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The Deseasonalization of Animal Production 

Abstract 

We document the deseasonalization of animal production in the US and Europe.  Hypotheses on 

causes and consequences of this trend are advanced.  They pertain to feed costs, changes in animal 

productivity and cost fixity of the underlying technology, innovations in genetic control and 

epidemiology, and the capital intensity of production. 
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The Deseasonalization of Animal Production 

 

Introduction 

Since human settlement started about 10 to 12 millions years ago, humans relied on animals to 

provide for important nutrients.  However, animal based food was expensive and husbandry 

competed in many regions for the use of land as plant growing area.  Animal rearing consequently 

was either confined to land that could not be used otherwise or integrated in production systems 

coupling the joint production of animals and crops. 

 Integrated in such systems, animals were kept according to the annual cycle of plant growth 

and feed production.  It was only during the 20th century, that humanity has experienced such 

enormous increases in plant productivity that could outpace the growing need for staple foods.  

These productivity gains were partly due to the development of mineral fertilizers and pesticides.  

Increasing nutrient availability and protecting plants from pests, soil productivity grew annually by  

2% over the last century.  Furthermore, mechanization of agriculture helped increasing the 

productivity of labor. Beyond sustaining a population growth from 1 to 6 billion people over the 

20th century, advances in agricultural productivity made it possible that consumers in the 

industrialized world could increase their consumption of meat and other animal products to 

formerly unknown levels.  As animal feed has become available plentiful and cheap on a year-round 

basis, animal production could prosper. 

 Advances in transportation did its due part enabling the shipping of feed and fertilizer over 

long distances, hence disentangling the traditional link between animal and crop agriculture.  And 

the development of hybrid corn, a cheap fodder, nowadays even apt to northern short growing 

seasons, made it possible to break the link between cattle or dairy breeding and grassland, the 

former being dependent on a sufficient supply of roughage. 

According to a hypothesis in Allen and Lueck, the seasonal character of agricultural 

production presents a major impediment to industrialization and specialization of labor.  The control 
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enhancing nature of the last century’s more significant technological innovations suggest that 

animal production seasonality should have declined as a consequence.  The argument is as follows.  

Increasing crop sector productivity and developments in transportation have led to a declining 

dependence between of animal production and feed production.  At the same time advances in 

veterinary sciences have promoted animal production in confined areas that may be geographically 

separated from the production of fodder inputs and suitable locations for animal waste disposal.  

Confined animals are protected from the vagaries of inclement weather and receive a regular and 

controlled supply of feed all-year round.  Animal production thus became less dependent on 

seasonal cycles, opening new opportunities for industrialization and productivity growths.  It is to 

be expected that animal production has become less seasonal.  

The purpose of this paper is to document the deseasonalization of animal production using 

time series and statistical trends available for the latter half of the 20th century.  We exemplify our 

argument using data for selected productions in North America and Western Europe.  Hypotheses 

on causes and consequences of this deseasonlizing trend are advanced.  They are related to the 

availability of cheap feed, the change in animal productivity and technology of animal husbandry, 

the control of genetics and of animal epidemiology.  

Our analysis is structured as follows.  After this introduction, we review some of the most 

important trends in animal production in the industrialized world during the last 50 years.  Based on 

time-series data of monthly animal production of dairy, beef and pork in various countries, we 

present and discuss seasonality indicators.  We proceed, in a third section, developing some 

hypotheses on the causal relationships for deseasonaliazation.  The paper concludes on suggestions 

for future research identifying the causes and consequences of deseasonalized animal production. 

A Historic Perspective on Deseasonalization 

The Changing Nature of Agricultural Production 

Agricultural development in the industrialized world was characterized by a number of 

technological advances during the 20th century.  Table 1 presents an overview of notable technical 
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innovations during the first 40 years of that century.  Changes pertain to the mechanization of 

agriculture, advances in pest and disease control, improved management of soil fertility and new 

animal breeding techniques. 

For our purposes the evidence reported in this table is too limited in at least two respects: It 

only covers innovations until 1940, and important additional discoveries were made later on.  

Indeed, output indicators of US farm production show a significant increase in annual growth from 

1940 onwards.  Secondly it refers to the United States, and we also will consider evidence from 

Europe.  However, we can trust that similar technologies became available on the old continent at 

about the same time, while adoption rates may have differed across countries and regions.  A further 

limitation of this table arises out of its arrangement.  That is, many plant innovations, such as the 

development of hybrid corn and other feed producing plants had significant repercussions on the 

development of animal production systems.  When analyzing the developments in animal 

production, attention should not be confined to ‘animal’ technologies. 

