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1. Introduction

Conventional ex post impact assessment methods have typically focused on productivity

enhancement technologies, whose benefits are estimated as the yield difference between

traditional and improved technologies as observed in either experimental trials or a cross-section

survey of farmers.  However, both of these data sources have limitations in constructing the

counterfactual situation used to assess the farm-level benefits of productivity maintenance

technologies.  Various authors have used experimental trial data to estimate yield loss averted

through use of a disease-resistant cultivar (Smale et al 1998, Morris et al, 1994), but

experimental trials often do not well-approximate farmer conditions.  This is especially true for

measuring disease resistance technologies, considering that disease frequency and intensity are

fixed in experimental trials, yet under farmer conditions they may vary spatially by weather

patterns, altitude, and crop management practices.  However, the presence of selection bias in

farmer survey yield data will tend to underestimate the real benefits of disease-resistant

technologies, to such an extent that Johnson and Klass (1999) recommend the use of

experimental trials over survey data, even with the limitations of the trial data.

This essay proposes methodological advances that allow for the use of farm survey data

to address the questions of yield loss avoidance and returns to research.  The point of departure is

Otsuka et al (1994), who use farm-level survey data to estimate the impact of RV (disease-

resistant variety) rice in the Philippines.  Otsuka et al apply a modified Heckman two-step

procedure (adapted from Lee, 1978) to correct for selection bias.  Lee’s procedure gives

unbiased and consistent estimates of parameters of the equations of interest (traditional variety

(TV) yield and RV yield), which Otsuka uses to compare the mean rice yields of TVs and RVs. 
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However, these equations represent the yield response of a given subsample of the population –

TV growers in one case, and RV growers in the other.  In other words, it compares the expected

RV yield (conditional on RV use) with the expected TV yield (conditional on TV use). 

However, the more appropriate counterfactual scenario for impact analysis is unobservable – the

yield that RV users would have obtained in the absence of RVs. 

Extending Otsuka et al, this paper constructs the counterfactual to RV yields as what

yields RV users would have obtained had they continued to grow TVs (i.e. the TV yield

conditional on RV use).  Constructing the appropriate counterfactual is especially poignant in the

case of RVs (and other technologies that mitigate adverse circumstances), since it is anticipated

that the TV yield profile differs significantly between RV users and TV users.  Specifically,

farmers adopt RVs to avoid yield losses from disease.  Farmers who choose to remain with the

TVs must not experience significant yield losses, otherwise they would adopt the RV.  Using

farm-level survey data on disease-resistant bean yields in Honduras, a modification of Lee’s two-

step procedure is employed to obtain selection-corrected bean yield equations for TV and RV

users.  As demonstrated in labor supply literature (Lee, 1978; Duncan and Leigh, 1980),

estimation of these selection-corrected equations enables the prediction of imputed yields for

each individual’s unobserved varietal choice, conditional on his/her own observed

characteristics.  That is, the selection-corrected yield equations account for the endogenous

farmer decision to adopt or not adopt RVs, and allows for meaningful prediction of TV yields

(including yield loss) that those farmers adopting RVs would have gotten had the RVs not been

available.  Thus, the predicted TV yields of RV users can be statistically compared with

predictions of RV yields to estimate the farm-level impact of disease-resistant bean varieties in



1 Comparing predicted TV yields with predicted (instead of actual) RV yields ameliorates
the influence of measurement error on the actual yields.
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Honduras, and the impact of the research that developed these varieties.  

2. Model

Our principal interest in this paper is to estimate the impact of RVs by predicting the

counterfactual yield of RV users -- the TV yield that RV adopters would have gotten in the

absence of RVs -- and comparing this with predictions of RV yields for the same subgroup.1  In

the following model, each farmer’s observed yield depends on his varietal choice, represented by

equation (2).  Yield YTi is observed if the farmer grows a TV, while YRi is observed if the farmer

grows an RV.  An implicit assumption of the model is that farmers have a good idea of their

disease pressure.

Ii  =  γ0   +  γiZi + ei (1)

We observe:

YRi when Ii =1 if farmer grows a RV

YTi  when Ii = 0 if farmer grows a TV, but never both

lnYRi  =  BR0 +  BRiXRi  +  uRi (2)

lnYTi  =  BT0  +  BTiXTi  +  uTi (3)

where: lnYRi and lnYTi are the logs of yield for individual i, Xi is a vector of personal and
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farm-level characteristics, and uRi and uTi are residuals.  This is a switching regression model

with endogenous switching, as first developed by Goldfeld and Quandt (1973) and later modified

by Lee (1978). 

3. The sample selection problem

Consider a population of farmers who can be identified as either adopters or non-adopters

of RVs.  A random sample survey of this population will result in two subsamples of farmers:

one with observations on RV yields, the other with observations on TV yields.  Whether or not

sample selection creates a problem for prediction of varietal yields from this survey data depends

upon whether or not there are differences in both the observable and unobservable characteristics

of TV and RV growers.

First, assume that the decision to adopt an RV is random, and that the RV subsample has

similar endowments of characteristics as the TV subsample.  In this case, there is no reason to

suspect selectivity bias will be induced by examining the RV subsample (or vice versa), because

the average characteristics (observables and unobservables) of RV users should be similar to the

average characteristics of the population (Vella, 1998).  

