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The Dynamics of Productivity Growth in U.S. Agriculture 
 
Abstract 
 

A dynamic model of productivity measurement that incorporates public goods is 

developed. Cointegration is used to estimate dynamic derived demands and economies of 

scale in US agriculture, 1948-1994.  The impact of public inputs on the steady state 

stocks of private capital and their shadow prices are estimated. 

 

 Introduction 

Neoclassical models of growth (Solow, Ramsey) have been widely criticized 

because they cannot explain productivity changes. According to these models, growth is 

exogenously given by an unexplained rate of technical change. As a response, 

endogenous growth theories prove that continuous growth is possible because of the 

existence of non-rival inputs of production (i.e., inputs that can be used by many firms at 

the same time or by the same firm repeatedly without additional cost). In these models, 

two necessary conditions for endogenous growth are: increasing returns to scale over all 

inputs, and positive impacts of non-rival inputs on the returns to investment. The main 

contribution of this study is to introduce a dynamic model of productivity measurement 

that incorporates public goods (non-rival by definition) as external factors to the firms. It 

also rationalizes the provision of public inputs by a benevolent social planner that 

internalizes the effects of them. Estimable functions that allow testing the necessary 

conditions for endogenous growth are obtained. 
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Many other papers have focused on the effects of public goods on private 

production, and most of them have found positive impacts1. For example, Aschauer’s 

(1989) pioneer work estimates a single production function for the U.S. economy 

including public infrastructure as factor of production. Lynde and Richmond (1992) and 

Berndt and Hansson (1992) have also used duality theory to estimate the role of 

infrastructure in private production in the U.S. and Sweden, respectively. Nadiri and 

Mamuneas (1994) estimate the impacts of public capital and research and development 

(R&D) on the cost structure of twelve U.S. manufacturing industries, and Morrison and 

Schwartz (1996) study the regional effects of public infrastructure on the U.S. 

manufacturing sector. Both papers adopt a dual approach and find, in general, positive 

effects of public inputs on manufacturing productivity. The last paper also finds 

increasing returns to scale over all inputs (including infrastructure), but it does not 

include R&D.  

For the agricultural sector, papers like Antle (1983) and Craig et al. (1997) find 

positive effects of public infrastructure and research on agricultural productivity but their 

approach is based on estimating a single production function. Binswanger et al. (1993) 

estimates the impacts of infrastructure and R&D in India. They consider, in a static 

framework, that public infrastructure investments are regionally allocated toward areas 

that are more productive. In contrast, the present study develops a dynamic model of 

productivity measurement. This approach, based on duality theory, maintains producer 

rationality and allows examination of the impacts of public inputs on producer’s 

behavior. 

                                                 
1 Exceptions are Garcia-Mila and McGuire (1992) and Holtz-Eakin (1994). They find insignificant effects 
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The model is tested with data for the U.S. agricultural sector. United States 

agricultural productivity has increased at an annual average rate of two percent over the 

1948-1994 period. Some authors have found that productivity growth has been the main 

factor contributing to economic growth of the agricultural sector (Ball et al., 1997). 

Additionally, the provision of public goods in the form of public research and extension, 

and infrastructure has been sizable in this country. In an atomistic environment, these 

public expenditures are traditionally justified because of their low degree of 

appropriability and high costs. Theoretically consistent firms’ dynamic demands for 

inputs are then estimated for U.S. agriculture including stocks of public capital and R&D 

as quasi-fixed factors. The existence of economies of scale and the likely positive impact 

of public inputs on the steady state stocks of private capital can be tested. 

There are several reasons to undertake this study. First, the possibility of 

endogenous growth in the agricultural sector may imply spillovers to other sectors and, in 

particular, may have important effects on the growth of regional economies based on 

agricultural activities. Second, by determining the substitution or complementarity 

between public and private inputs, one may explain the recent evolution of private factors 

in the U.S. agricultural sector. Ball et al. (1997) show the increasing use of materials and 

the decreasing use of labor by the sector. Finally, the estimation of shadow prices for 

public capital and R&D stocks may provide an indicator to policy makers of the optimal 

provision of public investment. 

This chapter develops as follows. Section II presents a summary of the endogenous 

growth theory involving publicly provided goods and the related testable hypotheses 

                                                                                                                                                 
of public infrastructure on private production. 
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using a dual approach. Section III introduces a dynamic model in which both producers’ 

and government’s behaviors are rationalized. The testable hypotheses are then revisited. 

Section IV introduces the empirical model and section V presents the preliminary results. 

Finally, conclusions and future lines of research are stated in section VI. 