 Innovations in milk production serve as an example: Between 1920 and 1960, major steps in 

innovation were taken by the innovation of vacuum-driven milking machines, fans for ventilation 

and hay drying, refrigerated bulk tanks for milk storage, barn cleaners for manure removal, pipeline 

milkers and milking parlors, silo unloaders, augers, grinders, and other feed-handling equipment, 

and electric fencing.  In consequence, the number of hours needed to produce 100 lbs. of milk 

declined from 3.8 hours in 1910, to 3.4 in 1935-39 down to 0.2 hours in the1980 (Gardner, p.15).  

Similar increases in labor productivity are estimated for hogs and broilers.   

 Innovation did not only impact production but also marketing.  Technological progress has 

lowered the costs of transportation for inputs going to the farm and for output going to the market.  

This has effectively lowered the cost of farm products.  It has also changed the way in that product 

was marketed.  While the cream separator was standard equipment on a dairy farm that sold only 

cream or butter in the early 19th century, it had essentially disappeared by the 1950s (Gardner, p. 

28). 



 4

 Subsequent to these technical changes, the economies of scope typical for agricultural 

production faded in the light of newly arising economies of scale.  In the US, the census of 1900 

reports that of the 5.7 million farms counted, 98% had chicken, 79% had at least one milk cow and 

75% had pigs.  In the 1992 census, the picture had changed and of the remaining 1.9 million farms 

only 4% reported chickens, 8% milk cows, and 10% pigs.  Gardner (p.61) estimates the 

specialization index counting the number of commodities produced per farm that had declined from 

5.6 in 1920 to 4.2, 2.7, and finally 1.8 and 1950, 1969, and 1992, respectively. 

 A consequence of the newly developed technologies was a decline in labor intensity and an 

increase in capital intensification.  For the US, net investment on farms was positive for most years 

between 1940 and 1980.  A decline in capital investment occurred only with the farm crises of the 

1980 (for data see Gardner, p.263). 

 Similar developments occurred in Europe.  We exemplify looking at the case of Germany.  

In the aftermath of worldwar II, agricultural production recovered.  Intensifying with the use of 

synthetic fertilizers, yields rapidly increased beyond pre-war levels.  Also, animal productivity 

increased and, e.g., annual production of milk per cow rose from 2,474 liters in 1950 to 3,444 liters 

in 1962 and 3,997 liters in 1975.  As shown in table 2, mechanization progressed in line with, but 

took on later than in the US.  As an example, while the number of tractors exceeded that of traction 

animals in the US already in the early 1940, the same event occurred in Germany only in the late 

1950 (Henning, p. 268).  The later adoption of technologies in Germany can be explained by a 

number of factors: lesser openness to new technologies, climatic conditions less favorable to the 

adoption of combines, lack of interest in new investments (Henning, p. 269). 

 The importance of these developments for the productivity growth of agricultural production 

has extensively been documented and discussed in the literature.  What is of interest to us, is its 

relation to the seasonal structure of animal production.  In the economies of plenty having access to 

well functioning storage technologies, seasonal production does not seem much of an issue. But 

preservation of quality during storage is costly and the seasonality of agriculture may limit the 
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access to further automization and industrialization.  What’s more, seasonality remains an important 

issue in extreme climate zones, see for example the preponderance of transhumance in sub-saharan 

Africa.  The literature suggests that mechanization may limit its extent with which it affects nutrient 

availability and public health of the rural population (Moris), but further impact of 

deseasonalization on productivity growth has not been analyzed yet. 

 

Seasonal Patterns in Agriculture 

One does not have to look far into the past to notice the changing pattern of seasonality.  However, 

the evidence is impressive, when one looks at long time series.  Table 3 reports the data we have 

used.  The data have been transformed to take account of the different length of the months in a 

year.  That is, monthly production has been divided by the number of days to yield average daily 

production and multiplied by thirty, so that we work with months normalized to the length of thirty 

days. 

