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Abstract

We examine the optimal hedging strategy with an individual insurance policy, sold at an

unfair price, and a fair contract based on an index, which is imperfectly correlated with the

individual loss. The tradeoff between transaction costs and basis risk is first analyzed in the

expected utility framework in order to highlight the role of the agent’s attitude toward risk,

and then in the linear mean-variance model to stress the importance of the degree of

correlation between the individual loss and the index.
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1. Introduction

Insurance and financial markets offer individual and index-based contracts to producers who

want to manage their risks. For example, farmers can choose forward contracts and/or futures

contracts to deal with commodity price risk. They can also cover crop yield shortfalls using

individual yield insurance, area yield insurance contracts or, more recently, weather

derivatives.1 While the former provide indemnities based on the realized individual loss, the

latter offer payoffs that depend on the realization of an index which is correlated with, but not

equal to, the individual loss. Suggested disadvantages and advantages of index-based

contracts are well known; the imperfect correlation between individual and index-based losses

creates an imperfect loss protection, but this type of basis risk lowers problems of asymmetric

information (moral hazard and adverse selection) thanks to the removal of the direct link

between individual losses and indemnities (Chambers 1989, Quiggin 1994). In addition,

administrative costs are substantially reduced because there is no individual claim settlement

(Mahul 1999).

Most models on optimal hedging/insurance of a single risk assume that only one type of

hedging instruments is at the producer’s disposal. Surprisingly, there is only a few papers that

examine the hedging strategy with both individual and index-based contracts and they

essentially provide a descriptive investigation. An interesting exception is Frechette (2000).

Using a linear mean-variance model, he examines the demand for hedging and the value of

hedging opportunities for hedgers facing spatial basis risk and he analyzes the incremental

value of a second futures market to assess the cost of basis risk.

The primary contribution of this paper is to provide a theoretical analysis of the tradeoff

between transactions costs and basis risk by modeling the simultaneous demand for individual

and index-based contracts. We consider a producer facing a single source of risk. He can

manage this risk using two instruments; an individual insurance policy sold at an actuarially

unfair price and an index-based insurance contract sold at a fair price. The key elements in

this tradeoff are captured within two frameworks; the expected utility model and the linear

mean-variance model.

The problem is first examined in the expected utility framework. The producer faces a

random loss, and the no-loss outcome may be reached with a positive probability. The

individual contract is geared to losses borne by the producer. Under the index-based contract,

                                                
1 The U.S. insurance program does not allow the producers to purchase joint individual yield and area yield crop
insurance policies. However, this hedging strategy may have been possible using area yield crop insurance
futures and options offered on the CBOT until recently.
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the occurrence of a loss is observable but the severity of this loss cannot be observed. The

(unconditional) correlation between the individual loss and the index is thus characterized

through the no-loss state; the higher the probability of the no-loss state, the higher the

(unconditional) correlation between the individual loss and the index. Optimal individual and

index-based contracts are first designed in this framework. We show that an optimal

individual contract displays full (marginal) coverage above a deductible and an optimal index-

based contract pays a fixed indemnity in the event of a loss. The optimal individual insurance

deductible and the lump-sum payment (when a loss occurs) are first examined and then the

impact of a change in the probability of incurring a loss is analyzed.

The optimal hedging strategy is reconsidered in the linear mean-variance model when

individual coinsurance (forward) and index-based coinsurance (futures) contracts are

available. This framework allows us to focus on the impact of the degree of correlation

between the individual loss and the index on the hedging decisions. The optimal futures and

forward hedge ratios are first explicitly characterized. They are broken down into three

components; a pure hedge ratio, a speculative component and a cross-hedge component. The

introduction of unbiased futures contracts into the hedging strategy decreases the demand for

forward contracts. These two hedging contracts are thus substitutes. The effectiveness of the

dual hedge depends, critically, on the correlation between the individual loss and the index.

Under unbiased futures markets, the optimal futures hedge ratio is increasing and convex in

the correlation coefficient, while the optimal forward hedge ratio is decreasing and concave in

this coefficient.

