were used to calculate elasticities. 
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 All four variables in each of the four geographic units exhibited similar time series 

properties.  Each variable was integrated of order 1 and the system of four variables was 

cointegrated in each geographic unit.  The latter implied that a long-run relationship and a 

corresponding IPC existed among these variables in each area.  The error correction model 

endogenized technical changes in terms of the relative factor prices, output, and R&E 

investments.  The induced innovation hypotheses were tested by comparing the short-run 

and long-run elasticities of substitution, output elasticities, and R&E investment 

elasticities.  The estimated results showed that the induced innovation hypothesis was 

supported for the three regions of Washington, PNW, and the West, but not for the nation.  

However, while changes in relative input prices induced innovation, changes in output 

level or R&E investments did not.  The empirical tests failed to find any significant impact 

of changes in the latter variables on agricultural technology in any of the geographic units. 
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Table 1. Unit Root Tests for Stationarity of Data Series 
 

Data Series  With Zero Mean  With Non-Zero 
Mean 

 With Non-Zero Mean 
and Linear Trend 

  Statistic P-value  Statistic P-value  Statistic P-value 
Washington 
   Labor Share 
   Price 
   Output 
   Investments 

  
-0.64 
-0.87 
3.83 
0.60 

 
0.43 
0.33 
0.99 
0.84 

  
-1.38 
-1.74 
-0.82 
-2.16 

 
0.58 
0.40 
0.80 
0.23 

  
-0.79 
-1.65 
-2.89 
-1.70 

 
0.96 
0.76 
0.18 
0.73 

PNW 
   Labor Share 
   Price 
   Output 
   Investments 

  
-0.65 
-0.97 
3.47 
1.27 

 
0.43 
0.29 
0.99 
0.95 

  
-1.34 
-1.45 
0.12 
-2.26 

 
0.60 
0.55 
0.96 
0.19 

  
-0.62 
-1.38 
-2.85 
-1.44 

 
0.97 
0.85 
0.19 
0.83 

West 
   Labor Share 
   Price 
   Output 
   Investments 

  
-0.41 
-0.85 
3.93 
2.72 

 
0.53 
0.34 
0.99 
0.99 

  
-1.37 
-1.55 
-0.69 
-2.56 

 
0.58 
0.50 
0.84 
0.11 

  
-0.44 
-1.63 
-2.70 
-1.67 

 
0.98 
0.76 
0.24 
0.75 

U.S. 
   Labor Share 
   Price 
   Output 
   Investments 

  
-0.62 
-0.64 
4.01 
3.09 

 
0.44 
0.43 
0.99 
0.99 

  
-1.44 
-1.28 
1.61 
-2.03 

 
0.55 
0.63 
0.99 
0.27 

  
-1.04 
-1.36 
-0.67 
-2.13 

 
0.93 
0.86 
0.97 
0.51 

 
 
Table 2. Unit Root Tests for Stationarity of First-order Difference of Data Series 
 

Data Series  With Zero Mean  With Non-Zero 
Mean 

 With Non-Zero Mean 
and Linear Trend 

  Statistic P-value  Statistic P-value  Statistic P-value 
Washington 
   Labor Share 
   Price 
   Output 
   Investments 