However, once we assume that the decision to adopt an RV is not random, then the RV

and TV subsamples potentially have different characteristics.  Sample selection bias in this case

occurs when some component of the varietal choice decision is relevant to the yield

determination process; that is, when some of the determinants of the varietal decision also

influence yield.  Yet, when the relationship between the varietal decision and the yield

determination is purely through the observables, then appropriate variables in the yield equation

can control for this.  Thus, sample selection bias will not occur simply because of differences in
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observable characteristics (ibid, 1998).

When one further assumes that unobservable characteristics (such as disease pressure)

affecting the varietal decision are correlated with the unobservable characteristics affecting the

yield determination process, then a relationship exists between the varietal decision and the yield

determination process.  If these unobservable characteristics are correlated with the observables,

then the failure to include an estimate of the unobservables will lead to incorrect inference

regarding the impact of the observables on yields.  Thus, under these circumstances, a bias will

be induced due to sample selection (ibid, 1998). 

In our case, we do not observe RV (TV) yields for some farmers due to the outcome of

another variable - varietal choice.  Because disease pressure – and perhaps other unobservables

which influence varietal choice – is not distributed randomly throughout the sample and is

correlated with yield, then E(ui | varietal choice … 0).  If some part of the yield distribution is cut

off, then estimated residuals from this model are truncated normal, and OLS estimates of yield

equations are inconsistent.  

To see the effects of sample selection bias more clearly, consider the following data

generating process for yield:

yieldi  =  B0 + B1* rainfalli + B2*fertilizeri + B3*RVi + B4*disease pressurei + ui      (1)

where: RV = 1 if farmer i grows a resistant variety, and RV=0 if not; rainfall and

fertilizer use are observed variables; and disease pressurei is an omitted variable
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In the absence of a farm-level measure of the true intensity, timing or frequency of

disease pressure, and assuming that disease pressure is not distributed randomly throughout the

sample, then the results of the yield regression (1) will be biased because the error term is

actually ui +  B4*disease pressurei.  Thus, the mean error will not be zero.  In addition, we will

encounter a further source of bias in that the omitted variable is likely correlated with the RV

dummy.

Roy (1951) provided an early discussion of the problem of self-selectivity, discussing the

problem of individuals choosing between two professions, hunting and fishing, based on their

productivity in each activity.  The observed distribution of incomes of hunters and fisherman

was determined by these choices.  The later discussion of the econometric consequences of self-

selection bias began with studies of womens’ participation in the labor force and implications for

the estimation of wage equations (Gronau, 1974; Lewis, 1974).  The basic idea of the two-stage

estimation procedure as first proposed by Heckman (1976) (and later extended by Lee (1976)) is

to use information from a probit function of labor force participation to construct a regressor for

the wage equation which serves to adjust the wage equation error term so that its expected value

will be zero.

4. Estimation Procedure

The two-stage estimation procedure for each yield equation proceeds as follows.  First,

using all n observations, we estimate by ML a probit model of Zi on Ii to obtain estimates of γi

and γ0.

Ii*  =  γ0   +  γiZ’i + ei* (4)
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Conditional on RV use, the RV yield equation is:

lnYRi = BR0 + BRiXRi +  σRei λRi + vRi for Ii = 1 (5)

where E(vRi | Ii = 1) = 0.  The term λRi  =  [- f(ψi) / F(ψi)] is known as the inverse Mills’ ratio

(IMR), where f is the density function of a standard normal random variable, and F is its

cumulative distribution, and where ψi =  γ0  +  γ1Z’i..  The IMR term models the truncation effect

on yields associated with sample selectivity, and thus enables E(vRi | Ii = 1) = 0.  The coefficient

on the IMR term σRe is the covariance between ei , the error term from the RV selection equation,

and uRi, the error term of the RV yield equation.  The actual test for selection bias in the RV yield

equation is simply a t-test of whether Ho: σRei = 0 or not.  Rejection of the null indicates the

presence of selection bias.

Conditional on TV use, the TV yield equation is:

lnYTi = BT0 + BTiXTi +  σTei λTi + vTi for Ii = 0 (6)

where E(vTi | Ii = 0) = 0.  The term λTi  =  [ f(ψi) / (1 - F(ψi))].

The error term ei in the selection equation is assumed to be distributed standard normal,

and also independent of Zi (and therefore Xi).  In addition, Xi must be a strict subset of Zi, and we

must have some elements of Zi that are not also in Xi.  This means that we need a variable that



2 If z = x, then λi can be highly correlated with the elements of xi, and such
multicollinearity may lead to very high standard errors for the Bi.  Thus, without this exclusion
restriction, it is extremely difficult to distinguish sample selection from a misspecified functional
form for yields (Wooldridge, 2000).
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affects selection but does not have a partial effect on yields (Wooldridge, 2000)2.  Yield

equations in switching regressions are commonly estimated either jointly (pooled) (Otsuka,

1994) or separately (Lee, 1978; Duncan and Leigh, 1980).  This paper estimates the two yield

equations pooled together to gain efficiency in parameter estimation.  An RV dummy serves as

an intercept shifter for RV users, and is interacted with some of the regressors.  Thus, the

expected yield for an RV user is represented by (7) while that of a TV user is represented by (8).