 

Growth Theory and Testable Hypothesis 

In the neoclassical models of growth (Solow, Ramsey), the rate of growth of per 

capita output is a decreasing function of the per capita stock of private capital. Without 

technical change and with a well-behaved neoclassical production function, the level of 

per capita output converges to a steady state where the growth of per capita private 

capital eventually stops. This result, implied by the assumption of decreasing returns to 

capital, has been one of the major criticisms to these models. 

As a response to these empirically unsustainable results, endogenous growth 

theory arose proposing different hypotheses. These theories incorporate into the models 

the reasons for technical change to occur based on the presence of externalities that 

originate nonconvexities. 

Nonconvexities play an important role in new theories of growth. They are 

generally due to the presence of nonrival goods. Following Romer (1990), nonrivalry can 

be interpreted in two ways. First, nonrival factors of production are valuable “inputs that 

can be used simultaneously in more than one activity.” Under this definition, public 

goods, like public infrastructure for instance, are nonrival inputs that can be used by 

many producers at the same time. Alternatively, one can define a nonrival input as that 

input that can be used repeatedly in the same activity. With this definition, a new 
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chemical process, for example, is an input that can be used more than once in the 

production of a certain product. In this case, nonconvexities are intrinsically associated to 

this input: there is a high cost of producing the first unit, but the cost of producing 

subsequent units is zero. In any case, since the presence of nonrival inputs generates 

nonconvexities, the production function can be characterized by increasing returns to 

scale: 

 

0  with ),N,R(F)N,R(F)N,R(F >λλ=λ>λλ  

 

where R and N stand for rival input and nonrival inputs, respectively. Thus, if rival and 

nonrival inputs are doubled (λ = 2), output is more than doubled. 

One of the pioneer studies in the endogenous growth literature has been that by 

Romer (1986). In this paper, Romer specifies a production function F(ki, K, xi), being ki 

and xi firm-specific inputs (x can be seen as a vector of inputs) and K an input external to 

the firm, like “the level of knowledge” defined as a function of the “firm-specific 

knowledge” (K=g(Σki)). If F is increasing in K and linear homogeneous in ki and xi, a 

perfect competitive equilibrium is still possible, but the factor ki no longer exhibits 

diminishing returns. Consequently, permanent endogenous growth of output per capita is 

allowed. 

Barro (1990) has developed a similar model where K can be interpreted as the 

stock of public capital (hereafter G). The intuition is that publicly provided capital (like 

roads, sewer capital, etc.) has positive impact on private production affecting the 

productivity of the firm-specific inputs. Public capital is assumed a public input that can 
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be used by additional producers without cost. Consequently, total stocks of public goods 

enter in the production function of each individual firm. In this context, two necessary 

conditions for the hypothesized endogenous growth are: existence of increasing returns to 

scale over all inputs, and existence of constant returns to scale over factors that can be 

accumulated (private and public capital). This second condition implies that private 

capital is continuously accumulated and there is an optimal ratio between private to 

public capital. A weaker requirement, alternative to this condition, would be a positive 

impact of G on the demand for capital. Although not ensuring continuous growth, the 

presence of this nonrival input would imply a positive government’s contribution to 

growth.  

The conditions mentioned above (i.e., increasing returns to scale over all inputs 

and positive impact of public inputs on private capital accumulation) can be rationalized 

using the theory of the firm. The following section introduces a model in which firms 

respond to changes in public inputs provided by a benevolent social planner. Estimable 

functions that allow testing for the hypothesized endogenous growth conditions are then 

obtained in a model that maintains producer rationality. 

 

The Model 

A dynamic dual model of the firm is used to explain growth based on the existence 

of public inputs. As was hypothesized, public goods might have positive effects on firms’ 

production. If the dual problem of the firms is considered, public inputs reduce cost of 

production given the level of firms’ output. In this manner, increases of public inputs 

increase firms’ productivity. 
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The model assumes that economic agents are intertemporal optimizers: firms 

minimize intertemporal costs of production. Instantaneous adjustment of inputs is not 

possible because of the existence of cost of adjustment. 

In their optimizing behavior, firms take public inputs as given. Public inputs are 

considered quasi-fixed inputs of production that they cannot adjust to obtain the 

minimum possible cost.  

 

The following figure shows the dynamics of the firms’ behavior.  

 

G represents the stock of the public input. K is the stock of private capital. Three average 

cost curves (faced by the firms) are shown in the graph. ACS(Gt, Kt) represents a very 

short-run average cost curve when private inputs (capital in this case) and public inputs 

are fixed. ACS(Gt) is the short-run average cost curve when only public inputs are fixed. 

Finally, ACL is the long-run average cost curve when all inputs are adjusted. 

