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ABSTRACT 
 

The full impact of an investment in a management information system 
(MIS), such as precision agriculture (PA), comes from improved managerial 
decision making throughout the whole farm and not just from improvements in a 
specific part of the farm.  This study was conducted to determine whether the 
adoption of PA had a positive impact on whole-farm profitability. To overcome 
problems of simultaneity and self-selection in the adoption decision of PA, this 
study used a two stage econometric model using data from farms in Southwest 
Minnesota. The PA adoption decision was evaluated in the first stage, and the 
impact of adopting PA was evaluated in the second stage. The whole farm rate of 
return to assets (ROA) was used to measure the impact of PA. For all 212 farms 
in the dataset, the adoption of precision agriculture was explained significantly 
(p<0.1) by two variables: positively by the farmer’s self-described soil variability 
and negatively by the level of non-farm income. For the 63 crop farms in the 
dataset, adoption of PA was explained significantly (p<0.1) only by the farmer’s 
self-described soil variability. The adoption of PA was estimated to have a 
significant (p<0.1) negative impact on ROA for the entire group of farms but was 
not significant when the farms were separated into crop farms only and into size 
clusters.  PA’s lack of significance in explaining ROA in the subgroups may be 
due to small sample size, the variability of ROA itself, the lack of fully 
implementing PA as an MIS, differences in management ability, and the 
availability of other farming methods that are just as profitable as PA. 
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INTRODUCTION 
 

Although it involves mechanical technology, precision agriculture (PA) or 
site specific resource management is, more precisely, a management information 
system (MIS).  Traditional benefit-cost and investment analyses do not capture 
the full impact of a specific investment in information technology if it is analyzed 
as an isolated investment since the profitability of an improved and fully 
implemented MIS comes from improved managerial decision making for the 
whole farm not just as improvements in easily seen efficiencies (Hamilton and 
Chervany 1981, Lincoln and Shorrock 1990, Kleijnen 1980, Parker et al. 1988; 
Banker and Kauffman 1989).  This study builds on the work by Tomaszewski et 
al. (2000), Verstegen (1998), Zacharias, Huh, and Brandon (1990), Lowenberg-
DeBoer and Swinton (1995)  and others to develop an analytical framework for 
estimating PA’s impact on whole-farm profitability.  Data from the Southwestern 
Minnesota Farm Business Management Association (e.g., Olson et al., 2001) are 
used to assess the impact on the whole farm rate of return to assets (ROA) of 
differences in the level of PA use, farm size and location, crop yield, soil 
characteristics, operator age and education, and so on.  By using ROA, we will be 
able to see the impact of not only improving input efficiency (e.g., better fertilizer 
recommendations), improving resources (e.g., adding drainage), etc., we will also 
be able to see the impact in how decisions are made, more attention paid to hard 
data versus hunches, changes away from traditional methods, etc. Following 
Fernandez-Cornejo & McBride (2000), we use a two stage model to estimate the 
impact of adopting precision agriculture and to account for simultaneity and self-
selection in the adoption decision.  The first stage is the adoption decision model 
and the second stage is the impact model (of using precision agriculture).   

 
DATA COLLECTION AND ANALYSIS METHODS 
 

In January 2001, during their year-end analysis for 2000, the 212 farmer-
members in the Southwestern Minnesota Farm Business Management Association 
were surveyed regarding their use of precision agricultural techniques. In two 
separate studies, the farmers who belong to a management association were found 
to be larger than the average farm reported by the agricultural census and were 
more likely to have livestock (Andersson and Olson, 1996; Tvedt, Olson, and 
Hawkins, 1989).  Each farmer was asked whether they used any of the following 
techniques considered to be part of what is called precision agriculture: 

Computer generated soil maps 
GPS used to map field boundaries 
GPS used to map problem areas 
GPS assisted soil fertility sampling 
Yield monitor (but no GPS and GIS) 
Yield monitor with GPS 
Yield monitor with GPS and GIS to generate yield maps 
Grid sampling for soil testing 
GPS assisted variable rate fertilizer applications 
GPS assisted variable rate planting 
Profit maps 



Multiple layer map analysis 
 

Of the 212 farms surveyed, 59 said they used at least one of the techniques 
listed above. To analyze the financial impact of adopting precision agriculture, 
their responses were connected with the information regarding their financial 
condition and performance collected as part of their year-end analysis.  