lnYRi | Ri =  BT0  + BR0*RV  + BTiXRi  + BRiXRi*RV  + σRei λRi  + vRi     for RV=1; Ii = 1 (7)

lnYTi | Ti  =  BT0  +                + BTiXTi  +                    +  σTei λTi  + vTi       for RV=0; Ii = 0 (8)

In the case of disease-resistant beans in Honduras, TV yields are expected to be truncated

from below due to selection bias.  That is, low TV yields caused by disease pressure are

unobserved if farmers in high-disease areas switch to RVs.  Thus, assuming that TV yields

depend upon the level of disease pressure, then unobservable characteristics (disease pressure)

will likely influence both the varietal decision (with no disease pressure, farmers prefer the TV

due to its better price) and the yield determination of TVs.  However, it is not clear whether or

not the presence (or not) of disease pressure would affect RV yields.  That is, RV yields under

farmer conditions are expected to be about the same with or without disease pressure, ceteris

paribus.  On the other hand, given that RV yields are not often observed in non-disease areas
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(higher elevations) due to their price discounts relative to TVs, and that RVs are likely better-

suited for the conditions of valley farmers, there may well be a part of the RV yield distribution

that is not observed. 

Because the error term of the pooled regression has a heteroskedastic structure, we apply

Huber/White’s procedure to obtain robust standard errors.  The final step is to calculate

predictions of RV users’ RV yields using the corrected RV equation (9).  The counterfactual

prediction is RV users’ TV yields, which are calculated using the characteristics of RV users

evaluated with the coefficients from the TV equation (10).

lnYRi | Ri =  BT0  +  BR0*RV  +  BTiXRi  +  BRiXRi*RV  +  σRei λRi for RV=1; Ii = 1 (9)

lnYTi | Ri =  BT0  +                  +  BTiXRi   +                    +  σRei λRi for RV=0; Ii = 1 (10)

5. Background and Data 

Honduras’ two bean breeding programs, which are implemented by Zamorano (Programa

de Investigaciones en Frijol, Escuela Agricola Panamericana) and DICTA (Direccion de Ciencia

y Tecnologia Agricola, the Honduran National Bean Program), work in collaboration with three

organizations: the USAID-funded Bean/Cowpea Collaborative Research Support Project

(CRSP); the Programa Cooperativo Regional de Frijol para Centroamerica, Mexico, y El Caribe

(PROFRIJOL), funded by COSUDE, the Swiss Agency for Development and Cooperation; and

CIAT (Centro Internacional de Agricultura Tropical).  Bean Golden Yellow Mosaic Virus

(BGYMV) is the principal bean disease in Honduras, and one of the main production constraints

in Honduran valleys (Martel, 1995).  The virus is transmitted by the whitefly species Bemisia



3  In the following analysis, intercropped area is converted to “effective monocrop bean

area” given information from each respondent on his/her intercropping system.  
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tabaci, which is normally found below 1,000 m in all growing regions of Honduras and more

frequently in the drier postrera season (September/ October to December/January).  Zamorano

and DICTA have developed several varieties with resistance to BGYMV (RVs), the first of

which was released in 1990.  However, the economic gains from yield loss averted through RV

use are at least partially offset by price discounts in the market from 7 to 15 percent (Martel,

1995; Mather et al, 2003).

This analysis in this paper is based upon a farm-level survey of bean farmers (N=210)

implemented by the CRSP and PROFRIJOL in January-February 2001, in collaboration with

Zamorano and DICTA.  The survey targeted the Mideast (El Paraiso and Francisco Morazan

departments) and Northeast (Olancho) regions, which together account for about one-half of

annual bean production in Honduras.  Bean producers in Honduras are predominantly small

farmers, the majority of whom use fertilizer and insecticide, market at least some of their bean

production, and depend upon beans for a major portion of their household income (Martel, 1995;

Mather et al, 2003).  Honduran farmers typically plant two crops during the year.  In the primera

(May/June to July/August), the rainy season, maize is the principal crop, and beans are either

intercropped with maize or monocropped3.  The postrera (September/October to

December/January) is a drier season, during which beans are the major crop and are almost

exclusively monocropped.  Because the whitefly population is often highest under drier

conditions, BGYMV is most frequent and severe in the postrera.  

Most of the sample farmers (70 percent) live in villages which have had BGYMV



12

pressure in the past (Table 2), and also (58 percent) live in villages which have received

extension at the village level including promotion, demonstration, and/or access to RVs.  RV

adoption is widespread, and mean RV yields tend to be higher than those of TVs (Table 1).  Yet,

because of the high variance of both RV and TV yields, yields by variety are not statistically

different.  