Finally, the linear mean-variance hedging strategy is illustrated when individual yield crop

insurance and area yield crop insurance contracts are available for representative wheat

farmers located in France. The efficient frontier of the individual yield insurance policy and

that of a combination of individual and area yield insurance contracts are computed. As

expected, the area yield insurance contract is shown to be market enhancing; its optimal

combination with an individual yield crop insurance policy allows the producer to reduce the

yield variance for a given expected yield. This reduction depends, among other things, on the

degree of correlation and on the variance of individual yield.

2. The Model within the Expected Utility Framework

2.1. The setting

The agent’s preferences are represented by a von Neumann-Morgenstern utility function (.)u

that is assumed to be three-times differentiable, with 0>′u  and 0<′′u . The risk-averse agent
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is endowed with a nonrandom initial wealth 0w  and faces a risk of incurring a positive loss y~

with probability ( )1,0∈q . The loss y~  is a random variable with a cumulative distribution

function ( ).F  defined over the support ( ]max,0 y , with 0max0 wy << . To protect against the

loss, he can purchase two forms of insurance.

Under the first policy, the insurance company can observe the occurrence of a loss but not

its severity. As a consequence, this contract pays an indemnity in the event that a loss occurs,

but which is not conditioned on the size of the realized loss. Obviously, no indemnity is paid

in the no-loss state. The contract is thus restricted to the form [ ]QK,  where 0≥K  is a lump-

sum reimbursement paid in the loss-state and Q  is the associated premium. This fixed-

reimbursement insurance policy is assumed to be sold at a fair price, i.e., qKQ = . This

contract thus provides an imperfect coverage because, conditional on the occurrence of a loss,

the indemnity is independent of the severity of the loss.

The agent can also purchase an insurance policy that provides an indemnity based on the

individual loss; it is described by a couple [ ]PI(.),  where )(yI  is the payoff when the loss is

y  and P  is the premium. The indemnity schedule is assumed non-negative and not higher

than the loss:

(1) yyI ≤≤ )(0 .

The insurance premium is assumed to be proportional to the expected indemnity:

(2) )~( ymqEIP = ,

where E  is the expectation operator conditional on the occurrence of a loss and m is the

loading factor. This tariff is sustained by a competitive insurance market with risk-neutral

insurers and transaction costs (e.g., costs of gathering data about individual losses) that are

proportional to claims. The individual insurance policy is sold at an unfair price, 1>m . It can

be easily shown that an optimal insurance contract design displays full (marginal) coverage

above a deductible 0≥D :

(3) ( )0,max)(* DyyI −= .

An optimal insurance strategy with both individual and fixed-reimbursement contract is

obtained by finding the lump-sum reimbursement K  and the deductible D  that maximize the

policyholder’s expected utility of final wealth. Formally, this problem is

(4) ( )( ) ( )QPwuqQPKDyywqEuVMax
KD

−−−+−−+−+−≡
≥≥

00
0,0

)1(0,~max~

subject to conditions (2) and qKQ = .
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2.2. Optimal levels of coverage

The objective function V  can be rewritten as

(5) [ ] ∫ −+−−+−+−≡
D

ydFQKPywuqwuDFqwuqV
0

021 )()()()(1)()1( ,

where QPww −−= 01 , QPKDww −−+−= 02  and QPKyww −−+−= 03 .

The first-order conditions of the maximization problem (4) are

(6) ( ) [ ] 0)()()()(11)()1(
0

321 =′′−′−′+−′−′−=
∂
∂

∫
D

DDD ydFwuqPwuDFqPwuqP
D
V

,

where [ ])(1 DFmqdPPD −−=∂∂≡′ , and

(7) ( ) ( )( ) ( )[ ] 00,~max~1 00 =−−′−−−+−+−′−=
∂
∂

QPwuQPKDyywuEqq
K
V

.

Observe that 0<KKV  under risk aversion. The other second-order conditions of this

maximization problem are assumed to hold; 0<DDV  and 02 >−≡∆ DKKKDD VVV . It is first

noteworthy that

(8) 
( )

[ ] ).()1()()()1(

)(1)()1(

001

01
0

QPKwuqmQPKwuwuqmq

QPKwuqmqwuqmq
D
V

D

−−+′−+−−+′−′−=

−−+′−−′−=
∂
∂

=

The first right-hand side (RHS) term in (8) is non-negative because QPKww −−+≤ 01  and

0<′′u . The second RHS term is positive because 1>m . This implies that the optimal

deductible is positive, i.e., 0* >D . Therefore, the presence of a second insurance policy does

not affect the well-known result of the optimality of partial insurance under unfair pricing.

