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Introduction 
 

The conversion of farm and forestlands on city-fringes throughout the United 
States has commanded attention from academics, policy makers, and the public since at 
least the early 1980s (Alig and Healy, 1987).  Over the past two decades, the 
encroachment of rural lands by development has continued unabated, with the urbanized 
area expanding from approximately 51 to 76 million acres between 1982 and 1997 
(Fulton et al, 2001).  While partly reflecting growing prosperity and preferences for 
increased living space, this trend has raised concerns on several fronts.  Through its 
strong association to the increase in impervious surfaces, expansion of the urban frontier 
degrades and fragments natural habitats, contributes to poor air quality through increased 
reliance on vehicle travel, and disrupts a multitude of ecosystem services such as aquifer 
recharge and nutrient cycling.  Such disruptions can impose significant costs on 
municipalities, including damage from flooding, higher medical costs for air quality-
related illnesses, and increased expenditures for the provision of public services and 
infrastructure.  Social and aesthetic costs further compound these ecological and health 
impacts.  The movement of populations away from central city areas not only contributes 
to urban blight, but also to a loss of cultural heritage as farmland and forest is replaced by 
what is often a pattern of helter-skelter development characterized by strip malls, office 
parks and disconnected residential communities.  
 

The confluence of factors driving urban growth is highly complex, resulting from 
a combination of ecological and social determinants that co-evolve over time and space.  
Identifying these factors and quantifying their impact necessitates models of both why 
urbanization happens as well as where and when it happens.  These questions are not only 
the concern of economists, whose focus is on the role of incentives, preferences and 
constraints in determining landscape patterns, but also to ecologists, whose analytical 
point of departure is the impact of these patterns on the physical and bio-geo-chemical 
flows that sustain ecosystem function.  To the extent that present-day development 
decisions create landscape mosaics that constrain the choice set of future land use 
alternatives, a comprehensive understanding of urbanization requires integrating 
economic and ecological paradigms.   

 
Recognition of the need for interdisciplinary approaches to the study of urban 

growth patterns has led to an increasing number of studies that combine principles from 
landscape ecology with spatial-econometric methods to account for how human decision-
making, ecosystem function, and their interaction effect landscape changes across 
different spatial scales.  In contrast to area-based approaches, which estimate the 
determinants of land use shares within aggregate geographic areas such as counties (e.g. 



Lictenberg, 1989; Stavins and Jaffee, 1990; Parks and Kramer, 1995; Plantinga, Mauldin 
and Miller, 1999; Hardie et al., 2000), this literature draws on disaggregate point data 
derived from remotely sensed sources or ground surveys to estimate spatially explicit 
models of land use.  An early example of such work in the U.S. context is Turner, Wear, 
and Flamm’s (1996) multinomial logit analysis using a time series of satellite imagery to 
study the effect of socioeconomic, ecological, and locational factors on landscape 
changes in North Carolina and Washington.  Other issues explored in this literature 
include the role of GIS-created spatial pattern metrics as determinants of property values 
(Geoghegan, Wainger, and Bockstael, 1997), the joint influence of urban population 
growth and urban proximity on land use change (Kline and Alig, 2001), and the causes of 
fragmented development patterns among residential land parcels on the rural-urban 
interface (Irwin and Bockstael, 2002). 

 
While the increasing availability of high-resolution remotely sensed data and 

improvements in geographic information system (GIS) technologies have enabled major 
advancements in the literature concerned with spatially explicit assessments of land-use 
change, the role of temporal dynamics in the patterns that emerge remains poorly 
understood.  This can be partly attributed to the fact that spatial data is typically available 
over a limited range of discrete dates, thereby limiting the extent to which the effect of 
time can be explicitly modeled.  The present paper attempts to build on the existing 
spatial literature by advancing an empirical model assessing how, over both time and 
space, changes in land-use on the rural-urban interface respond to changing economic 
and ecological conditions.  The estimated model is not only spatially explicit, but, unlike 
work to date, it also parameterizes the effect of time on the risk of conversion.  Together, 
these features allow for the use of the coefficient estimates to simulate short- and medium 
term projections of future land use patterns.   

 
The study examines the determinants of built-up area across a 10,000-mile square 

swath across central North Carolina, an area that has undergone extensive conversion of 
forest and agricultural land over the last two decades.  For present purposes, built-up area 
is defined as impervious surface, which includes paved surfaces, structures, and medium 
to high-density residential areas.  Between 1976 and 2001, the area covered by 
impervious surface in the region more than doubled, from 252 to 568 square miles, with 
the majority of the increase occurring in the metropolitan regions of Greensboro and 
Raleigh.  In Raleigh, for example, the population increased by 32 percent between 1990 
and 1996 while its urbanized land area increased nearly twofold (Sierra Club, 1998).  We 
model these landscape dynamics by exploiting a spatial database that links five satellite 
images spanning the years 1976-2001 to a suite of socioeconomic, ecological and GIS-
created explanatory variables.  