 Seasonality of production has been measured by two concentration indices: The Hirshfeld-

Herfindahl index (HI) and the maximum entropy index (EI).  Denoting the monthly share of month 

m in annual production in year t as smt, HI is calculated as  

 

EI is calculated as 

 

Less seasonality in production triggers a lower HI and a rising EI.  In fact, for monthly production 

shares, EI reaches a maximum of ln(12) = 2.4849 when an equal share of 1/12 is produced in each 

and every month of the year whereas HI has value 833.33 in this case.. 

( )∑
=

×=
12

1

2100
m

mtt sHI

( )∑
=

=
12

1
ln

m
mtmtt ssEI



 6

 Table 4 reports the calculated indices. It is obvious that seasonality has been declining in all 

production systems.  The most impressive decline and that we observe, is in dairy production. In 

particular Canada changed from a completely seasonal to a completely aseasonal system in the 

period from 1945 to today.  A similar trend to a lesser extent is observable for pork.  For beef, no 

clear trend is discernable. 

Documenting deseasonalization  

To understand the dynamics behind the decline in seasonality, we test the hypothesis that EI is 

converging to an aseasonal system.1  If deseasonalization follows a geometric convergence process, 

then it can be modeled as  







 −=− −1

___

1

___

tt EIEIaEIEI  

This process is equivalent to an AR1 process with a constraint on the constant 

110 −+= tt EIaaEI  

where ( )
___

10 1 EIaa −=  and )12/1ln(
___

=EI .  In this process a1 is the convergence rate, the higher its 

value, the faster EI converges to 
___
EI . 

The results are given in Table 5.  The hypothesis H0: ( )
___

10 1 EIaa −=  of constant convergence to the 

aseasonal system is rejected but for milk in Canada and the US.  Convergence rate for milk vary 

between 0.842 in the UK and 0.975 in the US.  They are considerably lower, but significant, for 

pork where they vary between 0.180 in Germany and 0.672 in the US. There are insignificantly 

different from zero for beef in Germany and in the US. 

Productivity and Seasonality 

Analyses in economic history have shown evidence that strong seasonal fluctuations in labor 

availability hinder productivity growth.  Sokoloff and Dollar explain differences in the organization 

of manufacturing in early industrialized England and US in by difference in seasonal agriculture 
                                                 
1 All regressions have also been performed with HI. Because both indices are highly correlated, the results are virtually 
identical. To save space, we only report on the results for EI. 
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and labor availability.  In England’s more seasonal economy, cottage manufacturing could compete 

with technically more productive manufacturies because it took a better advantage of labor supply 

peaks in winter months.   

As Allen and Lueck have argued, seasonality may not only influence the industrialization of 

an economy in its entirety and in particular of the manufacturing sector, but also slow down the 

industrialization of agriculture.  Automatization of production processes is hindered by the fact that 

distinct tasks, such as calving, milking, preparation of silage and feed, have to be performed at 

different times. 

Two hypotheses emerge: (1) deseasonalization of production technologies is a necessary 

given for raising productivity and/or (2) deseasonalization occurred only because of deseasonalizing 

(Hicks biased) technical progress in productivity.  In the following we test for these two hypotheses 

using causality tests.  We do so by concentrating on milk production. For dairy we have found 

strong deseasonalizing trends. Dairy is also a production system whose seasonality is a result of 

cost saving emerging from feed availability and breeding stock.   

Since the work of Yule, the danger of spurious regressions in testing for causality among 

time series has been recognized.  Evaluating the relationship of economic time series data often 

results in highle autocorrelated residuals and may bias conventional hypothesis tests (Granger and 

Newbold).  To circumvent this problem it has become common practice to first test for the 

cointegration among the series.  If series are known to be I(1) but not cointegrated, the practice is to 

estimate a VAR model in the differences, while if the series are known to be integrated, causality 

can be determined using a error-correction model. Although we will adopt a procedure proposed by 

Dolado and Lütkepohl that avoids possible problems with pretesting for cointegration, we will first 

test for unit roots and cointegration, before engaging in causality tests. 

Stationarity Tests 

 Using the Dickey-Fuller procedure we test for the stationarity in of the EI index and 

productivity.  The Dickey-Fuller test is restrictive in that it assumes statistically independent error 
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terms of constant variance.  Phillips and Perron have developed a generalization of the Dickey-

Fuller procedure that relaxes the assumption on the error terms.  However the Phillips-Perron test is 

problematic when the true model contains a negative moving average.  Because the true model is 

never known, Enders suggests performing both tests.  We do so and the results for productivity and 

EI are reported in table 7, both at the country and US state level.  The table shows that we cannot 

reject a unit root for the series under scrutinity. 