We now examine the optimal lump-sum reimbursement in the loss states. Using the

concept of the precautionary (equivalent) premium defined by Kimball (1990), the first-order

condition (7) can be rewritten as

(9) ( )[ ]( ) ( )QPwuzwQPKDyyEwu −−′=Ψ−−−+−−−′ 00 )~,(0,~max~ ,

where Ψ  is the precautionary (equivalent) premium, with

( )[ ] QPKDyyEww −−+−+−≡ 0,~max~
0  and ( )0,~max~~ Dyyz −+−= . Given the assumption

of the strict concavity, 0<′′u , it follows

(10) ( )[ ] )~,(0,~max~* zwDyyEK Ψ+−−= .

Observe that the optimal fixed reimbursement is the solution of the implicit equation (10)

because it appears in both sides of this equation through the wealth term w . From Kimball

(1990), we know that the precautionary premium Ψ  is positive if and only if the policyholder
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exhibits prudence, i.e., his marginal utility function is convex, 0>′′′u . Prudence is justified by

some fairly solid economic rationale. It is a necessary condition for decreasing absolute risk

aversion. A prudent agent is more sensitive to low realizations of wealth. He is thus

encouraged to select a lower marginal payoff in order to shift wealth from states providing

low marginal utility to states providing high marginal utility. The role of prudence in the

design of optimal insurance contracts has been stressed Gollier (1996), Mahul (2000) and

Eeckhoudt, Mahul and Moran (2003). The optimal fixed payment thus satisfies

( )[ ]0,~max~* DyyEK −−>  if and only if 0>′′′u . This finding generalizes the result derived by

Eeckhoudt, Mahul and Moran (2003, Proposition 1) to the case where individual insurance is

available in addition to fixed-reimbursement insurance. We also have

(11)

( )( ) ( )

( ) ( ) .0)()(

0,~max~
)1(

1

0
0

0

00

<−−′−−−+−′=

−−′−−−+−+−′=
∂
∂

−

∫

=

QPwuDFydFQPDywu

QPwuQPDDyywuE
K
V

qq
D

DK

This implies that DK <* . This discussion is summarized in the following proposition.

Proposition 1.

Under actuarially unfair individual insurance, the optimal deductible is positive, 0* >D .

If the fixed-reimbursement insurance policy is actuarially fair and the policyholder exhibits

prudence ( 0>′′′u ), then the optimal lump-sum payment satisfies: [ ] ***,~min DKDyE << .

As an illustration, consider that there exist an index x , a trigger x̂  and a deterministic

function (.)g  such that 0=y  for all xx ˆ≤  and 0)( >= xgy  for all xx ˆ> . The probability of

incurring a loss is thus [ ]xxq ˆ~Prob >≡ . Under the individual insurance policy the trigger x̂

and the function (.)g  are known and the realized index x  is observable (at some costs); the

indemnity is thus based on the individual loss. Under the fixed-reimbursement insurance

contract, the insurer only knows whether the realized index is higher or lower than the trigger,

i.e., he only knows whether the policyholder does face a loss or he does not. The optimal

insurance deductible and lump-sum payments are drawn on Figure 1.

[INSERT FIGURE 1 HERE]

2.3. Changes in the probability of loss

Within the expected utility model, the (unconditional) degree of correlation between the

index-based payoff (the lump-sum payment) and the individual loss can be measured through
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the probability of incurring a loss q .2 The higher the probability of the no-loss state, )1( q− ,

the stronger the (unconditional) correlation between the individual loss and the fixed

reimbursement. We examine how a change in this probability of loss will affect the optimal

deductible under the individual insurance contract and the optimal lump-sum payment under

the fixed-reimbursement insurance policy. Assuming the second-order conditions hold and

applying the Cramer’s rule yield

(12) [ ]DqKKKqDK

*

VVVV
dq

dD
−=








signsign

(13) [ ]KqDDDqDK

*

VVVV
dq

dK
−=








signsign .

We can derive the following results (see the Appendix).

First ( )0<>KqV  if and only if the policyholder’s utility function u  satisfies decreasing

(increasing) absolute prudence (DAP, IAP), while 0=KqV  if and only if u  satisfies constant

absolute risk aversion (CARA). In other words, when the level of deductibility is fixed and

under actuarially fair pricing, the policyholder responds to an increase in the probability of

loss by increasing (remaining unchanged, decreasing) his fixed reimbursement if and only if

his preferences satisfy DAP (CARA, IAP).