 
Our analysis takes as its point of departure a dynamic, profit-maximizing 

framework that suggests several possible determinants of land conversion from 
commodity-based to urban uses.  Using 60 X 60-meter satellite pixels as the unit of 
observation, we subsequently test for the significance of these determinants with a model 
derived from the proportional-hazards empirical specification.   



The model developed has several distinguishing features.  By specifying the 
complementary log-log derivation of the proportional hazards model, we advance a 
methodology for modeling a continuous time process – the conversion of land to 
impervious surface – using discrete time satellite data.  Because the data itself is observed 
at a very fine level of spatial resolution, we can additionally relax the assumption 
commonly invoked in land use shares models that all change occurs at the rural urban 
interface (Hardie et al., 2000).  Finally, the model includes a broad array of covariates 
that measure the land allocation response to site, locational, and pattern attributes 
associated with each pixel.  Following the works of Geoghegan, Waigner, and Bockstael 
(1997) and Irwin and Bockstael (2001), we are particularly interested in exploring the 
effects of pattern metrics, which are captured by three time-varying variables measuring 
fragmentation, the percent of impervious surface, and the percent of water in a two-by-
two kilometer window surrounding the pixel.  In addition to testing for the statistical 
significance of these variables and assessing their magnitude, we also gauge the extent to 
which their inclusion improves the predictive ability of the estimated model. 

 
 
The Study Region 
 

The study region straddles portions of the Piedmont and the Inner Coastal Plane 
of North Carolina, two distinct physiogeographic zones that cut diagonally north-south 
across the state (Figure 1).  Elevations in the Piedmont range between 300 and 1500 
hundred feet across a landscape primarily covered by deciduous and pine forests.  The 
Inner Coastal Plane reaches maximum elevations of 500 feet and includes various 
wetland vegetation types such as gum cypress swamps and shrub bogs among its 
dominant land covers (Cooper, 2000; Bobyarchick and Diemer, 2000).  Across the state 
as a whole, hardwoods cover more than half of the timberland acreage, while pine stands 
and oak-pine stands account for the remaining 33 and 14 percent, respectively (Brown, 
1993; Brownlow et al., 2000).  Centuries of human occupation have fragmented these 
forests by a patchwork of croplands, fields in varying stages of abandonment, and, 
increasingly, built-up areas.  Virtually all of the woodland in North Carolina has been 
farmed at some point in the past and, excluding some swamplands and mountain slopes, 
there are no remaining virgin timber stands (Lilly, 1998).  Among the state’s most 
botanically diverse regions that has been threatened by human encroachment is the 
Carolina Sandhills, a longleaf pine/wiregrass ecosystem located in the in the 
southwestern corner of the Inner Coastal Plane and extending into South Carolina.  
Shaped by thousands of years of a natural fire disturbance regime, this ecosystem is 
currently in severe decline due to fire suppression efforts, clearing for agriculture, and 
logging.  Today the ecosystem provides habitat for more than 30 plant and animal 
species, including the red-cockaded woodpecker, that are listed as threatened or 
endangered (U.S. Fish and Wildlife Service, 2003).      
 
 
Figure 1:  The study region boundaries and physiogeographic zones of North Carolina.  



 
 
North Carolina is widely regarded as a state in which inefficiencies in land 

consumption are leading to excessively costly expansion of the built environment.  A 
highly publicized report recently released from Smart Growth America (2003) ranked 
Greensboro and Raleigh-Durham as second and third among a listing of 83 U.S. cities in 
which the spread of development far outpaces population growth.  Historical accounts 
suggest that the foundations for the sprawling patterns observed in these and other North 
Carolina cities can be traced back to the 1880s, when a low-density urban landscape 
emerged that was driven by the proliferation of tobacco factories and textile mills 
(Larsen, L. 1985; Orr and Stuart, 2000; Ingals, 2000).  These employment centers 
spawned a dispersed network of small towns across the state that today serve as bedroom 
communities for regional metropolitan centers.  By 1900 there were 177 mills in the state, 
with over 90% of them in the Piedmont (Ingals, 2000).  To connect these emergent 
centers of economic activity, major investments in road infrastructure were undertaken 
with the result that by the early 1920s there were over 5,500 miles of roads were paved 
linking county seats ((Ingals, 2000).  These developments ushered in a transition from an 
economy based largely on agriculture to one based on service sector and manufacturing 
industries, with heavy reliance on the forest-products sector.   