At each period t, the firms observe the public input stock G and choose the 

optimal path of investment (I) that allows them to reach the optimal steady state (SS) 

E1 

E’0 
E0 

ACS(G0,K0
*) 

ACS(G0) 

ACS(G1) ACS(G1,K1
*) 
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AvC 
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stock K*. Starting at E0 and with a stock of public inputs G0, firms choose an optimal 

path of I that allows the firm to reach K0
* at the minimum cost. The firm moves from E0 

to E’
0. The path is adjusted the next period when the stock G1 implies a new SS stock K1

*. 

The firm then moves to E1. The two conditions for the hypothesized endogenous growth 

of the firms can then be seen in the graph: 

I. Increasing returns to scale over the long-run average cost curve (ACL): negative 

slope of ACL. 

II. Positive effects of G on the SS stocks of the private capital (i.e. the private input 

“that can be accumulated”): the SS stock of K increases from K0
* to K1

* when G 

grows from G0 to G1. 

More formally, firms solve the following problem: 

t      0)t(Z                            
Z)0(Z                            

ZIZ to subject             

dt]Z'p)G;I,Z,y(C[eMin

0

0

t

0)t(I

∀>
=

δ−=

+

•

∞ ρ−

> ∫
     (1) 

where C(y, Z, I; G) is the variable cost function; y is the only output; Z is the vector of 

stocks of quasi-fixed inputs; p is the rental price vector corresponding to Z; I is the vector 

of gross changes in quasi-fixed inputs; δ is the diagonal matrix containing the 

depreciation rates of Z; G is the vector of public inputs; and ρ > 0 is the firm’s real rate of 

discount. It is assumed that there is one perfectly variable input whose price (w) is 

normalized to one.2 Thus, the elements of p are relative rental prices. 

                                                 
2 Given w = 1, the variable cost function is C(1, y, Z, I; G). For simplification, C(1, y, Z, I; G) = C(y, Z, I; 
G) is used. 
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Define now J(Z, y, p; G) as the value function that solves problem (1). Assuming 

that C(y, Z, I; G) satisfies the set of regularity conditions (A.1) – (A.6) and J(Z, y, p;G) 

satisfies properties (B1) – (B5) (see Appendix 1), duality between C(y, Z, I; G) and J(Z, 

y, p; G) can be established. 

 

Duality between C(y, Z, I; G) and J(Z, y, p; G):3 any J Z, y, p; G.) satisfying conditions 

(B) is the value function corresponding to C(y, Z, I; G) that satisfies conditions (A) and is 

defined by 

 

)]ZI)(G;p,y,Z('JZ'p)G;p,y,Z(J[Max)G;I,Z,y(C zp
δ−−−ρ=    (2) 

or 

)]ZI)(G;p,y,Z('JZ'p)G;I,Z,y(C[Min)G;p,y,Z(J zI
δ−++=ρ    (3) 

 

These two equations provide the relationship between the cost function C(y, Z, I; 

G) and the value function J(Z, y, p; G). They allow expressing the parameters of C(y, Z, 

I; G) in terms of the parameters of J(Z, y, p; G) when firms minimize intertemporal costs. 

Thus, the derivative properties that characterize C(y, Z, I; G) can be recovered from the 

parameters of J(Z, y, p; G).4 Therefore, the two previously mentioned endogenous growth 

conditions can be tested through estimation of parameters of J(Z, y, p; G). 

 

                                                 
3 Epstein (1983). 
4 See Appendix for the derivative properties. 
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Conditions for Endogenous Growth 

1) The impact of G on 

a) The cost function: this is provided by the fifth derivative property explained in the 

Appendix 1. The following expression represents this effect: 

)G;p,y,Z(*Z)G;p,y,Z(J)G;p,y,Z(J)G;I,Z,y(C ZGGG
•

−ρ=  

which is the shadow price of G when the firms are out of the SS. At the SS, the 

shadow price is 

)G;p,y,Z(J)G;I,Z,y(C GG ρ=  

If this expression is negative, the shadow price of G is positive, meaning that 

public inputs reduce cost of production. 

b) The dynamic demand for private capital: it can be shown that the dynamic 

demand for the quasi-fixed inputs Z can be expressed as 

)]G,p(ZZ)[G,p(M)G;p,y,Z(*Z
_

−=
•

         (4) 

where )G,p(Z
_

 is the SS stock of Z and M(p,G) is a stable adjustment matrix. This 

expression yields a flexible accelerator adjustment path for the stocks Z and is the 

reason for these dynamic models to be called “multivariate flexible accelerator 

models” (Epstein(1983)). The form of M(p,G) is determined by the functional 

form of C(y, Z, I); however, only under certain conditions, it can be successfully 

expressed as an explicit function of the parameters of C(y, Z, I).5 

The effect of G on the dynamic demand for Z can then be decomposed in the 

effect on the adjustment matrix and the effect on the SS stock of Z. The condition 
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for endogenous growth would be for G to increase the SS stock of private capital 

K (one of the quasi-fixed factors of the firms). The effect on the adjustment 

matrix is only an effect on the speed of adjustment toward the SS. However, it is 

still required for this adjustment to be stable. 