The basis of impact analysis of varietal development is the estimation of the incremental

change in benefits received by the participants -- those who have adopted the variety.  In our

case, we want to estimate the current yields of RV users, as well as what yields they would have

received in the absence of RVs.  However, as mentioned above, constructing the RV

counterfactual as the current TV yields of TV users ignores the potential for selection bias to

underestimate the benefits to RVs.  Therefore, assuming that selection bias is present, the

appropriate counterfactual to current RV yields is unobservable: the yields these RV growers

would obtain if they were to use TVs instead.  The fact that the RV survey yields and

coefficients of variation are quite similar to those of TVs – given that significant price discounts

exist, most farmers market beans, and adoption rates are fairly high – suggests that selection bias

is indeed present, and that using current TV yields of TV users would underestimate the benefits

of RVs to RV users.
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Table 1.  Adoption of RVs and Bean Yields by Season, 1999-2000, Honduras

Variety Primera Postrera

1999 2000 1999 2000

Varietal Use: RVs (% farmers) 45 45 41 42 a

                      TVs 64 62 67 76

                       Both an RV and a TV 9 7 8 18

Sample size (farmers) N=164 N=170 N=202 N=202

Yield:     RVs (mean kg/ha) 857 769 667 446

               TVs (mean kg/ha) 678 632 615 459

Disaster (%) 4 6 6 14

Rainfall; first month of season (avg mm) 126 171 314 206

Sample size (parcels)b N=188 N=203 N=242 N=268

Source: CRSP/PROFRIJOL Farmer Survey, 2001 (N=210)
a As some farmers planted more than one variety, the total is greater than 100%.
b   Parcels aggregated at the farmer and variety level
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Table 2. Characteristics of sample farmers in Honduras, 2000

Characteristics Primera Postrera

Bean area (mean ha) 1.30 1.58

Altitude (m) 945 913

% Farmers: in Area of Bean Golden Mosaic Virus a (%) 70 70

                   Used formula fertilizer (%) 55 48

                   Used Urea (%) 49 45

                   Used both formula and urea (%) 29 25

                    Intercropped (%) 14 15

                    Ever planted a resistant variety (%) 67 68

% farmers living in village with extension (by type): b

                   DICTA artisan seed program (%) 22 19

                   Dept. of Natural Resources (%) 35 32

                   Zamorano (%) 16 14

                   Catholic Church (%) 13 17

                   No extension at village level (%) 42 45

Sample size N=170 N=202

Source: CRSP/PROFRIJOL Farmer Survey, 2001 (N=210)
a defined by Dr. Juan Carlos Rosas, Director, Programa de Investigaciones en Frijol, Zamorano  b
extension which includes promotion, demonstration, and/or extension of improved varieties 

6. Estimation results of varietal choice function

We estimated the probit RV adoption function using data from four consecutive seasons:

the primera and postera seasons of 1999 and 2000.  Most of the elements of the adoption

function are factors expected to influence bean yield such as fertilizer use, rainfall, cropping

system, season, etc., as well as village dummies which help to capture non-observable agronomic

factors common at the village level.  Farmer socioeconomic factors such as age, education, and



4 We only have fertilizer use data for primera and postrera of 2000.  Since this variable
measures only use and not fertilizer level, and since many farmers regularly use fertilizer, we
assume that fertilizer use in 1999 to be the same as that observed in 2000.  This assumption does
not affect the test for selection bias, nor the significance or magnitude of key variables in the
corrected yield equation such as RV and fertilizer use.

5 These exclusion restriction variables were included in an OLS yield regression and
determined to be insignificant at the 0.10 level.

6 BGYMV area classification designated by Dr. Juan Carlos Rosas, Director, Programa
de Investigaciones en Frijol, Zamorano.
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farmsize are not included here due to their insignificance.

Formula fertilizer use is defined as zero if the farmer used no formula fertilizer in a given

season, and is defined as one if the farmer used formula in that season4.  Variables for urea

fertilizer use and combined formula and urea use are similarly constructed.  Rainfall represents

the total village rainfall (mm) in the first month of the given season.  While rainfall the first

month of a bean season is undoubtedly an important factor in yields, the explanatory power of

this rainfall data is questionable for several reasons.  First, only nine rainstations across the three

departments had complete data during the time periods of our four seasons of production data.

Thus, each of the 30 villages were assigned the nearest rainstation to represent village rainfall. 

Second, the timing and distribution of rain within a month is not captured by a monthly total. 

Intercrop refers to any cropping system which is not monocrop (but does not include the relay

system common in Olancho in the postrera, which is essentially monocrop).  Disaster is a

dummy to capture the influence of yields less than 80 kg/ha.

The remaining factors in the adoption function serve as exclusion restrictions – variables

that affect selection but do not have a significant partial effect on yields5. These include a

dummy variable for villages in which BGYMV has been a problem in the past6, village altitude



7 While village altitude is negatively correlated (pairwise) with RV adoption, it’s sign
becomes positive when village dummies are included in the probit regression. 
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(lower altitudes experience higher BGYMV pressure), village altitude squared, and a dummy

variable for farmers who have planted an RV at some time in the past (PRV). 

While a measure of a farmer’s information about and access to RVs may be thought to be

well captured by village-level extension variables, these variables are not ideal exclusion

restriction variables since extension presence in a village -- which in this case includes more than

just information about and access to RVs – would be expected to influence (increase) yields. 

BGYMV is only a rough indicator of disease pressure, because what is more significant in the

adoption decision is the intensity of disease attack and its frequency.  Altitude is also a rough

indicator of disease pressure, as lower altitudes tend to have higher BGYMV pressure.  PRV is

an ideal exclusion restriction variable because it is intimately related to adoption, yet does not

predict adoption perfectly due to disadoption (67 percent of the sample has planted an RV at

some point, while 45 percent continue to grow an RV) and is not correlated with yields.