The decision to adopt site-specific management is not randomly taken by 
the farm manager. This decision may be related to the size of the farm, to the age 
of the operator or to the geographical location of the farm. By the same token, the 
value of the rate of return of the farm assets may be also explained by the age of 
the operator or the size of the farm. That is, some determinants of the adoption of 
precision agriculture can also be explaining the level of the rate of return of the 
farm assets. Then sample selection bias arises. Moreover, some unobserved 
variables explaining the decision to adopt precision agriculture could be 
correlated to unobserved explanatory variables of the level of the rate of return, 
which creates another relationship between the decision to adopt PA and the rate 
of return. If the unobservables are correlated to the observables then the absence 
of the unobservables leads to erroneous estimates of the characteristics of the rate 
of return due to sample selection bias (Vella).  

Sample selection models are composed of two equations. The first 
equation is the equation of interest and the second equation is the “selection rule” 
that determines when the data in the first equation are observed. A sample 
selection model has the form: 

(1) iii xy εβ +′= ;  i = 1 ,…, N  and ],0[~ 2
εσε Ni  

(2) ;iii uwz +′=∗ γ   i = 1 ,…, N  and ]1,0[~ Nui  
(3) zi = 1 if ∗

iz > 0 (farm adopts PA) 
(4) zi = 0 if 0≤∗

iz (farm doesn’t adopt PA) 
Equation (2) is the selection equation, where ∗

iz is unobserved and zi is 
observed. The variable of interest yi (rate of return) is observed only when ∗

iz > 0, 
that is the farm’s manager used precision agriculture. β and γ are the vectors of 
unknowns parameters and εi and ui are the errors terms with E[εi | ui] ≠ 0.  
 The expected value of yi conditional on yi being observed is 
[ ] [ ] [ ]γεβγ iiiiiiiii wuExwuyEzyE ′−>+′=′−>== ||1/ . There exist two main 

parametric methods used to estimate the selection model that depend on the 
assumption that εi and ui are independently and identically distributed and (εi, ui) 
are independent of w. The first method described by Heckman (1974) is to 
compute a maximum likelihood estimator. This method is too tedious and relies 
heavily on normality assumptions regarding εi and ui. The second method was 
proposed also by Heckman (1976, 1979). His strategy overcomes the 
misspecification of the conditional mean of y when Equation (1) is estimated 
using OLS (since [ ] 0| ≠′−> γε iii wuE ) by adding a correction term to 
explain [ ]γε iii wuE ′−>| . Heckman rewrote the expectation as  
[ ] ( )γλρσγε ε iiii wwuE ′−=′−>|  



where ( ) ( ) ( )γγφγλ iii www ′Φ′=′− , with ( )⋅φ  being the probability density function 
of the standard normal distribution and ( )⋅Φ  being the cumulative distribution 
function of the standard normal distribution and  ρ being the correlation 
coefficient between y and z. The ratio of the function denoted ( )⋅λ  is called the 
inverse Mills ratio.  Equation (1) becomes  
( ) iiiii vxzy ++′== λρσβ ε1|  
Heckman proceeds in two steps. First he runs a probit on Equation (2) to estimate 
the inverse Mills ratio and obtains ( ) ( )γγφλ ˆˆˆ

ii ww ′Φ′= and ( )γλλδ ˆˆˆˆ
iiii w′−=  . In a 

second step, he regresses y on x and λ̂ using OLS to obtain β and βλ. The 
coefficient on λ̂ is an estimate of ρσε.  

This application of the OLS in the second stage gives consistent estimates 
of β, but the estimates of the covariance of β are incorrect. There are two reasons 
for that (Greene). First, vi is heteroscedastic, 

[ ] ( )iiv δρσ ε
22 1var −= . 