2) Scale Effects: there must be increasing returns to scale over all factors of production 

(public and private factors). Increasing returns to scale can be evaluated by 

considering the elasticity of cost with respect to output (εCY). It is well known in the 

production economics literature that the elasticity of cost with respect to output is the 

dual expression of the elasticity of scale (ηy): εcy=1/ ηy.
6

 When the elasticity of cost 

with respect to output is less than one, firms exhibit economies of scale. However, in 

the presence of factors external to the firm, some adjustments should be made in 

order to obtain εcy. Morrison and Schwartz (1996) show how to adjust the elasticity of 

cost with respect to output when there are quasi-fixed inputs in a static cost 

minimization framework.7 This approach is extended here for the case of 

intertemporal optimization. 

                                                                                                                                                 
5 See Epstein (1983) for details. 
6 See Chambers (1988) for details. 
7 The approach is based on Le Chatelier principle. Taking the derivative with respect to Y on both sides of 
the identity CA(P, Pg, Y) ≡  C(P,G(P,Pg,Y),Y) gives 

∑
∂

∂

∂

∂
+

∂

∂
=

∂

∂

G Y

G

G

C

Y

C

Y

CA

 

Finally, completing elasticities gives 
 GY

G
CCY

A
CY εεεε G∑+=  
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Define the shadow price of the public input PG = PG(Z, y, p; G). This shadow 

price can be interpreted as an “inverse demand” for the public input. Solving for G, 

given PG, gives the direct shadow demand for G that can be substituted into (4) to get 

)]ZI))(p,y,Z,P(G;p,y,Z(J

Z'p))p,y,Z,P(G;p,y,Z(J[Max))p,y,Z,P(G;I,Z,y(C

G

_
'
z

G

_

p
G

_

δ−−

−−ρ=
           (5) 

Taking the derivative with respect to y, we obtain the adjusted effect of output on cost 

when the ‘shadow demand’ for G also changes with firms’ output: 

)p,y,Z,P(G)J*ZJ(*ZJJ
y

C
G

_

yzG
''

G
'
zyy

A ••

−ρ+−ρ=
∂

∂                        (6a) 

At the SS, this expression becomes 

b)6 (                                                     )p,y,Z,P(GCC

)p,y,Z,P(GJJ
y

C

G

_

y
'
Gy

G

_

y
'
Gy

A

+=

ρ+ρ=
∂

∂

 

Completing elasticities gives the following equation 

∑ εεεε +=
G

GYCGCY
A
CY            (7) 

which is the elasticity of cost with respect to output adjusted for the presence of 

public quasi-fixed inputs. Note that εCG is the elasticity of cost with respect to 

external factors, and εGY is the elasticity of “demand for external factors” with respect 

to output. This demand elasticity should be interpreted as a long-run one representing 

the change in external factors necessary to maintain the firm on the envelope long-run 

average cost curve after a change in output. Therefore, if A
CYε  is less than one, then 

there are increasing returns to scale over all inputs. 
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Empirical Implementation 

This section presents the empirical implementation of the model introduced above. 

The contribution of public capital and public R&D to U.S. agricultural growth and the 

conditions for the hypothesized endogenous growth can still be tested through estimation 

of the firms’ cost and demands for private inputs. Adopting a flexible functional form for 

the value function of the firms, all parameters of interest can be recovered from the 

estimation of the dynamic demands for private quasi-fixed inputs and the demand for the 

variable input. 