Cointegration  

Having found evidence of a unit root, we can proceed with tests of cointegration.  We use the 

Johansen maximum likelihood method (Johansen; Johansen and Julius) that is based on a full 

system approach.  Cointegration is tested for based on the trace statistics of the integrating vectors. 

In addition the Engle-Granger method is used. The latter is a single equation method and tests for 

the unit root in the residual of these cointegrating regressions.   

The results are reported in table 8.  While the Engle-Granger method does not provide 

evidence against cointegration for all tested relationships, the results of the Johansen method are 

quite mixed. And so the cointegration of productivity and aseasonality is rejected for Germany, 

New York, Texas and Washington. 

Causality 

Standard Granger causality tests have nonstandard asymptotic properties if the variables of a VAR 

are integrated or cointegrated.  This complicates the tests for causality because one has to recur to 

simulations to determine the critical value in a causality test. The standard approach in this case has 

been to estimate a VAR in differences if the variables are known to be I(1) but not cointegrated, or 

to estimate an error correction model if the variables are known to be cointegrated (Mosconi and 

Giannini, 1992). An alternative is to employ an approach developed by Dolado and Lütkepol and 

been employed e.g. in Tsionas.  Dolado and Lütkepol have shown that if variables are ( )dI  and the 

true data-generativng process is a ( )pVar , then by fitting a ( )dpVAR + results in the usual 

asymptotics for Wald tests.  This works because overparameterization of the VAR process avoids 
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singularity in the test statistic.  As Tsionas explains, in order to test for causality, one proceeds by 

fitting a ( )dpVAR +  in levels and applies a standard F-test involving the coefficients of lags 1 to p. 

 Results in table 9 suggest that deseasonalization triggered productivity gains in NY, WI and 

WA, but that in CA, ID and KY productivity growth has caused a more aseasonal system.  No 

causal relationship is evident for IL, IN, MI, MN, OH, PA and VA and a two-way causality is 

shown for TX. 

Conclusion 

We have developed a pathway to explain patterns in the deseasonalization phenomenon that has 

occurred in animal agriculture.  It is based on the link between productivity progress made possible 

by more aseasonal systems, and that in itself has a bias towards less seasonality. We have also 

provided evidence to support the theory.  We readily agree that other theories may also have merit 

in explaining part of the story. 

Consider a feed cost motive.  Many of the effects referred to above concern the price of 

concentrate feed relative to grass.  While concentrated feed markets are quite integrated at the U.S. 

national level, this is not true of bulky hay and silage markets, while grass markets are very local.  

A reduction in the relative price of concentrate feed should promote confined production because 

concentrate feed is most readily fed indoors.  For the five-year intervals 1953-1957 and 1996-2002, 

we considered the price of standard grade corn in Kansas City (#3 yellow in the earlier period and 

#2 yellow in the later period).2  We considered also the USDA reported annual national prices of 

hay in those years.  The hay to concentrate price ratio approximately doubled over that time 

interval, providing a further motive for non-seasonal dry-lot production where grass products are 

less significant inputs.  

Or consider the demand-side motive for more information and safer raw materials that can yield 

more differentiated processed product, as discussed in Barkema or Kinsey.  This can explain 

growing vertical coordination in the food system.  It could also provide a motive for larger scale 

                                                 
2 Statistics are derived from data in various issues of Agricultural Statistics, United States Department of Agriculture. 
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production because industrial farms can be more readily monitored by means that also apply to 

more regular industries.   
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Table 1. Notable technical innovations, 1900-1940 

Machinery 
All-purpose tractor 
Pneumatic tires 
Diesel tractor 
Corn picker 
Power mower 
Silage and hay cropper 
Pickup baler 
Beet lifter and topper 
Can harvester 
Mulitrow planter 

 
Fertilizer spreader 
Power spreader 
Automatic drainage pump 
Spray irrigation equipment 
Electric fence 
Electric poultry equipment 
Hay dryer 
Crusher-mower 
Duck-foot cultivator 
Seed placement plates 

 
Animal innovations 
Artificial insemination 
Controlled feeding 
Sanitation improvements in dairy 
Cross-breeding cattle, hogs, and poultry 
Improved balanced rations 
Improved control of insects and internal 
parasites 
Progeny testing 
Improved feed quality control 

 
 
Improved control of diseases: 