 
While the state remains a major producer of tobacco, sweet potatoes, and hog 

products, the area under agriculture has declined drastically since its peak in the early 
1900s (Lilly, 1998).  The area under commercial timberland, by contrast, has remained 
relatively stable, peaking in the early 1970s to 20.13 million acres and then dropping 



back down to approach the 1938 level of 18.1 million acres by 1990 (Brown, 1993).  
Nevertheless, a recent U.S. Forest Service report projected that North Carolina will lose 
30% of its privately owned, natural forest by 2040, with the Interstate 85 corridor 
extending southward from Raleigh-Durham designated as a “hotspot” of forest loss due 
to continuing urbanization (Prestemon and Abt, 2002; Wear and Greis, 2002).   

 
 

Theoretical Considerations 
 
 Whether a land manager decides to convert a given tract of land depends on a 
complex multiplicity of factors, including the market value of output from the land in 
alternative uses, expectations about the future use of neighboring lands, and the 
surrounding composition of land ownership.  Following the work of Parks (1995), 
Boscolo, Kerr, Pfaff, and Sanchez (1998), and Irwin and Bockstael (2002), the theoretical 
approach taken here attempts to reduce this complexity by assuming that land will be 
converted if the net present discounted benefits of doing so is greater than the net present 
discounted benefits of leaving the land under its present use.  This approach considers 
that there is a continuous latent random variable reflecting net returns from pixel i in land 
use m (commodity) at time t, where returns are influenced by a vector of site and 
locational attributes of the pixel.  Important site attributes include such factors as soil 
quality, slope, elevation, the cost of conversion and its value in the alternative use.  
Locational attributes include accessibility costs of the pixel to both roads and centers of 
economic activity as well as the existing pattern of land use surrounding the pixel.  The 
land manager will choose the time of conversion, T, to maximize discounted net benefits 
from land at location i: 
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where:  

Ait(Xit) is the potential returns derived from a commodity-based use of the land at 
time t 
Dit(Xit) is the potential returns derived from a developed  use of the land at time t 
CT is the cost associated with conversion 

Assuming irreversibility of the conversion process, there are two necessary conditions for 
conversion to take place.  The first is that the discounted returns derived from conversion 
is greater than the discounted returns of leaving the plot in its present use net of the one-
time conversion costs: 
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The second condition considers that although conversion may yield net positive returns at 
time t, there may still be benefits to waiting because of the potential for even higher 
returns at some future date.  Such a circumstance could arise, for example, in anticipation 
of improved technologies that reduce conversion costs.  The second condition to be 
satisfied is thus: 
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Because equation (2) is likely to be met well before equation (3), we subsequently focus 
on equation (3) to derive the empirical specification. 
  
  
The Empirical Model 
 

The model of land use conversion developed above is deterministic in assuming 
that the timing of development can be explained solely by variation in pixel attributes.  
To account for unobservable heterogeneity, we add an error term to equation 5: 
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The hazard rate – or instantaneous risk that pixel i is cleared in period t conditional on not 
having been converted before t – can then be expressed as 
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where f(.) and F(.) are the probability and cumulative distribution functions for ε, 
respectively, and ε* is the ε that makes (6) an equality. 
 

It bears pointing out that the hazard rate itself is not a probability, but rather a 
measurement of the number of events per unit interval of time, where an event is defined 
as some discrete transition across states.  To estimate the determinants of hit we draw 
upon a class of statistical methods collectively referred to as duration – or survival – 
analysis.  Such methods have been applied widely in the biomedical, engineering, and 
social sciences to measure phenomena in which timing is the critical aspect of interest.  
Examples of such phenomena include the time until death after diagnosis of a terminal 
disease, the time until component failure, and the duration of unemployment spells.  
While conventional methods such as linear or logistic regression can sometimes be 
applied to these issues, these methods are generally ill-equipped to handle the features 
that often characterize duration data, including time-varying explanatory variables and 
censoring or truncation of the dependent variable.1    

 
The data used in this study is interval censored, meaning that each observation's 

survival time is known only to fall somewhere between two dates.  If a conversion occurs 
between the dates, the dependent variable assumes a value of 1; otherwise it assumes a 
value of 0.  To reconcile the temporal continuity of the conversion process being modeled 

 
1 Truncation and censoring are pervasive features of duration data, resulting respectively from the data 
selection process inherent in the study design or from observation-specific random features that make 
observations on survival time incomplete (Hosmer and Lemeshow, 1999). 



with this coarseness in the measurement of timing, we specify a complementary log-log 
model, written as: 

 
(6) itit XP β ′=−− )]1log(log[  

 
where Pit is the probability that pixel i is converted in interval t given that the pixel was 
not converted in any earlier intervals, β is a vector of estimated parameters, and the Xit are 
exogenous covariates.  This model is a discrete analogue Cox’s proportional hazards 
model, a highly flexible specification that is estimated using partial likelihood methods.  
Two major advantages of the Cox model is that it readily accommodates time-varying 
covariates and that it requires no assumptions on the functional form of the baseline 
hazard rate or on the factors that may change this rate over time.  This enables attention 
to be focused specifically on the effect of the covariates on the relative risk of a 
transition.    