Second, DqV  can be decomposed into three effects; the wealth effect is negative (null)

under decreasing (constant) absolute risk aversion, the risk effect is negative, and the premium

effect is positive. In addition, the sum of the risk effect and the premium effect is negative

(positive) if the loading factor m  is the individual insurance premium is “sufficiently” high

(low). This implies that DqV  is negative (positive) if u  satisfies non-increasing risk aversion

and the individual insurance premium is “sufficiently” unfair (“not too” unfair). In other

words, when the lump-sum payment is not a decision variable, an increase in the probability

of loss leads the policyholder with preferences satisfying DARA or CARA to reduce

(increase) his optimal deductible, should the insurance premium be “sufficiently” unfair (“not

too” unfair). Such an ambiguous effect is not surprising. The impact of increases in risk on the

optimal level of deductibility is shown to be usually indeterminate, except in some very

specific cases (Eeckhoudt, Gollier and Schlesinger 1991).

                                                
2 Obviously, the degree of correlation conditional on the occurrence of the loss is zero.
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Third, 0>DKV  is shown to be positive under DARA or CARA. This means that when the

level of deductibility is the only decision variable, the policyholder responds to an increase in

the fixed-reimbursement payoff by increasing his deductible under DARA or CARA.

Finally, it should be noticed that decreasing absolute prudence is a sufficient condition for

absolute risk aversion to be decreasing Gollier (2001, Proposition 21). In other words, DAP

implies DARA.

This discussion leads to the following proposition.

Proposition 2.

Define qDEuVDq ∂∂∂≡ 2 .

(i) Suppose the policyholder’s preferences exhibit constant absolute risk aversion. An

increase in the probability of loss induces him to increase (reduce) his optimal

deductible under the individual insurance policy and his optimal lump-sum

payment if and only if DqV  is positive (negative).

(ii) Suppose the policyholder’s preferences exhibit decreasing absolute prudence

(DAP) and 0≥DqV . An increase in the probability of loss induces his to increase

his optimal deductible and his optimal lump-sum payment.

Proposition 2 shows that under CARA, the effect of a change in the probability of loss on the

optimal deductible and fixed payment only depends on the sign of the partial derivative DqV .

Both insurance contracts are substitutes as the probability of loss changes. When the

producer’s preferences exhibit DAP (and hence DARA), the individual insurance contract and

the fixed-reimbursement policy are substitute if 0≥DqV ; the policyholder responds to an

increase in the probability of loss by reducing his individual coverage (increase in the

deductible) and increasing his index-based coverage (increase in the fixed payment in the loss

states). However, the two contracts may be complements when 0<DqV ; under DARA, an

increase in the probability of loss may decrease (decrease) the optimal fixed reimbursement

and increase (decrease) the optimal insurance deductible.
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3. The Model within the Linear Mean-Variance Framework

3.1. Optimal hedging decisions

The optimal combination of individual insurance and index-based insurance contracts is

reconsidered in the linear mean-variance model in order to highlight the impact of the degree

of correlation on the optimal hedging strategy.

The produce can buy or sell futures contracts and/or he can purchase a coinsurance policy.

The notation is defined as follows: 0w  is his initial wealth subject to a loss ( )max,0 yy∈ , with

0max0 wy << ; x  is the futures prices at the end of the period, that is correlated with, but not

identical to, the individual loss y ; fx  is the futures price at the beginning of the period; α  is

the futures quantity purchased (if positive) or sold (if negative); ymEP ~=  is the insurance

premium per unit of coverage, with 0>m ; β  is the level of coinsurance. In order to highlight

the tradeoff between the degree of correlation and the cost of insurance, we assume that

trading futures contracts on financial markets are not subject to transaction costs. In addition,

we assume that the producer cannot sell insurance and he cannot be over-insured, i.e.,

[ ]1,0∈β .

The producer’s random end-of-period wealth using both futures and coinsurance can be

written as

(14) ( ) ( )Pyxxyww f −+−+−= ~~~~
0 βα .