The study covers the period 1948 – 1994. Variables needed for estimation include 

quantity indexes of capital (K), labor (L), materials (M), and output (Y); implicit prices 

of the three inputs; and stocks of quasi-fixed public inputs (public capital (G) and R&D 

(R)).8 K is an aggregate measure of capital and land. Capital and labor are assumed quasi-

fixed inputs, while materials are the only variable input.9 Output is an index of all crops 

and livestock products. Public capital stocks are values of federal, state, and local 

structures. Public R&D stocks are constructed from R&D spending using Chavas and 

Cox’s method (1992).10 

Consider the following normalized quadratic value function: 

                                                 
8 See Ball et al. (1997) for details on all agricultural data. Public capital stocks are from Survey of Current 
Business and include buildings, highways, streets, sewer structures etc. Military structures are excluded. 
Public R&D spending is from Alston and Pardey (1996). 
9 The adoption of materials as a variable factor in agricultural production is consistent with the findings of 
previous studies, for example, Vasavada and Chambers (1986). 
10 With this method, the stock for a given year is constructed as a weighted sum of the last thirty years of 
expenditures, in which the weights follow an inverted ‘V’ pattern. Huffman and Evenson’s (1989) 
methodology, which consists of a trapezoidal pattern of thirty-five years of expenditures, was also tried. 
Results show no significant differences. 
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This is a second order Taylor series expansion of J in (P, Z, Q), where Z is the vector of 

quasi-fixed factors, P is the corresponding vector of normalized rental prices, and Q is the 

vector of output and public inputs; Ai and Bij are parameter matrices of appropriate order; 

a0 is a scalar parameter. Then, the vectors P’, Z’, and Q’ are equal to 

[ ] [ ] [ ];     Q        Z        P YRG';LK';PP' LK ===  

where PK and PL are the prices of capital and labor, respectively, normalized by the price 

of materials. 

The dynamic demands for quasi-fixed inputs are then11,12 

]),,(J)[,,(J),,(* p
1

pz ZQZPQZPQZPZ −ρ= −
•

   (12a) 

and the demand for the variable input (X*) is calculated from 

*Z]J'p)Q,Z,P(J[]P)Q,Z,P(J)Q,Z,P(J[)Q,Z,P(*X PZ
'
z

'
p

•
−−−ρ=   (13a) 

In terms of the postulated value function, (12a) and (13a) become 

b)12()(*                                                 NQPBBZBuHZ PPPZPZ ρ+ρ+−ρ+ρ=
•

                        

b)13 (*][]

a[*X 0

                                            ZBQ'BZ'AQBQ'
2
1

QBZ'ZBZ'
2
1QAZAPBP'

2
1

'
ZQZZ

'
ZQQ

ZQZZ
'
Q

'
ZPP

•

++−+

+++++−ρ=
 

                                                 
11 To clarify notation, note that only subscripts in the value function J denote gradient vectors. B and A are 
matrices of parameters. 
12 See Appendix 1 for derivation. 
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where PPZ ABH = , PQPZBBN = , and u is a 2x2 identity matrix. Note that equations 

(12b) constitute the flexible accelerator with constant adjustment coefficients and can be 

rewritten as in Equation (4) 

)],([),,(*
_

QPZZMQPZZ −=
•

                                    (4b) 

where 

)( PZBuM −ρ=  

][)( 1
_

NQPBBHBuZ PPPZPZ ++ρ−ρ−= −  

being 
_
Z  the steady state values of private quasi-fixed inputs. 

The model until now has been described in terms of continuous time. For 

estimation purposes, however, a discrete approximation to 
•

Z  must be used. Being Z-1 the 

lag of Z, (12b) can be expressed as 

c)12()(                                          NQPBBZBuuHZ PPPZ1-PZ ρ+ρ+−ρ++ρ=  

Joint estimation of (12c) and (13b) gives all the parameters needed for testing the effects 

of public inputs on firms’ costs, steady state stocks of capital, and scale.13,14 

                                                 
13 This estimation assumes that farmers expect the current input prices to prevail in the future. In this way, 
optimization plans are revised each period when new information is obtained (i.e., when farmers observe 
the new prices). 
14 Note that the theory presented here is a theory of the firm. Nevertheless, the data used for estimation is 
highly aggregated. Consistent linear aggregation would require 

,)R,G,Y,Z,P(J)R,G,Y,Z,P(J
i

ii∑=  

,ZZ
i

i∑=  and ∑=
i

iYY  

where the sum is across firms. The linear aggregation is over private quasi-fixed stocks and output because 
they are different across firms. For public inputs, however, this is not required because they are non-rival 
by definition: the same input (as long as they are not local public goods) can be used by many producers at 
the same time. Hence, for the quadratic value function presented above, consistent aggregation across firms 
requires linearity in Z and Y, i.e., JZZ = BZZ = 0, JZY = BZY = 0, and JYY = byy = 0, where BZY is a partition 
matrix of [ ]ZYZRZGZQ B B BB = , and byy is one element of BQQ. For the estimation presented below 
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Results 