 
Unlike the Cox model, the complementary log-log model is estimated using 

maximum likelihood methods.  Drawing from the discussion in Hosmer and Lemeshow 
(1999), let Ij denote the jth time interval, and ai and bi denote two known values that 
bound the observed time for the ith pixel.  Then define yij as a binary variable indicating 
the specific time interval observed for the ith pixel, where 

 
(7) yij = 1 if (ai, bi)  = Ij and 
     = 0 otherwise. 

 
Now define a “pseudo” binary outcome variable as zij = yij * ci, where ci = 1 if the event 
occurred and ci = 0 otherwise.  Under the assumption that the underlying survival model 
is distributed as a type I extreme value (Irwin, 1998; Hosmer and Lemeshow, 1999), the 
model parameters can be estimated by maximizing the following likelihood function: 
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where n denotes the number of pixels and ki denotes the observed interval for the ith 
pixel.  The estimated coefficients from maximizing this function have a relative risk 
interpretation, just as with the Cox model.  Because the model is estimated using 
maximum likelihood, however, it is also possible to readily generate estimates for the 
effect of time on the odds of a transition, an effect that cancels out when using the partial 
likelihood approach (see Allison, 1995 for further discussion). 
 
 
Data and Methods 
 
The Dependent Variable 
 The econometric model presented in this paper is estimated using a time series of 
five classified satellite images across a 25-year time span that includes the years 1976, 



1980, 1986, 1993 and 2001.  The images are taken from the northern half of path 16, row 
36 and the southern half of path 16, row 35 of the Landsat satellite orbit, a region 
covering roughly 10, 000 square miles across central North Carolina.  Data for the years 
1976 and 1980 was derived from the Landsat Multispectral Scanner (MSS) imaging 
system, while the Landsat Thematic Mapper (TM) imaging system was the data source 
for the years 1986, 1993, and 2001.  Because TM and MSS data have different spatial 
resolutions – 58 X 79 meters for MSS and 30 X 30 meters for TM – the data was 
spatially degraded to a 60 X 60 meter resolution for consistency. 
 

The process of imagery classification was preceded by the standard pre-
processing activities, including geometric correction, spectral-spatial clustering, and 
radiometric normalization.  Classification then proceeded according to a hybrid change 
detection methodology combining radiometric and categorical change techniques on a 
pixel-by-pixel basis.  This procedure produced four land cover classes: forest, non-forest 
vegetation, impervious surface, and water.  From these classes, we generated a binary 
dependent variable equaling 1 if a conversion from forest or non-forest vegetation to 
impervious surface occurred across two dates and 0 otherwise.  Conversions to water 
were treated as censored, while pixels whose classification in the first year (1976) was 
either water or impervious surface were eliminated from the data.  After overlaying two 
GIS layers of tenure data from ESRI and the North Carolina Department of Parks and 
Recreation, those pixels falling under public ownership (e.g. national, state, and 
municipal parks) were also eliminated.  The final data set used for model estimation 
comprised 65,999 observations. 

 
Upon classifying the imagery, pixels were systematically sampled along a grid 

pattern across the satellite scene such that roughly twelve kilometers separated each pixel 
on a side.  Systematic sampling is a commonly applied technique to handle spatial 
correlation of unobserved variables that affect the probability of conversion (Turner, 
Wear, and Flamm, 1996; Cropper, Puri and Griffiths, 2001; Kline and Alig, 2001).  The 
consequences of spatial autocorrelation include inefficient but asymptotically unbiased 
estimates.  However, in cases in which the unobservable variables are spatially correlated 
with the included explanatory variables, the coefficient estimates on the included 
variables will additionally be biased (Irwin and Bockstael, 2001).  A major source of 
spatial autocorrelation arises from multiple observations falling under common 
landowners (Kline and Alig, 2001).  Given that the average size of private forest 
ownership in North Carolina is 24 acres (Powell et al., 1992) while the average farm size 
is approximately 184 acres (U.S. Census of Agriculture, 1997), twelve kilometer 
separation was deemed an adequate distance to sufficiently reduce the likelihood of this 
occurring.  
 