The mean and variance of his final wealth are respectively

(15) ( ) ( )PyExxEyEwwE f −+−+−= ~~~~
0 βα ,

(16) ( ) ( ) ρσσβασασβσ yxxyw −−+−= 121)~( 22222 ,

where ( )xVarx
~2 =σ , ( )yVary

~2 =σ  and ( ) ( )yxyx σσρ ~,~cov= , with ( )1,0∈ρ .

Under the linear mean-variance framework, the producer’s objective function is

(17) ( )wwEVMax ~~ 2

,
λσ

βα
−≡ ,

where λ  is his level of risk aversion. This problem yields the first-order conditions for

interior solutions

(18) ( ) ( )[ ] 012~ ** =−−−− ρσβσαλσ yxxfxxE ,

(19) ( ) ( )[ ] 012~ ** =+−−−− ρσασβλσ xyyPyE .

They can be rewritten as
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(20) ( ) xy
x

fxxE
σρσβ

λσ
α *

2
* 1

2

~
−+

−
= ,

(21) yx
y

PyE
σσρα

λσ
β *

2
*

2

~
1 −

−
+= .

The optimal future hedge *x  can be divided into a speculative component (first RHS term in

(20)) and a cross-hedge component (second RHS term in (20)). The optimal level of

coinsurance *β  can be divided into a pure hedge component equal to one, a speculative

component and a cross-hedge component. Observe that introducing futures contracts induces

the producer to reduce his level of coinsurance, should the futures market is unbiased

( xEx f
~= ) or exhibits normal backwardation ( xEx f

~< ).

Rearranging equations (20) and (21) yields3

(22) ( ) ( )











−−

−
−

=
yx

f

x

PyE
xxE

σ
ρ

σλσρ
α ~

~

21
1
2

* ,

(23) ( ) ( )











−−

−
−

+=
x

f
yy

xxE
PyE

σ
ρ

σλσρ
β ~

~

21
1

1 2
* .

From (23), the producer will purchase coinsurance, 0* >β , if and only if the cost of

insurance is not too high:

(24) ( ) ( ) yExxEP y
x

fy
~~21 2 +








−−−< σ

σ
ρ

λσρ .

3.2. Changes in the degree of correlation

Suppose first that the futures contracts are biased ( xEx f
~≠ ). Defining 

yx

f yEPxEx
A

σσ

~~ −−
≡ ,

the optimal hedging levels (for interior solutions) can be rewritten as

(25) ( ) [ ]
yx

yEP
A

σ
ρ

λσρ
α

~

21
1
2

* −
−

−
= ,

(26) ( ) [ ]
x

f

y

xEx
A

σ
ρ

λσρ
β

~

21
1

1 1
2

* −
−

−
+= − .

After some technical manipulations, it follows that

(27) 
( ) 








−

+

−

−
= A

yEP
d
d

yx ρ
ρ

ρ

ρ
σλσρ

α
2

1

1

2
2

~ 2

22

*

,

                                                
3 Frechette (2000, equations (13) and (14)) derives similar equations in a slightly different model.
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(28) 
( ) 








−

+

−

−
= −1

2

22

*

2
1

1

2
2

~
A

xEx

d
d

yx

f

ρ
ρ

ρ

ρ
σλσρ

β
.

Observe that ( ) ( ) ρρρ 21 2+=f  is a positive and decreasing function that is higher than one

for all ( )1,0∈ρ . Interpreting these two equations yields the following proposition.

Proposition 3.

Define 
yx

f yEPxEx
A

σσ

~~ −−
≡  and ( ) ( ) ρρρ 21 2+=f , and suppose 0* >β .

(i) A marginal increase in the degree of correlation ρ  leads to an increase (decrease) of

the optimal futures hedge *α  if an only if ( ) ( )ρfA >< .

(ii) When the futures market exhibits contango, xEx f
~> , a marginal increase in ρ  leads

to an increase (decrease) in the coinsurance level *β  if and only if ( ) ( )ρfA ><−1 .

When the futures market exhibits normal backwardation, xEx f
~< , a marginal

increase in ρ  leads to a decrease in the coinsurance level *β .