The estimation results show that the coefficient on the BGYMV dummy is positive,

significant and of relatively large magnitude, which confirms the expectation that the principal

benefit of RVs is expected to be the yield loss averted due to their disease resistance (Table 3),

and that farmers outside the BGYMV area would not likely adopt the older RVs which have

significant price discounts.  Also as expected, the coefficient on the PRV dummy is positive,

significant and of sizeable magnitude.  Altitude is also significant, yet it’s sign is contrary to

expectation as the probability of adoption would be expected to fall as altitude increased.7  None

of the exclusion restriction variables are significant when tested in the yield regression.
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Table 3. Probit Estimates of Resistant Variety Adoption Equation, Primera and Postrera,
1999-2000

Explanatory Variables a  RV adoption
(RV=1, TV=0)

Constant -4.09 (-2.79)**

Season = Postrera -0.055 (-1.20)

Year = 2000            -0.023 (-0.61)

Intercrop 0.044 (0.63)

Disaster (yield < 80 kg/ha) 0.075 (1.01)

log of Rainfall in first month of season (mm) 0.014 (0.28)

Used formula fertilizer (0=no; 1=yes) -0.108 (-2.12)**

Used urea fertilizer (0=no; 1=yes) 0.104 (2.15)**

Used both formula & urea (0=no; 1=yes) 0.0005 (1.65)*

Village-level Extension: DICTA 0.729 (1.76)

                                Zamorano -0.432 (-3.45)**

                                Dept of Natural Resources -0.946 (-4.42)**

                                Catholic Church -0.042 (-0.19)

BGYMV area 0.258 (1.80)*

Altitude (m) 0.006 (2.08)**

Altitude2  (m) -0.0000 (-1.82)*

Ever Planted Resistant Variety (PRV) 0.355 (7.81)**
a Does not include 30 village dummies
(z stats in parentheses)                  
** significant at the 0.05 level
* significant at the 0.10 level

N = 900
Log Likelihood = -381.47       
Pseudo R2 = 0.343
Coefficients calculated as dF / dX

The factors influencing adoption which are of principal interest to this paper are the

exclusion restrictions.  A more complete analysis of the factors influencing the adoption of RVs

are beyond the scope of this paper and are addressed in a forthcoming paper.
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7. Estimation results of bean yield function

To estimate the yield function, we pooled the data over the primera and postrera seasons

of 1999 and 2000 (Table 4).  We assume that many factors affecting yields, such as year,

cropping system, village dummies, etc., have the same effect on both TVs and RVs.  However,

we assume that the productivity of TVs and RVs are differentially affected by factors such as

fertilizer use and season.  The regressors in the yield function are nearly the same as those used

in the probit function, the difference being the inclusion of the inverse Mills’ ratios (IMR) and

the omission of the exclusion restriction variables from the probit function.

As expected, the IMR coefficient for TVs is positive, significant at the 0.05 level and of

considerable magnitude, thus indicating the presence of selection bias.  The positive sign on this

coefficient indicates positive selection which means that observed TV yields are higher than

what would be observed (positive truncation) if a farmer randomly chosen from the whole

sample were to plant a TV.  The reason for this is that a farmer selected at random may be in a

disease-intensive area, and thus would get low yields, whereas such a farmer would not, in

reality, plant a TV.  

We did not have an a priori expectation for the IMR coefficient term for RVs, though it

is found to be positive, significant at the 0.10 level and of smaller magnitude to that of the TV. 

However, because the sign on the IMR term λRi  =  [- f(ψi) / F(ψi)] is negative, while its

corresponding coefficient is positive, this implies that negative selection occurs for RV growers. 

That is, observed RV yields are lower than they would be in the absence of the unobservables

which drive RV use.  An explanation for this could be that the unobservable BGYMV pressure

(which may well be correlated with other unobserved disease and insect pressures to which the
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RVs are not resistant) which drives a farmer to experiment with RVs (PRV) tends to lower the

RV yields from what they would be in disease-free areas.  In addition, we do not observe many

RV growers (and, thus, RV yields) in disease-free areas for two main reasons.  First, farmers in

areas with low to negligible BGYMV pressure will not likely grow the RVs due to their market

price discounts.  Second, areas above 1,000 m are more remote and thus have less access to

markets and extension - both of which represent access to RV seed and fertilizer.

The results of yield function estimation corrected for selection bias compared with

uncorrected OLS results are most distinctively different for the RV dummy and the constant

(Table 4).  The RV dummy is highly significant and of considerable magnitude in the selection

corrected estimation, whereas it is insignificant and of negligible magnitude in the uncorrected

estimation.  The selection-bias correction increases the magnitude and significance of the RV

dummy.  All other coefficients in the yield model are essentially of the same significance and

magnitude.  This means that an RV farmer has higher expected yields than a TV farmer with

similar characteristics.