  
-4.47 
-5.73 
-2.44 
-4.01 

 
0.00 
0.00 
0.02 
0.00 

  
-4.44 
-5.70 
-4.33 
-4.01 

 
0.00 
0.00 
0.00 
0.00 

  
-4.72 
-5.69 
-4.26 
-4.24 

 
0.00 
0.00 
0.01 
0.01 

PNW 
   Labor Share 
   Price 
   Output 
   Investments 

  
-4.14 
-4.41 
-1.66 
-4.14 

 
0.00 
0.00 
0.09 
0.00 

  
-4.13 
-4.39 
-3.80 
-4.39 

 
0.00 
0.00 
0.01 
0.00 

  
-4.60 
-4.41 
-3.77 
-4.93 

 
0.00 
0.01 
0.03 
0.00 

West 
   Labor Share 
   Price 
   Output 
   Investments 

  
-5.00 
-5.49 
-3.15 
-2.25 

 
0.00 
0.00 
0.00 
0.03 

  
-4.95 
-5.54 
-7.99 
-3.05 

 
0.00 
0.00 
0.00 
0.04 

  
-5.82 
-5.51 
-7.87 
-4.27 

 
0.00 
0.00 
0.00 
0.01 

U.S. 
   Labor Share 
   Price 
   Output 
   Investments 

  
-3.34 
-4.40 
-2.89 
-2.51 

 
0.00 
0.00 
0.01 
0.01 

  
-3.306 
-4.37 
-4.91 
-3.35 

 
0.02 
0.00 
0.00 
0.02 

  
-3.51 
-4.32 
-5.57 
-4.13 

 
0.05 
0.01 
0.00 
0.01 
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Table 3. Johansen’s Cointegration Test Statistics 
 
Hypothesis WA  PNW  West  U.S. 

 λtrace λmax  λtrace λmax  λtrace λmax  λtrace λmax 
H0: r=0, H1: r>0 (or r=1)a 65.50*b 30.78*  73.64* 32.60*  64.04* 32.88*  91.97* 39.33* 

H0: r=1, H1: r>1 (or r=2) 34.72 18.20  41.04* 23.73*  31.16 16.73  52.65* 33.23* 

H0: r=2, H1: r>2 (or r=3) 16.52 11.28  17.31 12.88  14.43 8.63  19.41 13.39 

H0: r=3, H1: r>0 (or r=4) 5.24 5.24  4.43 4.43  5.80 5.80  6.02 6.02 
a The alternative hypothesis of the max eigenvalue test is in parentheses. 
b An asterisk indicates that the null hypothesis is rejected; critical values are taken at a significance level of 
5%. 

 
 

Table 4. Estimated Error Correction Models 
Variable WA PNW West U.S. 
Constant -0.86*a -0.28 -1.05* -7.27* 

Short-run effects: 
∆wt 
∆qt 
∆Rt 

 
 0.02 
-0.001 
 0.005 

 
-0.05 
-0.04 
 0.02 

 
-0.01 
 0.02 
-0.01 

 
 0.24* 
 0.09 
-0.41* 

Long-run effects: 
st-1 
wt-1 
qt-1 
Rt-1 

 
 0.40* 
-0.09* 
 0.04* 
 0.01* 

 
 0.09 
-0.02 
 0.005 
 0.01 

 
 0.43* 
-0.09* 
 0.01* 
 0.04* 

 
 2.27* 

-0.66* 
-0.14* 
 0.41* 

a An asterisk indicates the parameter is significant at the 5% level. 
 
 
Table 5. Confidence Intervals of Estimates of the AUES, Output elasticity, and R&E Investment 
Elasticity along the Isoquant and the Innovation Possibilities Curve 

 
Region  Confidence Intervala 

  AUES  Output Elasticity  R&E Elasticity 

Washington  IQCb 
IPC 

(0.705, 1.037) 
(2.072, 2.364) 

 (0.456, 1.536) 
(0.559, 0.601) 

 (0.791, 1.245) 
(0.935, 0.941) 

PNW IQC 
IPC 

(0.284, 1.244) 
(1.833, 2.151) 

 (0.132, 1.538) 
(0.774, 0.792) 

 (0.760, 1.360) 
(0.523, 0.553) 

West IQC 
IPC 

(0.534, 1.388) 
(2.105, 2.203) 

 (0.540, 1.606) 
(0.886, 0.902) 

 (0.639, 1.245) 
(0.528, 0.614) 

U.S. IQC 
IPC 

(0.944, 3.110) 
(1.694, 2.794) 

 (1.205, 1.299) 
(1.161, 1.171) 

 (-1.576, 1.394) 
(0.499, 0.535) 

a: Significance level is 5%. 
b: IQC is the isoquant and IPC is the innovation possibility curve. 