The Explanatory Variables 
 Several static and time-varying covariates are included in the model, the values 
for which correspond to the start year of the interval given by the dates of the satellite 
imagery.  The suite of variables specified captures both site and locational attributes that 
are hypothesized to affect the likelihood of land use conversion.  Table 1 presents 



descriptive statistics and the units of measurement for each variable; an appendix lists 
web sites from which data was downloaded, if applicable. 
 

Five variables are included in the model that do not change with time: elevation 
(elev), slope, and dummy variables indicating forested pixels (forest), poor soil quality 
(poorsoil), and wetlands.  The measures of elevation, slope and the forest dummy were 
derived directly from the satellite imagery.  Soil quality data was taken from the Land 
Capability Classes of the USDA Soil Conservation Service, which indicates the soil’s 
suitability for agriculture.  The wetland category was derived from the 1993 land use and 
land cover data from the EROS Data Center.   

 
To capture the influence of what Healy (1985) has termed juxtaposition effects – 

or “spatially bounded externalties that affect adjoining or nearby land” (Alig and Healy, 
1987: 225) – we derived three time-varying window-based metrics from the imagery that 
measure the landscape configuration surrounding a pixel.  The window size was set at 
approximately two square kilometers, an admittedly arbitrary area, but one which was 
based both on a judgment call of a typical developer’s spatial frame of reference and on 
previous studies that have found window-sizes of similar magnitude to capture spatial 
externalities (Geoghegan, Waigner, and Bockstael, 1997; Flemming, 1999; Irwin and 
Bockstael, 2002).  The calculated metrics are: the percent of area classified as impervious 
surface (p_imper), the percent of area classified as water (p_water), and a fragmentation 
metric (ppu).  The latter of these, ppu, was developed by Frohn (1998) and is defined as:2 

 

(9) 
λ*n

m
PPU it
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where i denotes the pixel, t denotes the date of the image, m is the total number of 
patches, n is the total number of pixels in the window, and λ is a scaling constant equal to 
the area of the pixel.  Because n and λ are constants in our data, the metric essentially 
reduces to a count of patches.3  Hence, as the landscape becomes more fragmented, ppu 
increases.  In the model estimation, we additionally include the interaction of ppu with 
p_imperv (ppu_imperv) to further capture the ecological integrity of the landscape.  We 
would expect, for example, that a landscape with a preponderance of vegetated area 
would provide a more favorable habitat for plant and animal species, but that this effect 
would by attenuated by the extent to which that vegetation is fragmented.  

 
In addition to the window-based metrics, several time-varying proximity-based 

metrics are also included in the specification: the Euclidean distance to the nearest 
primary road (dis_road), the Euclidean distance to the nearest woodchip mill (dis_mill), 
and a gravity index (gravity).  The variable dis_road is based primarily on the road 
network available from ESRI, but was modified using image interpretation of Landsat 
                                                           
2 Frohn (1998) suggests that unlike conventional measures of fragmentation, ppu allows comparisons of 
landscape fragmentation across images having different spatial resolutions, raster orientations, and numbers 
of land cover classes. 
3 The metric does not, however, assume only integer values in our data because of the GIS algorithm used 
to calculate it.  



data to reflect the conditions existing at the beginning of each interval.  Distance to the 
nearest woodchip mill, a potentially important cost attribute of forestry operations, was 
obtained by overlaying a GIS layer of woodchip mill locations and their establishment 
dates that is available from the Economic Research Service of the USDA’s Forest 
Service.  To isolate the effect of this variable for forested pixels, we interact it with the 
forest dummy.  The final proximity metric, termed a gravity index, is introduced to 
capture the joint influence of urban proximity and urban population on land use change.  
While several specifications exist for capturing this influence (Haynes and Fotherham, 
1984; Shi, Phipps, and Coyler, 1997), we follow a specification similar to that used by 
Kline and Alig (2001), defined as: 
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where m represents the three nearest cities having a population of greater than 25,000.  
The index thus allows multiple cities to exert an effect on land use change while giving 
greater influence to larger cities of closer proximity, thereby capturing the combined 
effects of population growth and its spatial distribution.  Data on metropolitan population 
counts used in the index were obtained from the U.S. Department of Commerce, Bureau 
of the Census. 

 
We include two indicators of county-level economic conditions – per capita 

income (pc_inc) and median house values (hous_prc) – that were also obtained from the 
Department of Commerce for the years 1982, 1987, and 1992.  Per capita income values 
were linearly interpolated for years in which published data and the satellite imagery did 
not correspond.  Because of volatility in the housing market, linear interpolation was not 
deemed appropriate for constructing the series for median house prices.  We instead used 
a home price index from Freddie Mac to extrapolate median housing prices for years in 
which Census data is not available.  The price index is available for Metropolitan 
Statistical Areas, thereby allowing us to maintain intra-regional variability.  