Tuberculosis 
Bang’s Disease 
Cattle Tick Feaver 
Poultry diseases 

 
Plant innovations 
Hybrid corn 
Rust-resistant wheat and oats 
Longer-staple cotton 
Early maturing sorghums 
Cold-tolerant sugar cane 
Improved lespedeza strains 
New sweet potato varieties 
Plant hormones 

 
 
Disease-resistance: 

Sugar cane 
Barley 

Wilt-resistant alfalfa 
Scale-resistant potatoes 
Improved insect control: 

Quarantine methods 
Poisons and traps 
Tillage and rotations 

 
Land-use improvements 
Terracing and contour plowing 
Strip cropping 
New crop rotations 
Green manure and cover crops 
Phosphate fertilization of pastures 

 
 
Range improvements 
Higher-analysis fertilizers 
Minor plant food elements 
Legumes for nitrogen fixation 
Increased lime applications 

Source: U.S. Department of Agriculture (1940), cited according to Gardner, 2002, p. 9 
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Table 2.  Number of Tractors, Combines, and Automatic Milking Machines in the Federal 
Republic of Germany (millions) 
 
 Tractors Combines Automatic Milking Machines 
1949 0.077 - 0.006 
1953 0.288 0.004 0.040 
1960 0.902 0.032 0.291 
1970/75 1.250 0.140 0.481 
Source: Henning, 1978, p. 267. 

 

Table 3.  Monthly Production Data Used 

Product Country Series Units Time covered Source 
      
Milk USa Milk Production Mill lbs 1930 - 2000 USDA-NASS 
 DE Delivery to dairies Mill liters 1951 - 2001 Agrarwirtschaft 
 CA Milk Production 000 liters 1945 - 2000 Statistics Canada 
 UK Milk Production Mill liters 1936 - 2002 Up to Nov-1994 UK Milk 

Marketing Board, starting 
Dec 1994 Rural Payments 
Agency 

      
Pork US Production Mill lbs 1944 - 1981; 

1983 - 2000 
USDA-NASS 

 DE Production 000 tons 1951 - 1989;  
1991 - 2000 

Agrarwirtschaft 

 UK Production 000 heads 1973 - 2000 DEFRA 
      
      
Beef US Production Mill lbs 1944 - 1981; 

1983 - 2000 
USDA-NASS 

 DE Slaughter 000 heads 1951 - 2000 Agrarwirtschaft 
 UK slaughter 000 heads 1973 - 2000 DEFRA 
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Table 4.  Indices of Seasonal Production, Averages per Decade 

 Hirshfeld-Herfindahl Indexa  Maximum Entropy Indexb 

 1930-39 1950-59 1970-79 1990-2000  1930-39 1950-59 1970-79 1990-2000 
Milk                  
US 851 849 837 835 2.4746 2.4759 2.4828 2.4842
CA - 900 858 835  - 2.4447 2.4699 2.4842
UK 847 843 843 836 2.4765 2.4791 2.4794 2.4833
DE - 857 846 837  - 2.4708 2.4772 2.4829
                   
Pork                  
US - 854 841 837  - 2.4728 2.4804 2.4824
UK - - 844 843  - - 2.4788 2.4789
DE - 839 835 836  - 2.4817 2.4839 2.4833
               
Beef                 
US - 838 836 836 - 2.4823 2.4833 2.4832
UK - - 850 857 - - 2.4750 2.4708
DE  844 841 844  2.4784 2.4805 2.4785
a A decline in the index represents a decline in the seasonality of production. 
b A rise in the index represents a decline in the seasonality of production. 
 
 
Table 5. Trends in Deseasonalization – Animal Production in Selected Countriesa 

  Const EIt-1 R2 DW p-value 
( )EIaa

___

10 1−=  
Chow-test 

(p-value) 

Milk       
UK  0.391** 

(0.170) 
0.842*** 

(0.068) 
0.703 2.304 0.021 0.868 

(0.425) 
DE 0.207* 

(0.122) 
0.917*** 

(0.049) 
0.879 2.841 0.089 3.145 

(0.052) 
CAN 0.062 

(0.043) 
0.975*** 

(0.030 
0.939 2.631 0.151 0.680 

(0.510) 
US  0.076 

(0.075) 
0.969*** 

(0.030) 
0.983 2.608 0.306 0.765 

(0.471) 
 
Pork 

      

UK  1.234** 
(0.479) 