And second, γ̂  is just an estimate ofγ , since there are unknown parameters in λi. 
The correct form for the estimates of the covariance of β’s (which include β and 
βλ) is [ ] [ ] ( )[ ][ ] 1212 ˆˆˆ, −− ′+∆−′′= XXQXIXXXbbVar ρσ ελ   

where  ( ) ( ) 2

1

2

1

ˆˆˆ11ˆ λε γλλσ bw
n

bxy
n ii

n

i
i

n

i
i ′++′−= ∑∑

==

; 222ˆ ελ σρ b= ; ( )∆− ˆˆ 2ρI  is an 

nxn diagonal matrix with ( )γλλρ ˆˆˆˆ1 2
iii w′+−  the ith diagonal element; 

and ( ) ( )( )WXVarWXQ ∆′∆′= ˆˆˆˆ 2 γρ  with ( )γ̂Var  being the covariance matrix from 
the probit estimate. 

Though there exist more discussions about sample selection models 
(particularly semi-parametric methods), we limit our analysis to Heckman’s two-
step model with the corrected form for the estimates of the covariance of β’s.  
 
RESULTS 
 

The average ROA was 13.0% for all 212 farms and 13.6% for the 59 
farms who said they were using PA (Table 1). The 63 crop farms (operations in 
which crop income constitutes 70% or more of the total gross income for the 
farm) had an average ROA of 10.5% and the 16 crop farms who said they were 
using PA had an average ROA of 10.2%. 

The farms using PA tended to be larger on average by several measures. 
The average farm had 730 acres of crops; the average farm using PA had 845 crop 
acres. PA farms had a higher average gross income and higher asset values than 
all farms.  

Farmers using PA gave their fields a higher variability index; 3.2 
compared to 1.3 for all farms. 

These data were used to estimate the significance of variables in 
explaining adoption of PA and, as described earlier, to estimate the impact of 
adopting PA on the financial performance of the farms 

For all 212 farms in the dataset, the adoption of precision agriculture was 
explained significantly (p<0.1) by two variables: positively by the farmer’s self-



described soil variability and negatively by the level of non-farm income (Table 
2). The county the farm was situated in, the age of the main operator, the size of 
the farm as measured by the number of crop acres, and the level of debt were not 
significant in explaining PA adoption. The estimated Probit model predicted 
83.5% of the farms correctly as to whether they adopted PA or not. 
 

Table 1. Descriptive statistics of farms in survey. 
 
Variable All 212 farms 

59 PA 
farms 

63 crop 
farms 

16 PA crop 
farms 

Rate of Return on Assets 
(%, ROA, cost basis) 
 

13.0 
(10.6)1 

13.6 
(11.0) 

10.5 
(11.9) 

10.2 
(12.3) 

Crop acres 
 
 

730 
(489) 

845 
(519) 

714 
(439) 

864 
(583) 

Owned acres 
 
 

214 
(256) 

245 
(274) 

214 
(228) 

259 
(363) 

Gross income ($) 
 
 

422,897 
(466,918) 

480,880 
(365,175) 

260,107 
(159,097) 

310,593 
(192,001) 

Crop share of gross 
 income (%) 
 

51.0 
(25.5) 

48.6 
(23.9) 

78.1 
(6.2) 

77.0 
(5.2) 

Average Farm Asset 
 Value ($, cost basis) 
 

693,642 
(597,562) 

811,718 
(547,021) 

490,772 
(374,590) 

603,655 
(585,515) 

Average Farm Asset  
Value ($, market value) 
 

1,042,603 
(860,413) 

1,215,130 
(837,501) 

765,917 
(566,459) 

899,681 
(902,402) 

Total % in Debt  
(cost basis) 
 

52.1 
(20.8) 

53.1 
(19.2) 

49.9 
(19.5) 

49.8 
(18.5) 

Net non-farm income ($) 
 
 

21,436 
(25,351) 

15,045 
(15,784) 

29,570 
(26,414) 

24,619 
(15,852) 

Age of main operator 
 (years) 
 

47.4 
(10.7) 

47.9 
(11.8) 

48.1 
(10.9) 

46.4 
(12.2) 

Years farming,  
main operator 
 

24.2 
(11.1) 

25.3 
(11.5) 

23.5 
(11.9) 

23.8 
(12.6) 

Variability2 

 

 

1.3 
(1.8) 

3.2 
(1.3) 

1.3 
(1.9) 

3.3 
(1.7) 

1Standard deviation in parentheses. 
2Variability is the farmer’s self-described index of the variability of their fields based on 
soil type, slope, wetness, and so on. It ranges from 1 to 5 with 5 indicating most variable. 