Both corrected and uncorrected estimation show that RVs are more responsive to urea

fertilizer than TVs, although the RV*urea coefficient is not significant at the 10% level in either

equation.  However, given the relative magnitude of the RV dummy and those for fertilizer

response, it is clear that the principal benefit of RV use is disease resistance, not improved

response to key inputs.  The coefficient on season (postrera) is negative and significant as

expected, given that the postrera season is drier, has more disease pressure, and historically

experiences results in lower yields than those of the primera.  While we would expect rainfall to

increase yield, the coefficient on village rainfall (mm) is insignificant, perhaps due to the
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presence of village dummies and the nature of the rainfall data (explained above).  While

intercropping systems can result in higher bean yields, the significant and positive coefficient on

intercrop is likely driven by two factors: most intercropping occurs in the primera (when yields

are higher), and the conversion of intercropped bean area to “effective monocrop” bean area may

underestimate the effective area.  The inclusion of village dummies improves the explanatory

and thus predictive power of the regression as well as the estimation precision of nearly all the

coefficients, although our interest in coefficients relates principally to those for the RV dummy,

fertilizer use, and the IMR terms.
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Table 4. Adjusted and Unadjusted OLS Estimates of Yield Equation, Primera and
Postrera,  1999-2000

Explanatory Variables a  Corrected OLS
ln(yield)

Uncorrected OLS
ln(yield)

Constant 5.630 (14.74)** 5.718 (14.82)**

Season = Postrera - 0.220 (-2.97)** -0.238 (-3.23)**

Year = 2000            - 0.192 (-2.85)** -0.193 (-2.85)**

Intercrop 0.245 (2.52)** 0.269 (2.81)**

Disaster (yield < 80 kg/ha) -3.369 (-14.80)** -3.36 (-14.69)**

log of Rainfall in first month of season (mm) 0.021 (0.29) 0.026 (0.35)

Used formula fertilizer (0=no; 1=yes) 0.206 (2.14)** 0.151 (1.64)

Used urea fertilizer (0=no; 1=yes) 0.060 (0.76) 0.098 (1.27)

Used both formula & urea (0=no; 1=yes) - 0.0004 (-1.53) - 0.0005 (-1.46)

      RV 0.552 (2.73)** 0.129 (1.10)

      RV * Season = Postrera - 0.175 (-1.52) - 0.177 (-1.56)

      RV * Year = 2000 - 0.020 (-0.18) - 0.015 (-0.14)

      RV * Disaster - 0.554 (-1.48) - 0.554 (-1.47)

      RV * Formula Fertilizer - 0.025 (-0.16) - 0.013 (-0.08)

      RV * Urea Fertilizer 0.155 (1.09) 0.151 (1.07)

      RV * Both Formula & Urea Fertilizers -0.0006 (-0.51) -0.0007 (-0.54)

Inverse Mills’ Ratio (TVs) 0.342 (2.51)** – 

Inverse Mills’ Ratio (RVs) 0.236 (1.69)* – 
a Does not include 30 village dummies
(t stats in parentheses)
** significant at the 0.05 level
 * significant at the 0.10 level

N = 900   
R2 = 0.680

F(46, 854) = 16.07

N = 900
R2 = 0.678

F(44, 856) = 16.36

8. Counterfactual Predictions

Estimation of the selection corrected yield function enables the prediction of imputed

yields for each individual’s unobserved varietal choice, evaluating each individual’s own



8 The conditional counterfactual assumes that the grower has already selected into the RV
subsample and includes the IMR term.  Unconditional counterfactual would not assume that the
grower had already selected into the RV subsample, and would not include the IMR term in the
computation of predictions.  While predicted yield levels vary given which counterfactual is
computed (Table 5b), the percentage differential between the predicted RV yield and the
predicted RV counterfactual is not affected by this choice.  The reason for this is that since these
differentials are calculated using predictions from the same subsample, it doesn’t matter whether
or not the IMR term is included.  However, if we were to compute a differential between
predicted RV yields (for RV users) and predicted TV yields (for TV users) – a differential across
subsamples – then the counterfactual choice makes a large difference.  For example, the
differential between conditional predictions across subsamples are almost identical to those from
OLS (605 vs. 541 kg/ha is 11%), while differentials between unconditional predictions are much
larger (714 vs 476 kg/ha is 33%).  Conditional differentials would thus be expected to be smaller
than unconditional estimates, in which the varietal choice has not yet been made.
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observed characteristics at the coefficients from the alternate subsample.  Finally, the predicted

TV yields of RV users can be statistically compared with predictions of RV yields to estimate

the farm-level impact of disease-resistant bean varieties in Honduras.  

The significant coefficient on the RV dummy imply that the expected yield of RV users is

higher than that of TV users, ceteris paribus.  However, the more appropriate counterfactual

scenario for impact analysis is the predicted yield that RV users would have obtained in the

absence of RVs – the TV yield of an RV grower.  The conditional counterfactual will produce

the yield differential between predicted RV and TV yields for a farmer chosen at random from

the RV subsample.  This conditional counterfactual8 is computed for RV growers as the selection

corrected constant (common to both RV and TV growers) plus the relevant IMR coefficient

multiplied by the corresponding IMR term, plus the characteristics of RV growers multiplied by

the TV coefficients estimated from the TV subsample. 