0.502** 
(0.193) 

0.212 2.044 0.010 0.470 
(0.631) 

DE 2.046*** 
(0.193) 

0.176** 
(0.078) 

0.098 1.708 0.000 2.868 
(0.067) 

US  0.809*** 
(0.250) 

0.673*** 
(0.101) 

0.456 2.222 0.001 1.187 
(0.313) 

 
Beef 

      

UK  1.599*** 
(0.457) 

0.354* 
(0.185) 

0.128 1.996 0.000 1.291 
(0.294) 

DE 2.469*** 
(0.360) 

0.004 
(0.145) 

0.001 1.965 0.000 0.371 
(0.692) 

US  2.198*** 
(0.339) 

0.114 
(0.137) 

0.013 2.002 0.000 0.744 
(0.406) 

a *, **, *** denotes significance at the 0.1, 0.05, and 0.01 significance level according to the p-
value. 
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Table 6. Trends in Deseasonalization – Dairy Production in Selected US Statesa 

  Const 

(t-value) 

EIt-1 

(t-value) 

R2 DW p-value 
H0: ( )EIaa

___

10 1−=  
Chow-test 

(p-value) 

CA 0.470*** 
(0.119) 

0.811*** 
(0.048) 

0.848 3.039 0.000 2.148
(0.128)

ID 0.362*** 
(0.108) 

0.854***
(0.043) 

0.886 2.361 0.001 2.020
(0.144)

IL 0.351** 
(0.141) 

0.859***
(0.057) 

0.820 2.423 0.013 2.911
(0.064)

IN 0.229*** 
(0.084) 

0.908***
(0.034) 

0.934 2.379 0.007 1.548
(0.223)

KY 0.322 
(0.116) 

0.870***
(0.047) 

0.874 2.749 0.005 4.242
(0.020)

MI 0.228*** 
(0.063) 

0.908***
(0.026) 

0.962 2.087 0.000 1.182
(0.315)

MN 0.176 
(0.112) 

0.929***
(0.045) 

0.894 2.799 0.116 1.412
(0.253)

NY 0.247* 
(0.088) 

0.900***
(0.035) 

0.928 2.741 0.005 2.692
(0.078)

OH 0.458*** 
(0.135) 

0.815***
(0.054) 

0.818 2.700 0.001 1.230
(0.301)

PA 0.272** 
(0.131) 

0.890***
(0.053) 

0.851 2.843 0.037 5.434
(0.007)

TX 0.558*** 
(0.172) 

0.775***
(0.069) 

0.714 2.086 0.001 1.421
(0.251)

VA 0.302*** 
(0.098) 

0.878***
(0.039) 

0.908 2.819 0.002 0.903
(0.412)

WA 0.266*** 
(0.060) 

0.893***
(0.024) 

0.964 2.659 0.000 0.272
(0.763)

WI 0.267*** 
(0.098) 

0.892***
(0.039) 

0.911 2.378 0.006 0.557
(0.576)

a *, **, *** denotes significance at the 0.1, 0.05, and 0.01 significance level according to the p-
value. 



 15

Table 7. Unit-Root Tests for EI and Productivity in Milk Production 

 EI Productivity 
 Augmented Dickey-

Fuller 
Phillips-Perron Augmented Dickey-

Fuller 
Phillips-Perron 

US-milk - 2.847 (0.180) [10] -   9.722 (0.455) [10] - 1.484 (0.835) [2] -  2.281 (0962)   [2] 
CAN-milk   0.138 (0.995)   [3] -   4.584 (0.850)   [3] - 0.332 (0.989) [2] -  0.926 (0.989)  [2] 
UK-milk - 2.141 (0.523)   [2] - 17.964 (01.06)   [2] - 1.605 (0.790) [2] - 14.281 (0.212] [2] 
DE-milk - 3.669 (0.024)   [2] - 31.356 (0.007)   [2] - 1.300 (0.888) [5] -   6.298 (0.722) [5] 
US-pork -4.745 (0.001) [10] - 37.025 (9.992) [10]    0.049 (0.995) [2] -   1.909 (0.972) [2] 
     