With three private inputs, estimation of the system (12c)-(13b) implies joint 

estimation of three equations: two dynamic demands (for labor and capital) and the 

demand for the variable input. Additionally, the theoretical model implies that public 

inputs are simultaneously determined by P, Z and Y. Therefore, instrumental variables 

for the public inputs must be used. Accordingly, predicted values of G and R were then 

adopted for estimation of (12c)-(13b) by iterative nonlinear seemingly unrelated 

regressions (nonlinear ITSUR).15 

Table 1a presents the parameter estimates. The necessary conditions presented in 

Appendix 1 and other regularity conditions of the economic theory can be checked using 

the parameter estimates. The list of conditions include: conditions (B), long-run demand 

for inputs that are decreasing in their own prices and increasing in output, and positive 

shadow prices of public inputs (monotonicity condition in public inputs). Some of the 

conditions, like concavity of the quadratic value function and stability adjustments, can 

be directly tested and checked if they are satisfied globally. Others, however, have to be 

checked locally at each data point. 

Nonlinear ITSUR estimates imply that concavity of the value function holds, i.e., 

the matrix Bpp is negative semidefinite. The stability requirement is also satisfied, i.e., the 

eigenvalues of )( PZBuu −ρ+  were inside the unit circle. In terms of the rest of the 

conditions, conditions (B2)(i) and (B2)(ii) for capital exhibit four and thirty-six 

                                                                                                                                                 
aggregation conditions were not imposed. When those conditions are imposed, there is no qualitative 
change in the results. 
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violations, respectively. While violation of (B2)(i) means that the Euler equation does not 

hold for capital, violation of (B2)(ii) implies violation of the adjustment cost condition 

for that input. Additionally, (B2)(iii) is not satisfied for one observation (year 1983), 

implying negative estimated marginal cost  for that year. All these condition violations 

mean that the parameter estimates in Table 1A are not consistent with the dynamic theory 

of the firm. 

Estimated shadow prices of public infrastructure and public R&D by decade are 

presented in Table 2A. A positive shadow price implies that the corresponding public 

input reduces agricultural costs of production. While positive shadow prices of public 

research were obtained for the whole sample period, shadow prices of infrastructure were 

all negative. Hence, the monotonicity condition on public infrastructure is not satisfied, 

which contradicts the assumption of rational government behavior in the provision of this 

public good. 

In order to obtain reliable estimates consistent with the economic theory of the 

firm, new estimations imposing the set of required conditions were done. Those 

restrictions imply the local imposition of inequality constraints, that is, the restrictions 

must be imposed at each data point.16 One way of doing this is by using Bayesian 

estimations to introduce the desired conditions as prior beliefs. 

Bayesian estimation entails calculation of the joint posterior distribution of the 

parameters. Analytical calculation of that distribution is, however, not possible, and 

sampling algorithms are generally used to simulate that joint posterior distribution. 

                                                                                                                                                 
15 Instruments include total U.S. population, number of non-farm workers, interest rate of federal bonds, 
and total non-agricultural exports. 
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Recently, different algorithms have been developed. This study follows the Metro-

Hastings (MH) algorithm, a Markov Chain Monte Carlo (MCMC) simulation method that 

has already been used by Griffiths et al. (1999) and O’Donnell et al. (1999) in previous 

empirical economic studies. 

As other sampling algorithms, the MH simulation method consists of generating 

draws of the parameters of interest from their conditional distribution. Because some 

restrictions want to be imposed in this case, the algorithm contains an accept–reject step 

in which new draws are included in the sample if those conditions are satisfied. In this 

way, the estimation is constrained to the parameter space that is consistent with the 

economic theory. Additionally, iterations characterized the process in which each random 

draw is conditioned on the last draw. After a certain number of iterations, that process 

converges to a random sample from the joint posterior distribution. The MH parameter 

estimates are then the mean of that random sample.17 

The MH estimation was first done imposing the required conditions on all data 

points. In this case, no draw satisfying all the conditions could be obtained, i.e. the 

parameter space was empty. The conditions were then relaxed and, due to potential 

measurement errors, they were required to be satisfied only at 80% percent of the 

observations (Atkinson and Dorfman (2001)). Since this relaxation was not enough to get 

a nonempty set, the conditions implied by the Euler equations and adjustment costs were 

                                                                                                                                                 
16 Diewert and Wales (1987) show that, to impose those conditions globally, non-flexible functional forms 
must be adopted. 
17 Appendix 3 presents a brief description of the MH algorithm for Bayesian estimation. A detailed 
explanation is presented in Griffiths et al. (1999) and O’Donnell et al. (1999). 
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not imposed.18 Table 1B shows then the MH parameter estimates without imposing these 

two conditions. Additionally, convergence of the MH algorithm to the joint posterior 

distribution has been rejected based on the convergence diagnostic developed by Geweke 

(1992).19 

Using these MH estimates, the value function was negative in the last seven years 

of the sample (i.e., condition (B1) was satisfied in more than 80% of the cases). The 

Euler equation for capital was not satisfied in the first five years, while, for labor, it was 

not satisfied in the first seventeen years. The adjustment-cost condition was not satisfied 

in thirty-four years for capital and forty-three years for labor. In contrast, positive shadow 

prices of public inputs were obtained for all data points. It seems, therefore, that forcing 

the parameter estimates to satisfy monotonicity in public inputs makes them difficult to 

satisfy the Euler equations and the adjustment-cost conditions. 