 
Two variables are included in the model to control for the effect of time.  The first 

is a trend variable (trend) that measures the years elapsed since the start date of the time 
series in 1976.  The inclusion of this trend as a covariate is a distinguishing feature of the 
model, as it enables us to parameterize the direction of duration dependence.  That is, by 
controlling for the effects unobservable inter-temporal factors that affect land use change, 
we can answer the question of whether the conditional risk of conversion is an increasing 
or decreasing function of time.  The second variable is derived by taking the natural log 
of the interval length (ln_span), and is introduced to control for the fact that the intervals 
are of differing lengths.   

 
Finally, dummy variables representing the 31 counties in the region are included 

in the model to limit omitted variable effects arising from county-level differences 
governance, zoning, and expenditures that may affect land use.  



 
 
Results 
 
 Table 2 presents results of two complementary log-log models of the determinants 
of increases in impervious surface.  The first model is distinguished from the second by 
its exclusion of the window-based metrics.  As interpretation of the coefficient estimates 
from the complementary log-log model is complicated by the log-odds transformation of 
the dependent variable, we derive a more intuitive interpretation through calculation of 
the “risk ratio”.  In the case of the continuous covariates, the risk ratio is interpreted as 
the percent change in the hazard rate from a unit increase in the covariate.  These values 
are obtained by subtracting one from eβ and multiplying the resulting value by 100.  In 
the case of the dichotomous variables, the risk ratio is simply equal to eβ, and can be 
interpreted as the ratio of the estimated hazard for observations with a value of one to the 
estimated hazard for those with a value of zero (Allison, 1995).   
 
 

                                                          

While Models 1 and 2 are both highly significant, with chi square values of 
1626.10 and 2439.08, respectively, a likelihood ratio test of the null-restrictions imposed 
by Model 1 on the effects of the window based metrics suggests that it be rejected in 
favor of Model 2.  The chi square value of the test is 285.04 with 27 degrees of freedom, 
providing clear-cut evidence that the metrics improve the fit of the model.  As an 
additional gauge of the predictive performance of the two models, we calculated 
Goodman and Kruskal’s gamma, a non-parametric, symmetric metric that is based on the 
difference between concordant (C) and discordant (D) pairs of predicted and actual 
values of the dependent variable as a percentage of all pairs ignoring ties.  Gamma is 
computed as (C – D)/(C + D), and can be interpreted as the contribution of the 
independent variables in reducing the errors of predicting the rank of the dependent 
variable.4  The value of gamma calculated from the constrained model is 0.809, while 
that of the unconstrained model is 0.909.  The improvement in the predictive ability of 
the model with the inclusion of the window metrics is thus considerable, reducing the 
fraction of uncertainty remaining in the constrained model by 52 percent.  
 

The statistical significance and magnitude of the coefficient estimates on the 
window-metrics provide further evidence of their importance as determinants of land use 
change.  Increases in fragmentation, as measured by ppu, increase the hazard of 
conversion, as do increases in impervious surface.  The former result likely reflects the 
deleterious impacts of fragmented land on commodity-based or recreational uses that rely 
on ecosystem viability, while the positive coefficient on p_imper may reflect the effect of 
agglomeration economies from positive spillovers of existing development.  Evaluated at 
the mean of ppu, we find that a percent increase in p_imper induces a 9.97 percent 

 
4 As an illustration, consider the following hypothetical list of predicted and actual values: a. (0.9, 1); b. 
(0.3, 0); c. (0.8, 1); d. (0.2, 1).  From this list, ab and bc are concordant pairs as the value of both elements 
is higher (or lower) in one set then in the other. bd is a discordant pair because the value of one element is 
higher in one set while the value of the other element is higher in the second set.  Pairs ac, ad, and cd are 
ties and are therefore ignored in the calculation of gamma.  Gamma in this example equals 0.33. 
 



increase in the hazard of conversion.  It is notable that Irwin and Bockstael (2001) obtain 
a contrary finding on a similarly constructed variable measuring the percent of developed 
area.  Their study focuses primarily on explaining leap-frog development of land parcels 
in exurban areas, and they interpret the negative coefficient as representing “repelling 
effects” that result from negative externalities among residential land parcels.  We 
attempted to replicate their result by limiting the sample to pixels located beyond 10, 15, 
and 20 kilometer gradients of the nearest city of greater the 25,000, but found the positive 
and significant parameter estimate to be robust.5  As pointed out by Irwin and Bockstael 
and confirmed empirically by Geoghegan, Waigner and Bockstael, however, the direction 
of landscape pattern effects may vary over different window sizes, a possibility that data 
constraints precluded us from pursuing.  With respect to the interaction of ppu and 
p_imper, we find evidence for different pressures on highly fragmented land with a 
preponderance of impervious surface as compared with highly fragmented land with a 
preponderance of vegetation.  The latter has a higher risk of conversion, which is 
consistent with the idea that the marginal returns to development on such land is higher 
than on land already predominated by development.   
 