US States-milk    
 CA - 3.989 (0.009)   [2] - 13.013 (0.266)   [2] - 2.897 (0.163)   [2] - 28.111 (0.013) [2] 
 ID - 2.681 (0.244) [10] - 19.550 (0.077) [10] - 0.664 (0.975)   [4] -   2.067 (0.968) [4] 
 IL - 0.876 (0.959)   [4] -   9.474 (0.473)   [4] - 1.041 (0.938)   [2] -   3.328 (0.922) [4] 
 IN - 4.830 (0.0004) [6] -   3.061 (0.934)   [6] - 1.862 (0.674)   [3] -   7.301 (0.640) [3] 
 KY - 0.756 (0.969)   [3] - 16.303 (0.145)   [3] - 3.688 (0.023)   [3] - 24.012 (0.031) [3] 
 MI - 3.534 (0.036)   [2] -   3.661 (0.906)   [2] - 1.554 (0.810)   [2] -   7.625 (0.614) [2] 
 MN - 1.002 (0.944)   [4]  - 24.935 (0.026)   [4]  - 1.298 (0.888)   [2] -   5.144 (0.811) [2] 
 NY - 4.190 (0.005)   [9] -   6.943 (0.669)   [9] - 1.435 (0.850)   [2] -   5.915 (0.752) [2] 
 OH - 5.153 (0.0001) [2] -   8.773 (0.524)   [2] - 1.668 (0765)    [9] - 16.116 (0.151) [9] 
 PA  - 0.767 (0.968)   [4] - 12.154 (0.308)   [4] - 1.602 (0.791)   [2] -   5.574 (0.779) [2] 
 TX - 0.894 (0.957) [10] -   8.917 (0.513) [10] - 1.994 (0.605)   [3] - 20.738 (0.061) [3] 
 VA - 1.429 (0.852) [10] -   5.396 (0.792) [10] - 1.634 (0.524)   [2] -   8.774 (0.524) [2] 
 WA - 4.731 (0.001) [10] -   5.918 (0.752) [10] - 3.252 (0.075) [10] -   9.585 (0.465) [2] 
 WI - 2.418 (0.370)   [6] -   8.054 (0.579)   [6] - 2.307 (0.430)   [2] - 10.942 (0.376) [2] 
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Table 8. Johanson and Engle-Granger test 

 
 
 
 

Johansona 
p = 0: no cointegration vs. p>0 

p ≤  1: cointegration of 1 or 0 vs. p>1 
 

Engel – Grangerb 

(H0: no cointegration) 

 H0: rank = p Trace Statistic Dep. Var. t - test p - value 
US-EI p = 0  

p ≤  1 
12.839 (0.244) [1] 
1.146 (0.303) 

US-M-EI 
US-MProd 

-2.795 
-0.493 

0.361 [10] 
0.994   [7] 

CAN-EI p = 0  
p ≤  1 

12.705 (0.250) [0] 
0.078 (0.609) 

CAN-M-EI 
CAN-MProd 

-2.043 
-2.111 

0.753   [2] 
0.723   [2] 

UK-EI p = 0  
p ≤  1 

21.879 (0.015) [0] 
6.566 (0.009) 

UK-M-EI 
UK-MProd 

-3.079 
-2.827 

0.231   [4] 
0.345 [10] 

DE-EI p = 0  15.619 (0.114) [1] DE-M-EI - 3.042 0.246   [4] 
 p ≤  1   0.026 (0.624) DE-MProd - 0.738 0.989   [2] 
US-EI p = 0  

p ≤  1 
13.258 (0.218) [10] 
0.176 (0.581) 

US-P-EI 
US-PProd 

-1.560  
-1.674  

0.909 [10] 
0.882   [7] 