Table 2B presents the shadow prices of public infrastructure and research by 

decade and their respective standard deviations. The shadows are positive for all decades 

and most of them are significantly different from zero. This could be interpreted as a 

positive contribution of public inputs to productivity growth of the US agricultural sector. 

Tables 3B to 5B show the short- and long-run elasticities of demand and the 

elasticities of cost with respect to output. Long-run elasticities of demand would indicate 

that, while infrastructure has had positive impacts on private capital accumulation, public 

research has substituted private capital. Finally, elasticities of cost with respect to output, 

even after adjusting for the presence of public inputs, are larger than one, meaning that 

                                                 
18 This was determined by trial and error examination of the conditions. It was found that the Euler 
equation and adjustment cost conditions were the conditions more difficult to be satisfied. 
19 See Appendix 3 for details. 
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the US agricultural sector has exhibited decreasing returns to scale, contrary to the 

postulated endogenous growth condition. 

All these results, however, cannot be taken as conclusions of this study given that 

the estimated parameters are not consistent with the economic theory and they cannot be 

interpreted as being drawn from the posterior distribution due to no convergence of the 

iterations. Reliability of the data, measurement errors, and aggregation biases could be 

named as possible reasons for those conditions not to be satisfied. Therefore, either the 

non-sample (prior) information (i.e., the restrictions concerning the microeconomic 

theory of the firm) is not correct or the sample information (the available data set of the 

U.S. agricultural sector) is not enough information to successfully obtain the posterior 

distribution. 

 

 

 

V. Conclusions 

This chapter has presented a dynamic model to measure the contribution of public 

inputs to productivity growth. It has also shown testable hypotheses related to the main 

postulates of a version of endogenous growth theory (‘AK’ models with public goods) 

using duality theory. In particular, two conditions have been postulated and tested. One is 

the existence of increasing returns to scale over all inputs (private and public). The other 

is the positive effect of public inputs on the long-run demand for private factors that can 

be accumulated (steady state stocks of capital). 
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The estimates presented in this study do not meet the conditions implied by the 

economic theory of the firm and the assumed rational behavior of government. Numerous 

reasons could be mentioned for this, like data reliability, measurement errors, aggregation 

biases, and model identification. Related to this last reason is the possibility that the U.S. 

agricultural sector has experienced technological changes that have been too fast for this 

empirical model to correctly capture them. Independently of the reason, Bayesian 

estimation allows concluding that either the prior information (i.e., the restrictions 

concerning the microeconomic theory of the firm) is not correct or the sample 

information (the available data set of the U.S. agricultural sector) is not enough 

information to successfully obtain the posterior distribution. 

Finally, more work is needed to overcome the limitations of this study. The use of 

time series may cause problems due to the presence of nonstationary data. One way of 

overcoming this problem is to consider a cointegration approach. However, the large 

number of parameters to estimate, relative to the sample size, makes this task difficult. 

Another alternative approach is the use of panel data, estimating the model at the state 

level. This approach can improve this study in both theoretical and econometrical aspects. 

In terms of theoretical aspects, panel estimation at the state level could also allow for the 

presence of spillover effects as well as different patterns of growth in each state. In terms 

of econometrical aspects, a larger number of degrees of freedom is introduced, which, as 

is well known, improves statistical estimations. Clearly, a model introducing panel data 

to this dynamic duality model is the direction to follow. 
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APPENDIX 1 

This appendix presents conditions (A) and (B) that guarantee duality between cost 

and value functions of the firms. 

Conditions (A) 

It is assumed that C(y, Z, I; G) satisfies the following set of regularity conditions: 

(A.1) C(y, Z, I; G) ≥ 0. 

(A.2) C(y, Z, I; G) is increasing in y and decreasing in Z. Additionally, CI > 0 when I > 

0 and vice versa, which follows from the assumption of adjustment costs. 

(A.3) C(y, Z, I; G) is convex in I. 

(A.4) For each (Z0, y, p; G) a unique solution exists for (1). This means that there are 

well-defined factor demand functions associated with (1). 