Table 2. Estimated Probit model for the probability of adopting precision 
agriculture using all 212 farms. 

 
Variables Estimates t statistic 
Constant -1.27 -1.44 
VARIABILITY1  0.65  8.17* 
COUNTY -0.13E-02 -0.37 
AGE -0.79E-02 -0.61 
CROP ACRES  0.75E-04  0.28 
DEBT  0.51E-02  0.78 
NONFARM  -0.17E-04 -2.60* 
Chi-squared 110.35  
% predicted correctly 83.5%  
*Significant at p<0.1   
1Variables defined in Table 3. 

 
 
Table 3. Definition of the variables. 
Variables Definitions 
VARIABILITY The farmer’s self-described index of the variability 

of their fields based on soil type, slope, wetness, and 
so on. The index ranges from 1 to 5 with 5 indicating 
most variable. 

COUNTY  County of farm operation 
AGE Age of main operator  
CROP_ACRES Number of acres cropped (owned plus rented) 
DEBT Average dollar amount of debt held by farm 
YEARS_FARMING Number of years the main operator has been farming 
LABOR_HOURS Number of hours worked per year, self-estimated 
GROSS_INCOME Total gross income for farm (dollars) 
OPERATING_EXPENSES Total operating expenses for farm (dollars) 
COST_ASSET Average value of all farm assets (cost basis) 
GOVT_INCOME Total of income from all government sources and 

programs 
NONFARM_INCOME Total net income from nonfarm sources 
PA Binary variable, 1 if farm adopted PA, 0 if not 
PA-HAT Estimated probability of adopting precision 

agriculture 
LAMBDA Estimate of the inverse Mills ratio 
 



The adoption of PA was estimated to have a significant (p<0.1) negative 
impact on ROA for the entire group of farms (Table 4).  This impact was 
estimated to be –10% on ROA. Others variables that had a significant (p<0.1) 
effect on ROA were labor hours (negative), gross income (positive), operating 
expenses (negative), asset level (negative), government income (positive), and 
non-farm income (negative). 

Since the types of farms in the entire dataset were very diverse, the next 
step was to select only those farms on which crop income constituted 70% or 
more of the total gross income for the farm.  Of the total 212 farms, 63 farms 
were thus classified as crop farms.  

For these 63 crop farms, adoption of PA was explained significantly 
(p<0.1) only by the farmer’s self-described soil variability (Table 5). For the crop 
farms, the adoption of PA did not have a significant (p>0.1) impact on (Table 6).  
Others variables that had a significant (p<0.1) effect on the crop farms’ ROA 
were the county of residence (negative), years farming (positive), labor hours 
(negative), gross income (positive), operating expenses (negative), asset level 
(negative), and non-farm income (negative). 

The dataset was also divided into 3 size clusters by using cluster analysis 
on three variables: crop acreage, crop income, and asset value. The smallest size 
cluster consisted of 179 farms centered around a crop acreage of 567 acres; crop 
income of $163,442; and an asset value of $304,196 with assets valued on a cost 
basis.  

For the 179 farms in the smallest size cluster, adoption of PA was 
explained significantly (p<0.1) positively by the farmer’s self-described soil 
variability and negatively by the level of non-farm income (Table 7). For these 
farms, the adoption of PA did not have a significant (p>0.1) impact on (Table 8).  
Others variables that had a significant (p<0.1) effect on the crop farms’ ROA 
were the gross income (positive), operating expenses (negative), asset level 
(negative), government income (positive), and non-farm income (negative). The 
other 2 size clusters showed very similar results and are not reported here. 
 
Table 4. Estimated regression coefficients explaining rate of return on assets 

using all 212 farms. 
 

Variables Estimates t statistic 
Constant  22.08  3.00* 
COUNTY   0.25E-01  0.83 
YEARS FARMING  -0.17E-01 -0.17 
LABOR HOURS  -0.12E-02 -2.25* 
GROSS INCOME   0.86E-04  3.87* 
OPERATING EXPENSES  -0.71E-04  -3.47* 
COST ASSETS  -0.16E-04 -4.55* 
GOVT INCOME   0.10E-03    2.86* 
NONFARM INCOME  -0.21E-03 -2.50* 
PAHAT    -10.07 -2.77* 
LAMBDA    -3.06 -0.81 
Adjusted R2 0.39  
F-Statistic 4.65  
*Significant at p<0.1   



Table 5. Estimated Probit model for the probability of adopting precision 
agriculture using the 63 crop farms. 