Beyond improving the fit of the model, the inclusion of the window metrics 
produces several noteworthy discrepancies with respect to the proximity and ecological 
covariates.  The statistical significance of these variables is either absent in Model 2 or 
their magnitude is substantially reduced.   Model 1 confirms evidence found elsewhere in 
the literature for what has been dubbed “urban influence potential” (Shi, Phipps, and 
Coyler, 1997; Hardie, Narayan, and Gardner, 2001; Kline and Alig, 2001), whereby the 
positive and highly significant coefficient estimate on the gravity index suggests an 
increased hazard of conversion on those pixels in close proximity to urban areas 
expanding in population.  By contrast, in Model 2 we fail to reject the null that the 
coefficient estimate on gravity is significantly different from zero.  Likewise, while 
Model 1 supports the hypothesis that higher elevations and poorer soil quality 
significantly increase the hazard of conversion to developed uses, in Model 2 both 
variables are insignificant.  With respect to the variable dis_road, both models are 
consistent with the hypothesis that decreasing primary road proximity discourages 
peripheral location through increases in the money and time cost of travel per kilometer, 
but the coefficient estimate in Model 2 is nearly half that of Model 1.  A discrepancy is 
also evident with respect to the variable dis_mill, though the negative effect of the 
variable in Model 1 is just significant at the 10% level and its economic significance is 
questionable given the small magnitude of the coefficient estimate.  
 

The remaining statistically significant variables across the two models are largely 
in agreement.  Model 2 indicates that the hazards of conversion for forested and wetlands 
                                                           
5 A possible explanation for this result traces back to the dispersed pattern of urban development, organized 
around mill towns, that emerged in North Carolina at the turn of the century.  To the extent that a leap frog 
pattern of development was already established at this time, subsequent development occurring at the end 
of the century may have been driven largely by urbanization economies arising from city size itself.  
Indeed, the notion that a contemporary leap-frog development pattern  prevails in U.S. cities may be open 
to scrutiny.  As noted by Duranton and Duga (2003), 1.9% of the land area in the U.S. was built-up or 
paved by 1992, with almost all recent development being less than 1 kilometer away from earlier 
development despite the wide availability of open space.   



pixels are 48 and 61 percent of the hazard for those pixels not having these attributes, 
with similar magnitudes seen in Model 1.  These findings are consistent with the 
hypothesis of higher conversion and opportunity costs associated with pixels under 
mature or ecologically important vegetation.  Per capita income and median housing 
prices are also seen to be significant determinants of conversion.  Based on the results 
from Model 2, every 1000 dollar increase in per capita income increases the hazard by 
roughly 28.34% while every 1000 dollar increase in the median price of a house increases 
the hazard by 3.26%.  The former result is consistent with the hypothesis that land is a 
normal good, so that increases in real incomes cause households to demand larger plots.  
The latter result confirms the intuition that as prices for houses increase, the hazard of 
conversion will increase as developers seek more land to profit from the sale of housing 
services (Deaton and Laroque, 1998).  The negative coefficient on the trend variable in 
Model 2 suggests that the land use conversion process is characterized by negative 
duration dependence, with each year decreasing the hazard by 33.59%.    

 
 
Conclusions 
 
This paper has presented an application of a hazard model as a means of 

analyzing the effects of static and time-varying socioeconomic and ecological covariates 
on the conditional risk that land is converted for developed use.  Our analysis confirmed 
several findings uncovered elsewhere in the literature, including significant impacts of 
per capita income, housing prices, and road proximity on the likelihood of conversion.  In 
contrast to previous studies, however, we did not find unambiguous support for the 
hypothesis that the combined effects of  proximity to and population of multiple 
metropolitan centers, as measured by the gravity index, is a significant determinant of 
land use.  Moreover, the magnitude of our estimate of the impact of road proximity was 
substantially reduced when the model specification included the window metrics.  Taken 
together, these results point to the risk of incorrect inferences with respect to the role of 
the spatial relations described by proximity metrics when the spatial relations described 
by pattern are not included in the model.  Moreover, given that the gravity index includes 
an argument for population, land-use change scenarios based on projected values of 
population may lead to faulty conclusions that do not provide reliable information for 
policy analysis.   