If the futures market exhibits normal backwardation, then the producer responds to a marginal

increase in ρ  by increasing his futures hedge *α  and decreasing his coinsurance level *β ;

the two hedging contracts are substitutes as the degree of correlation changes. When the

futures market exhibits contango, the parameter A  is positive and it may be either higher or

lower than one. If 10 ≤< A , 0* >ρα dd  while ρβ dd *  can be either positive or negative. If

1>A , 0* >ρβ dd  while ρα dd *  can be either positive or negative. Hence, the two hedging

contracts can be either substitutes or complements as ρ  changes.

Consider now that the futures market is unbiased, xEx f
~= . From equations (22) and (23),

the interior solutions are given by

(29) ( ) ( ) yx

yEP
σλσρ

ρ
α

21
~

2
*

−
−= ,

(30) ( ) ( ) 22
*

21
1~1

y

yEP
λσρ

β
−

−−= .
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It is easy to show that *α  is increasing and convex in ρ  while *β , with ( )1,0* ∈β , is

decreasing and concave in ρ . These two hedging instruments are thus substitutes as ρ

varies.

Because, the coinsurance contract is sold at an unfair price, yEP ~> , the optimal

coinsurance level is always lower than one, as shown in equation (30). However, the non-

negativity constraint on the coinsurance level may be binding if the insurance policy is too

costly. If ( ) 22~
yyEP λσ≥− , the producer does not purchase coinsurance, whatever the degree

of correlation. If ( ) 22~
yyEP λσ<− , he will purchase individual coinsurance if and only if the

degree of correlation is not too high: ρρ ˆ<  with ( ) 22~1ˆ yyEP λσρ −−≡ . This discussion is

summarized in Proposition 3 and Figure 2.

Proposition 3.

Suppose the futures market is unbiased and define, when it exists, ( ) 22~1ˆ yyEP λσρ −−≡ .

(i) If ( ) 22~
yyEP λσ≥− , the producer does not purchase individual coinsurance.

(ii) Suppose ( ) 22~
yyEP λσ<− . As long as ρρ ˆ< , the optimal futures hedge *α  is positive,

increasing and convex in the degree of correlation ρ , and the optimal coinsurance

level *β  is positive, decreasing and concave in ρ . When ρρ ˆ≥ , the producer does

not buy individual coinsurance, 0* =β , and the optimal futures hedge ratio is linear

in the degree of correlation (with a slope equal to xy σσ .

[INSERT FIGURE 2 HERE]

4. An Illustration of the Optimal Mean-Variance Hedging Strategy

The optimal hedging strategy characterized in the linear mean-variance model is illustrated

for French wheat farmers. The individual and area yields are represented by the positive

random variables Y~  and X~ , respectively. The producer can purchase individual yield crop

insurance (IYCI) contracts that guarantees an individual crop yield fY , with YEY f
~

< , and/or

area yield crop insurance (AYCI) contracts that guarantee the expected area yield XE ~ . The

final gross revenue per hectare using individual yield crop insurance and/or area yield crop

insurance is given by
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(31) ( ) ( )YYbXXEaYw f −+−+=
~

,

where a  is the AYCI quantity sold (if positive) and b is the IYCI quantity sold, with [ ]1,0∈b .

Define yyY −= max  and xxX −= max , where maxx  is the highest realization of the random

variable X~ . The optimal hedge ratios, for interior solutions, are easily derived from equations

(28) and (29)

(32) ( ) ( ) yx
fYYEa

σλσρ
ρ
21

~
2

*

−
−=

(33) ( )( ) 22
*

21
1~

1
y

fYYEb
λσρ−

−−= .

If the individual crop insurance policy is only available, it is well-known that to the optimal

hedge is ( ) 2** 2
~

1 yfYYEb λσ−−= . One can easily show that the difference between the

optimal utility level when the two contracts are optimally traded, *** var wEwV λ−=  where
*w  is the producer’s wealth expressed in (31) evaluated at ),( ** ba  and the utility level when

the individual insurance policy is only available, ****** var wEwV λ−=  where **w  is the

producer’s wealth evaluated at ),0( **b  is

(34) ( ) 01
1

1
4

1
22

2*** >







−

−
−=−≡∆

ρλσ y
fYYVVV .

Observe that the higher the individual yield variance and/or the lower the degree of

correlation and/or the lower the deviation of the yield guarantee form the expected yield, the

lower V∆ , i.e., the lower the efficiency gain provided by the index-based contract.

We first consider a representative farm in Marne. This administrative subdivision, located

in the northern part of France, is characterized by highly fertile soils and temperate climates.