After obtaining predictions from each regression, the mean values of log(yield) are 
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Table 5. Predictions of RV and TV bean yields from Corrected and Uncorrected Yield Models, 1999-2000
Comparison of 

Mean Predictions 
by Subsample

Sub-
Sample

Size

 Corrected OLS Estimation* Uncorrected OLS Estimation

Mean Predicted
Yields

(kg / ha)

Differential b
(%)

Mean Prediction
(kg / ha)

Differential 
(%)

RV vs TVcf | RV 
 a N=312 605 361 40 35 634 577 9 0

RV vs TVcf | RV : Primera N=145 757 418 45 42 792 666 16 12

RV vs TVcf | RV : Postrera   N=167 473 313 34 28 496 501 - 1 - 9

TV vs RVcf | TV #1(adds RV, RV*fert) N=588 541 889 - 64 - 56 568 612 - 8 - 3

TV vs RVcf | TV #2 (adds RV)      N=588 541 860 - 59 - 52 568 591 - 4 0

TV vs RVcf | TV #3 (adds RV*fert)      N=588 541 512 5 9 568 538  5 10

TV vs RVcf | TV #3 : Primera N=245 622 641 - 3 0 652 673 - 3 0

TV vs RVcf | TV #3 : Postrera N=343 483 421 13 17 507 441 13 17

TV vs RVcf | TV #4 (adds neither RV    
                                 nor RV*fert)   

N=588 541 495 9 12 568 519 9 12

* Corrected predictions include IMR coefficients and IMR terms
Observed mean sample yields: RV = 673 kg/ha; RV primera = 810 kg/ha; RV postrera = 555 kg/ha
Observed mean sample yields: TV = 582 kg/ha; TV primera = 654 kg/ha; TV postrera = 531 kg/ha

a cf = counterfactual             
b Left differential is calculated as the ratio of the difference between sample mean yield predictions (from the mean predicted yields columns)
divided by the first term; for eg., [(RV - TVcf | RV) / RV ] * 100.  Right differential is calculated as the mean of farmer differentials, calculated
by the same ratio, but for each farmer; all left differentials are significant at the 0.01 level except where otherwise indicated. 



9 The conversion of predicted log yield to level yield is exp(scale) * exp(ln(yield_hat))
where scale is computed as the coefficient B0 of the regression Yield_hat = B0 exp(ln(yield_hat))
with no constant.
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scaled to levels9.  The mean predictions (Table 5) are similar to actual means, although the

predicted RV yields are lower in general than actual RV yields.  Two differentials are presented

(Table 5); the first is calculated as the ratio of the difference between sample mean yield

predictions (from the mean predicted yields columns) divided by the first term; for eg., [(RV - 

TVcf | RV ) / RV ] * 100; while the second is calculated as the mean of farmer differentials,

calculated by the same ratio, but for each farmer.  

Given that we found negative selection for RV yields (mean RV yields are lower than

they would be if RVs were grown in areas of no disease pressure) and positive selection for TV

yields (TV yields are higher than they would be if TVs were grown in areas of high disease

pressure), we would expect that differentials calculated from the selection-corrected yield

equation would be larger than those from the uncorrected OLS equation.  As expected,

comparison of differentials by estimation technique shows that those from the corrected model

are significantly larger than those from the uncorrected model (Table 5); the corrected model

predicts the mean farmer differential to be 42% in the primera, and 28% in the postrera, while

the uncorrected model predicts a differential of 12% and -9%, respectively for these two seasons. 

Furthermore, due to market price differentials by variety, yield differentials must be

adjusted in order to more accurately reflect the net gain to farmers of varietal choice.  For

example, the valuation of an RV grower’s counterfactual (using a TV) must account for the fact



10 Dorado and Don Silvio, released in the early 1990s, represent 75% of current RV users. 
The mean price discount for these varieties is 15%.  However, Tio Canela, released in 1997 and
representing 25% of RV users, has a smaller farm-level price discount of 7% (Mather et al,
2003).
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that while the RV may yield more than the TV, the market price of an RV is 15% less relative to

a TV10.  Even after adjusting the differentials for market price discounts, the corrected model

predicts that RV growers enjoy net income gains of 27% in the primera and 13% in the postrera

compared to what they would have earned growing TVs.  

However, adjusting the uncorrected model differentials yields counterintuitive results:

farmers growing RVs would lose 3% in net income in the primera and lose 24% in net income in

the postrera relative to what they would have earned growing TVs.  This result implies that RV

growers do not enjoy any yield gain (yield loss averted) to compensate for the price discount

(and actually lose net income in both seasons), yet continue to grow RV nevertheless.  By

contrast, RV differentials from the corrected model more than offset the price discount in both

seasons.  The conflicting results from these two models highlight the sensitivity of impact

analysis of maintenance technologies to the method of econometric measurement of farm-level

net benefits: using farm-level net benefits (differentials) from the corrected model yields positive

aggregate benefits, whereas using differentials from the uncorrected model yields negative

aggregate benefits.

Counterfactuals are also computed for TV growers as a means of testing the model,

wherein we compute a predicted TV yield and add the RV coefficient and the RV*fertilizer

coefficients (for those TV farmers who use fertilizers).  While we would expect that predicted

differentials for TV growers would be positive, or if negative, would not be larger than the price
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discount, the model in fact predicts that TV growers would see sizeable net gains from switching

to RVs.  As indicated by Table 5, these results are driven by the RV coefficient which is added

to the TV counterfactual.  Given that access to RVs is not likely a critical factor in the adoption

decision, this result can perhaps be explained by considering that the RVs were targeted for

valley farmers, whose growing conditions may be quite different from higher-altitude farmers. 