      
US-States      
CA-EI p = 0 35.148 (0.0004) [0] CA-E - 2.935 0.293 [2] 
 p ≤  1 12.051 (0.0003) CA-Prod - 3.060 0.238 [2] 
ID-EI p = 0 12.269 (0.284) [1] ID-E - 2.946 0.288 [2] 
 p ≤  1   0.650 (0.440)  ID-Prod - 2.084 0.735 [2] 
IL-EI p = 0 15.079 (0.133) [0] IL-E - 3.227 0.176 [2] 
 p ≤  1   1.204 (0.289)  IL-Prod - 1.879 0.818 [2] 
IN-EI p = 0 11.151 (0.372) [1] IN-E - 2.257 0.652 [3] 
 p ≤  1   4.358 (0.034)  IN-Prod - 2.072 0.741 [3] 
KY-EI p = 0 14.030 (0.177) [5] KY-E - 1.110 0.970 [3] 
 p ≤  1   0.415 (0.511) KY-Prod - 3.450 0.111 [3] 
MI-EI p = 0   9.034 (0.557) [0] MI-E - 2.347 0.604 [2] 
 p ≤  1   2.640 (0.096)  MI-Prod - 2.193 0.683 [2] 
MN-EI p = 0   8.450 (0.608) [2] MN-E - 2.493 0.524 [4] 
 p ≤  1   0.206 (0 572)  MN-Prod - 2.270 0.645 [2] 
NY-EI p = 0 14.433 (0.159) [0] NY-E - 1.798 0.846 [2] 
 p ≤  1   3.278 (0.066)  NY-Prod - 1.863 0.824 [2] 
OH-EI p = 0 22.494 (0.013) [8] OH-E - 1.743 0.863 [3] 
 p ≤  1   1.301 (0.266)  OH-Prod - 1.745 0.862 [9] 
PA-EI p = 0 21.920 (0.015) [2] PN-E - 3.536 0.091 [2] 
 p ≤  1   1.180 (0.295)  PN-Prod - 3.628 0.074 [2] 
TX-EI p = 0   9.684 (0.500) [10] TX-E - 1.139 0.968 [10] 
 p ≤  1   0.108 (0.601) TX-Prod - 2.559 0.487   [2] 
VA-EI p = 0 13.066 (0.230) [1] VA-E - 1.423 0.960 [10] 
 p ≤  1   0.306 (0.543)  VA-Prod - 1.986 0.777   [2] 
WA-EI p = 0 24.755 (0.007) [2] WA-E - 2.325 0.616 [2] 
 p ≤  1 10.360 (0.001) WA-Prod - 3.496 0.100 [2] 
WI-EI p = 0 23.208 (0.011) [0] WI-E - 2.866 0.325 [2] 
 p ≤  1   5.965 (0.013)  WI-Prod. - 3.094 0.225 [2] 
a  Trace statistic stands for the Johanson trace statistic.  The first null hypothesis of p=0 indicates tests for no integration 
against the alternative of one or more cointgrating vectors (p>0).  In addition the test of maximal one cointegrating 
vector is tested the hypothesis of two or more integrating vectors (p>1).  The optimal lag length has been chosen using 
the Akaike Information Criterion and is indicated in brackets. 
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Table 9. Dolado and Lütkepohl Causality Test for Milk Aseasonality and Productivitya 

State Causality Number of lags pb F-testc P-value Conclusion 
Prod → EI 7.438*** 0.009 CA 
EI → Prod 1 0.020 0.889 EI → Prod 

Prod → EI 0.3768** 0.031 ID 
EI → Prod 2 0.652 0.526 EI → Prod 

Prod → EI 0.521 0.598 IL 
EI → Prod 2 0.359 0.700 No causality 

Prod → EI 0.532 0.592 IN 
EI → Prod 2 0.537 0.588 No causality 

Prod → EI 3.053* 0.088 KY 
EI → Prod 1 0.155 0.696 EI → Prod 

Prod → EI 0.006 0.994 MI 
EI → Prod 2 0.893 0.417 No causality 

Prod → EI 1.784 0.166 MN 
EI → Prod 3 0.778 0.513 No causality 

Prod → EI 1.739 0.194 NY 
EI → Prod 1 2.875* 0.097 Prod → EI 

Prod → EI 0.429 0.516 OH 
EI → Prod 1 0.009 0.925 No causality 

Prod → EI 0.416 0.662 PA 
EI → Prod 2 1.352 0.270 No causality 

Prod → EI 11.182*** 0.002 TX 
EI → Prod 1 5.568** 0.023 

Two-way 
causality 

Prod → EI 1.127 0.334 VA 
EI → Prod 2 0.244 0.785 No causality 

Prod → EI 0.070 0.792 WA 
EI → Prod 1 3.110* 0.085 Prod → EI 

Prod → EI 2.720 0.106 WI 
EI → Prod 1 4.246** 0.045 Prod → EI 

a In this test, one one proceeds by fitting a ( )dpVAR +  in levels and applies a standard F-test 
involving the coefficients of lags 1 to p. The H0 states that the causal variable of lag 1 to p are zero. 
b The optimal number of lags was chosen according to the Schwartz Bayesian Information 
Criterion. 
c *, **, *** denotes significance at the 0.1, 0.05, and 0.01 significance level according to the p-
value. 
 