 
Variables Estimates t statistic 
Constant  0.35  0.23 
VARIABILITY  0.57  4.17* 
COUNTY -0.81E-02 -1.42 
AGE -0.33E-01 -1.24 
CROP ACRES  0.49E-03 0.92 
DEBT  0.21E-02 0.16 
NONFARM INCOME -0.10E-04 -1.0 
Chi-squared 29.85  
% predicted correctly 84.1%  
*Significant at p<0.1   

 
 
Table 6. Estimated regression coefficients explaining rate of return on assets 

using the 63 crop farms. 
 

Variables Estimates t statistic 
Constant  55.71  2.02* 
COUNTY  -0.28 -3.28* 
YEARS FARMING   0.64  2.75* 
LABOR HOURS   -0.16E-01 -3.26* 
GROSS INCOME    0.21E-03  1.97* 
OPERATING EXPENSES   -0.17E-03 -2.08* 
COST ASSETS  -0.26E-04 -2.54* 
GOVT INCOME   0.21E-03  1.23 
NONFARM INCOME  -0.87E-03 -2.25* 
PA HAT  -6.32 -0.68 
LAMBDA 10.62  1.20 
Adjusted R2 0.13  
F-Statistic 1.22  
*Significant at p<0.1   

 
 
Table 7. Estimated Probit model for the probability of adopting precision 

agriculture using the 179 farms in the smallest size cluster. 
 

Variables Estimates t statistic 
Constant  0.17  0.97 
VARIABILITY  0.16 10.77* 
COUNTY -0.16E-03 -0.21 
AGE -0.19E-02 -0.73 
CROP ACRES -0.23E-04 -0.31 
DEBT  0.67E-03  0.52 
NONFARM INCOME -0.20E-05 -1.98* 
Adjusted R2 0.42  
% predicted correctly 82.1%  
*Significant at p<0.1   



Table 8. Estimated regression coefficients explaining rate of return on assets 
using the 179 farms in the smallest size cluster. 

 
Variables Estimates t statistic 
Constant  18.04  1.81* 
COUNTY   0.03  0.77 
YEARS FARMING   0.71E-02  0.06 
LABOR HOURS   -0.11E-02 -0.67 
GROSS INCOME    0.71E-04  2.17* 
OPERATING EXPENSES   -0.67E-04 -2.27* 
COST ASSETS  -0.18E-04 -2.49* 
GOVT INCOME   0.12E-03  2.87* 
NONFARM INCOME  -0.28E-03 -2.64* 
PA HAT  -3.28 -0.75 
LAMBDA   1.44  0.31 
Adjusted R2 0.25  
F-Statistic 2.56  
*Significant at p<0.1   

 
 
DISCUSSION 
 

While other studies of specific investments in PA have shown positive 
impacts on the financial performance of farms, similar results were not found by 
analyzing the performance of a group of farms in Southwestern Minnesota. The 
significant (p<0.1) but negative effect of PA over all farms in the dataset and 
PA’s lack of significance in explaining ROA in the subgroups may be due to 
several factors. First, the overall sample of cross-sectional data from 212 farms 
collected in one year may be too small to capture small impacts of PA compared 
to the larger impact captured in other variables. In addition, the variability of 
ROA itself as seen in the descriptive statistics may have created additional 
difficulty in finding the impact. The lack of fully implementing PA as an MIS 
also may not have allowed the full benefits to be discovered by the farmers 
themselves. This lack of a full implementation may be due to PA being a 
relatively new technology and thus not learned by farmers yet and also due to the 
complexities of farming and the fact of management attention being drawn to 
other parts and aspects of the farm business. Another reason may be due to 
differences in inherent management ability that are not captured in the dataset. 
Also, the lack of a positive significant impact of adopting PA may be primarily 
due to the availability of other methods and technologies that are just as profitable 
as PA.  Without a dataset that would have this information, we may not be able to 
separate the impact of one technology; that is, the impact of only one is lost in the 
variation of the data.
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