 
There are several possible extensions for using the empirical model estimated in 

this paper to explore the issue of urbanization.  One extension would assess the 
significance of ownership patterns on the hazard of conversion, and could include tests 
for parameter consistency across federal and private tenures.  Another possibility is to 
explore the effects of different specifications of the role of time by including squared and 
higher order terms in the model.  Finally, the dependent variable could be expanded to 
include multiple land use classes, thereby allowing for the estimation of competing risks 
models of land use change. 
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Table 1: Descriptive statistics of variables used in the analysis 
 
Variable name Units Mean Standard deviation

dep. var, (1=conversion) 0,1 0.01 0.10
forest  0,1 0.63 0.48
Poorsoil 0,1 0.11 0.31
elev  meters 137.18 65.81
slope  degrees 0.60 1.19
wetland  0,1 0.12 0.32
dis_road  kilometers 1.41 1.32
dis_mill  kilometers 41.53 48.26
discity1  kilometers 34.61 19.88
discity2  kilometers 50.31 25.21
discity3  kilometers 58.70 26.83
popcity1 persons 77699.93 69999.52
popcity2 persons 73023.82 75239.52
popcity3 persons 79125.52 75177.71
gravity  index 25.26 23.77
hous_prc  1000s/dollars 77.23 25.01
pc_inc  1000s/dollars 15.78 4.10
ppu  index 9.60 6.40
pwater  percent 0.51 3.05
pimper  percent 1.69 6.26
ppu_imp  percent 46.56 205.94
ln_span  ln of time 1.80 0.26
trend  years 13.92 7.89
 



Table 2:Complementary log-log model of the hazard of conversion to impervious 
surface 
 
       Model I       Model II 
       Coef. Est.        Risk ratio          Coef. Est.          Risk ratio 
forest  −0.401 0.670 −0.734 0.480 
 (0.004)  (0.000)  
poorsoil  0.371 1.449 0.147 1.158 
 (0.003)  (0.265)  
elev  0.009 1.009 −0.001 0.999 
 (0.000)  (0.682)  
slope  0.026 1.026 0.061 1.063 
 (0.517)  (0.157)  
wetland  −0.739 0.478 −0.492 0.611 
 (0.000)  (0.013)  
dis_road  −1.247 −71.266 −0.473 −37.706 
 (0.000)  (0.000)  
dis_mill  −0.002 −0.235 −0.001 −0.144 
 (0.101)  (0.328)  
gravity  0.130 13.919 −0.025 −2.490 
 (0.000)  (0.405)  
hous_prc  0.032 3.206 0.032 3.258 
 (0.000)  (0.000)  
pc_inc  0.298 34.654 0.250 28.339 
 (0.000)  (0.001)  
ppu    0.116 12.316 
   (0.000)  
pwater    0.021 2.165 
   (0.191)  
pimper    0.128 13.623 
   (0.000)  
ppu_imp    −0.003 -0.343 
   (0.000)  
trend  −0.424 −34.590 −0.409 −33.586 
 (0.000)  (0.000)  
ln_span  8.384 282.481 8.150 268.396 
 (0.000)  (0.000)  
cons  −23.258 −100.000 −21.535 −100.000 
 (0.000)  (0.000)  
chi2 county dummies 285.040  73.500  
 (0.000)  (0.000)  
n_obs 65991  65991  
LR chi2 (39, 43) 1626.1  2439.08  
 (0.000)  (0.000)  
log-likelihood −2646.575  −2240.082  
p-values in parentheses 



Appendix: Data sources available on the internet. 
 
Variable Data source Website 
badsoil USDA National  Resources 

Conservation Service 
http://soils.usda.gov/soil_survey/main.htm 

elevation North American Land 
Characterization 

http://eosims.cr.usgs.gov:5725/CAMPAIGN_DOCS/nalc_proj_camp.html 

wetland National Land Cover Data 
1992 

http://landcover.usgs.gov/natllandcover.html 

d_mill USDA Economics Research 
Unit 

http://www.srs.fs.usda.gov/econ/data/mills/chip2000.htm 

citypop U.S. Census Bureau, County 
and City Data Books 

http://fisher.lib.virginia.edu/ccdb/city94.html, 
http://eire.census.gov/popest/data/cities.php 
http://www.census.gov/prod/cen1990/cph2/cph-2-35.pdf 

ppi for 
housing 

Freddie Mac http://www.freddiemac.com/finance/cmhpi/#new 

pop_den U.S. Census Bureau, County 
and City Data Books 

http://fisher.lib.virginia.edu/ccdb/ 

pc_inc U.S. Census Bureau, County 
and City Data Books 

http://fisher.lib.virginia.edu/ccdb/ 

 
 

http://fisher.lib.virginia.edu/ccdb/city94.html
http://eire.census.gov/popest/data/cities.php
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