Agriculture is dominated by cereals and oilseeds produced using intensive cropping

technology. The index of the area yield crop insurance contract is the average national yield.

The associated local yield data and the national yield data over the period 1970-2001 were

obtained from the French Farm Accountancy Data Network.4 Local wheat yields have a mean

equal to 82 quintals/hectare and a standard deviation equal to 6.02 quintals/hectare.5 The

mean and standard deviation of national wheat yields are equal to 70 quintal/hectare and 4.98

quintal/hectare, respectively. The degree of correlation between wheat yields in Marne and

wheat yields in France is estimated at 0.7. This high level of correlation is due to the fact that

                                                
4 This yield data was adjusted for secular trends to reflect 2001 production levels.
5 One quintal per hectare corresponds to 1.49 bushels per acre.
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this subdivision has a significant weight in the average national yields and that yield

variations are mainly due to climatic factors that affect several departments are the same time

and thus the average national yields.

Figure 3 shows the efficient frontier of the individual yield crop insurance policy (IYCY),

with a yield guarantee YEY f
~

9.0 ×= , and that of the optimal combination of the IYCI

contract and the area yield crop insurance policy (IYCI+AYCI). The IYCI curve is increasing

with the variance. When the variance decreases, the loss in expected yield is due to the

existence of transaction costs. The (IYCI+AYCI) curve is an horizontal line as long as the

yield variance is higher than 18.48 and then it decreases as the variance decreases. This

horizontal line is generated by an hedging strategy requiring a short position in the unbiased

AYCI contract only. The existence of transaction costs on the IYCI policy induces a

moderately risk averse producer to sell only AYCI contracts. Because these contracts are

unbiased and not subject to transaction costs, they allow him to reduce the yield variance

without reducing the expected yield. However, the imperfect correlation between the

individual yield and the index generates basis risk. The producer can reduce this basis risk by

selling actuarially unfair IYCI contracts. The higher the level of risk aversion, the higher the

IYCI hedge ratio and the lower the AYCI hedge ratio.

[INSERT FIGURE 3 HERE]

As expected, the AYCI contract is market enhancing; efficiently combined with the IYCI

policy, it allows the producer to increase the expected yield for the same level of yield

variance or, equivalently, to reduce the yield variance for a given expected yield. For

example, for a yield variance equal to 18, trading AYCI contracts in addition to IYCI

contracts allows the producer to increase the expected yield from 79.58 to 81.89

quintals/hectare, i.e., a gain in expected yield equal to 2.31 quintals/hectare. Conversely, for

an expected yield of 80 quintals/hectare, the optimal hedging strategy using the two contracts

allows the producer to divide the yield variance by almost two, from 20.75 to 10.57

(quintals/hectare)2.

The efficient frontiers are drawn in Figure 4 for a representative farm in Eure-et-Loir

where the expectation and the standard deviation of the individual yields are 72

quintals/hectare and 11.6 quintals/hectare, respectively, the degree of correlation with the

national yields is 0.42 and the individual yield guarantee is YEY f
~

9.0 ×= . As expressed in

equation (34), a higher individual yield variance and a lower degree of correlation reduce the

efficiency gain generates by the AYCI policy. For example, for a yield variance equal to 18,
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trading AYCI contracts in addition to IYCI contracts allows the producer to increase the

expected yield from 67.44 to 67.70 quintals/hectare, i.e., a gain in expected yield equal to 0.23

quintal/hectare.

[INSERT FIGURE 4 HERE]

5. Conclusion

The optimal combination of individual index-based insurance contracts is examined in two

conceptual frameworks.

Within the expected utility model, the imperfect coverage provided by the index-based

policy is captured with a contract displaying a lump-sum payoff whenever a loss occurs. We

show that the optimal insurance policy displays full (marginal) coverage above a deductible

and that the optimal level of deductibility is positive when the contract is sold at an unfair

price. Therefore, the presence of a fixed-reimbursement insurance policy does not affect this

well-known result in the literature of insurance economics. The optimal lump-sum payment is

shown to be positive and lower than the optimal individual insurance deductible. In addition,

the prudent policyholder will choose a fixed payoff higher than the expected value of the

minimum function between the optimal deductible and the random individual loss.. Under

CARA, an increase in the probability of loss will increase (decrease) both the insurance

deductible and the lump-sum payment if and only if, the level of deductibility, when it is the

only hedging decision, increases (decreases) with the probability of loss.