That is, the RV dummy represents a yield effect enjoyed by RV adopters in disease-prone areas

(which may well have other disease and pest pressures beyond simply BGYMV) over and above

BGYMV resistance, that the average TV grower will not enjoy.  If this assumption is correct,

then the more appropriate counterfactual for TV growers is #3 (Table 5), wherein we compare

the mean predicted TV yield with the mean predicted TV yield which includes the fertilizer

effects of RV growers.  These counterfactual values appear more reasonable as predicted RV

yields are not high enough to offset the RV price discount.  Another explanation for the large TV

differentials could be that the model consists primarily of dummy variables, and thus we may not

have enough variation among the characteristics (regressors) of TV farmers to capture the

differential response of TV and RV varieties to different farmer input quantities and qualities.

9. Implications for Impact Analysis

Using the economic surplus model and costs of research as outlined in paper #1, rates of

return to disease-resistant bean research in Honduras are calculated for the postrera seasons

1982-2010 (Table 6), using differentials from the corrected and uncorrected models, as well as

the differential derived from an expected utility framework (paper #1; Mather et al, 2003).  The

results demonstrate the significant implications of the method described in this paper for the

construction of counterfactual scenarios for use in the analysis of the impact of maintenance
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technologies.  Use of uncorrected OLS results would lead an analyst to conclude that RV use

generated negligible or negative returns, while the corrected OLS results generate a high ROR. 

The expected utility framework provides a minimum estimate of the net farmlevel benefits of RV

use, which appear to have underestimated the benefits in comparison with the corrected OLS

approach using sample mean differentials.   

Table 6.  Rates of Return to Disease-Resistant Bean Research in Honduras, Postrera
Seasons 1982-2010

Method of Calculating Incremental
Farm-level net benefits of RV use 

Incremental net farmlevel
benefit of Dorado use in the

postrera season, adjusted
for price discount (%)

Economic Rate of
Return a (%)

Expected Utility Framework b 11 41.2

Farmer Mean
Differential

Corrected Model: 13 45.0

Uncorrected Model: - 24 – 

Sample Mean
Differential

Corrected Model: 19 54.5

Uncorrected Model: - 16 – 
a Calculations use the economic surplus model as outlined in first essay.
b Framework and benefits as presented in first essay.

10. Conclusions

This paper demonstrates a method for using farmlevel survey data in the construction of

counterfactual scenarios for use in impact assessment of maintenance research.  The method uses

a modification of Lee’s (1978) two-step procedure to correct for selection bias, the presence of

which in farmlevel survey data will likely lead to underestimation of the benefits of maintenance

research (Johnson et al, 1999).  The method is applied to test for selection bias and estimate

yield differentials between RV and TV bean yields in Honduras by constructing the

counterfactual to RV yields as what yields RV users would have obtained had they continued to
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grow TVs (i.e. the TV yield of RV users).  The corrected yield model predicts that RV growers

enjoy net income gains of 13 to 19 percent compared to what they would have earned growing

TVs, while the uncorrected OLS model predicts that RV growers see either no income gain or

even losses by growing RVs (relative to TVs).  This application demonstrates that the

implications of this method are significant for the assessment of maintenance research impacts,

both at the farm-level and in terms of the ROR to research investments.
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Table 5b. Predictions of RV and TV bean yields from Unconditional and Conditional Corrected Yield Models, 1999-2000
Comparison of 

Mean Predictions 
by Subsample

Sub-
Sample

Size

 Corrected OLS Estimation without IMR Corrected OLS Estimation with IMR

Mean Predicted
Yields

(kg / ha)

Differential b
(%)

Mean Prediction
(kg / ha)

Differential 
(%)

RV vs TVcf | RV 
 a N=312 714 427 40 35 605 361 40 35

RV vs TVcf | RV : Primera N=145 882 487 45 42 757 418 45 42

RV vs TVcf | RV : Postrera   N=167 569 376 34 28 473 313 34 28

TV vs RVcf | TV #1(adds RV, RV*fert) N=588 476 782 - 64 - 56 541 889 - 64 - 56

TV vs RVcf | TV #2 (adds RV)      N=588 476 757 - 59 - 52 541 860 - 59 - 52

TV vs RVcf | TV #3 (adds RV*fert)      N=588 476 450 5 9 541 512 5 9

TV vs RVcf | TV #3 : Primera N=245 546 562 - 3 0 622 641 - 3 0

TV vs RVcf | TV #3 : Postrera N=343 427 371 13 17 483 421 13 17

TV vs RVcf | TV #4 (adds neither RV      
                               nor RV*fert)   

N=588 476 436 9 12 541 495 9 12

Observed mean sample yields: RV = 673 kg/ha; RV primera = 810 kg/ha; RV postrera = 555 kg/ha
Observed mean sample yields: TV = 582 kg/ha; TV primera = 654 kg/ha; TV postrera = 531 kg/ha

a cf = counterfactual             
b Left differential is calculated as the ratio of the difference between sample mean yield predictions (from the mean predicted yields columns)
divided by the first term; for eg., [(RV - TVcf | RV ) / RV ] * 100.  Right differential is calculated as the mean of farmer differentials, calculated
by the same ratio, but for each farmer; all left differentials are significant at the 0.01 level except where otherwise indicated. 
c significant at 0.05 level   d insignificant at 0.10 level
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