Within the linear mean-variance model, the optimal futures hedge and the optimal

coinsurance level are explicitly characterized. When the futures market is unbiased, the

optimal future hedge is increasing and convex in the degree of correlation between the

individual loss and the index. The coinsurance level, when positive, is a decreasing and

concave function of the degree of correlation. The role of an index-based contract as a market

enhancing instrument is illustrated using two representative wheat farms located in France.

The efficient frontiers show the efficiency gain provided by an optimal combination of the

two hedging instruments. However, this gain decreases as the individual yield variability

increases and/or the degree of correlation decreases.

These two models allows us to investigate the optimal combination of an unfair individual

insurance policy and a fair index-based contract in the management of individual risks. In

insurance language, they bring an insight into the tradeoff between transaction costs and basis

risk.
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Appendix

Sign of KqV

Because 0<′′u , the first-order condition (9) can be rewritten as

(A1) ( )[ ] 0)~,(0,~max~ =Ψ−+−−− zwKDyyE .

Differentiating (A1) with respect to the probability of occurring a loss q  yields

(A2) ( ) ( ))~,(signsign zwKVKq Ψ′−= .

KqV  is thus positive (null, negative) if and only if the producer’s utility function exhibits DAP

(CARA, IAP).

Sign of DqV

Differentiating the first-order condition (6) with respect to q and rearranging the terms yields

(A3)

( ) ( ) ( ) ( )

( ) ( ) )()(1)()(1

)()(1)(1)()(1)()(

21

11
0

2233

wuDFwumDF

wuwAqPDFwuwAPqwuwAPqKPV D

D

DDqDq

′−+′−−








 ′−′−−′′+−′′−+′≡ ∫

where ( ))(1 DFmqPD −−=′ , ∫ −=∂∂≡′
max

)()(
y

D
q ydFDymqPP  and uuA ′′′−≡  is the index of

absolute risk aversion. The first right-hand side (RHS) term in (A3) is the wealth effect. It is

negative under DARA and null under CARA. The second RHS term in (A3) is the risk effect;

it is negative. The third RHS term in (A2) is the premium effect; it is positive. Because

21 ww >  and under risk aversion, we have )()( 12 wuwu ′>′ . Because 0>m , the sum of the

premium effect and the risk effect is positive (negative) if the loading factor is “sufficiently”

low (high).

Sign of DKV

Differentiating the first-order condition (6) with respect to K and rearranging the terms gives

(A4)    ( ) ( ) ( ) 







′′−−′′++′′+−≡ ∫ )()()(1)()(1)()(1 11

0
2233 wuwAPqDFwuwAPqwuwAPqqV D

D

DDDK

Because 0<′DP , this implies that

(A5) ( ) ( ) ( )







−′′++′′−> ∫

D

DDDK DFwuwAPqwuwAPqqV
0

2233 )(1)()(1)()(1 .
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For all Dy < , we have 23 ww >  and thus ( ) )()( 23 wAwA =<  under DARA (CARA). This

implies that

(A6) ( ) ( ) ( )







−′′++′′+−> ∫

D

DDDK DFwuPqwuPqwAqV
0

232 )(1)(1)()(1 .

From the first-order condition (6), the RHS term into brackets is equal to

( ) 0)(1 1 >′−′− wuqPD . Consequently 0>DKV  under DARA or CARA.
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Figure 1. Optimal individual insurance deductible and optimal lump-sum payment, for a

prudent policyholder.
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Figure 2. Optimal hedging decisions with unfair individual insurance policy and

unbiased index-based contract.
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Figure 3. Efficient frontier of the individual yield crop insurance policy (IYCI) and of
the combination of individual and area yield crop insurance contracts
(IYCI+AYCI) for a representative wheat farm in Marne (France). Expectation
is in quintals/hectare and variance is in (quintals/hectare)2.
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Figure 4. Efficient frontier of the individual yield crop insurance policy (IYCI) and of
the combination of individual and area yield crop insurance contracts
(IYCI+AYCI) for a representative wheat farm in Eure-et-Loir (France).
Expectation is in quintals/hectare and variance is in (quintals/hectare)2.
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