(A.5) For each (Z0, y, p; G), problem (1) has a unique steady state (SS) stock )G;p,y(Z
_

 

that is globally stable. This condition establishes the uniqueness and stability of 

the steady state. 

(A.6) For any (Z0, y, p; G), there exists p
^

 such that I
^

 is the optimal gross investment 

vector at t = 0 in (1) given (Z0, y, p; G). 

 

Conditions (B) 

It is assumed that the value function J(Z, y, p; G) satisfies the following properties: 

(B.1) J(Z, y, p; G) ≥ 0. 

(B.2)   (i)  0)G;p,y,Z(*Z)G;p,y,Z(Jp)G;p,y,Z(J)ru( zzz <−−δ+
•

, where u is an 

identity matrix. This expression is dual  to Cz < 0. 
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(ii)  Jz(Z, y, p; G) < 0 when Z)G;p,y,Z(*Z)G;p,y,Z(*I δ+≡
•

 > 0 and vice versa. 

This condition is dual to CI > 0 when I > 0 and vice versa. 

         (iii) 0)G p; y, Z,(*Z)G p; y, Z,(J)G p; y, Z,(J '
yzy >−ρ

•
, where 

]Z)G p; y, Z,(J)[G p; y, Z,(J)G;p,y,Z(*Z p
1

pz −ρ= −
•

. This condition is dual to Cy 

> 0. 

(B.3) The following expression is concave in p: 

)G;p,y,Z(*Z)G;p,y,Z(JZ'p)G;p,y,Z(J '
z

•
−−ρ  

Under some specific functional forms (like the normalized quadratic presented 

above), Jz(Z, y, p; G) is linear in p and the curvature requirement reduces to 

concavity of J(Z, y, p; G) in p. This condition is dual to (A.3). 

(B.4) The demand for the variable input, X*(Z, y, p; G), is positive. 

(B.5) The stock Z that solves ]Z)G p; y, Z,(J)[G p; y, Z,(J)G p; y, Z,(*Z p
1

pz −ρ= −
•

, with 

Z(0) > 0, has a unique globally stable steady state )G;p,y(Z
_

. 

Then, under conditions (A) and (B), duality between C(y, Z, I; G.) and J(Z, y, p; G) can 

be established as in equations (2) and (3). The following derivative properties then hold: 

 

Derivative Properties 

 
1. With respect to I: 

CI(y, Z, I; G) = - Jz(Z, y, p; G). From (A.2) or (B.2.ii), this expression must be 

positive when I > 0 and vice versa. 
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Testing for Jz(Z, y, p; G) = 0 is equivalent to testing for adjustment costs in inputs Z. 

2. With respect to Z: 

0)G;p,y,Z(*Z)G;p,y,Z(Jp)G;p,y,Z(J)u()G;I,Z,y(C zzzz <−−δ+ρ=
•

from (A.2). 

This expression gives the shadow price of quasi-fixed inputs. 

3. With respect to y: 

0)G;p,y,Z(*Z)G;p,y,Z(J)G;p,y,Z(J)G;I,Z,y(C '
zyyy >−ρ=

•
 from (A.2). 

This expression represents the output supply of the firms. 

4. With respect to p: 

)G;p,y,Z(*Z)G;p,y,Z(JZ)G;p,y,Z(J0 zpp

•

−−ρ=  

Then, 

]Z)G;p,y,Z(J)[G;p,y,Z(J)G;p,y,Z(*Z p
1

pz −ρ= −
•

, which is the dynamic demand for 

Z. 

5. With respect to G: 

)G;p,y,Z(*Z)G;p,y,Z(J)G;p,y,Z(J)G;I,Z,y(C ZGGG

•

−ρ=  

This expression represents the shadow price of G when the firms are out of the SS. At 

the SS, the shadow price is 

)G;p,y,Z(J)G;I,Z,y(C GG ρ=  

If this expression is negative, the shadow price of G is positive, meaning that public 

inputs reduce cost of production. 
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APPENDIX 2 

This appendix presents conditions (C) to (D) that guarantee duality between the 

value function of the firms and the value function of the government. 

 

Conditions (C) 

It is assumed that J(y, Z, p; G) + AC(Ig) satisfies the following conditions: 

(C.1) J(y, Z, p; G) + AC(Ig) ≥ 0 

(C.2) (i) J(y, Z, p; G) + AC(Ig) is increasing in Ig. Given that J(y, Z, p; G) is 

independent of Ig, AC(Ig) must be increasing in Ig. 

(ii) J(y, Z, p; G) + AC(Ig) is decreasing in G. Given that AC(Ig) is independent of 

G, J(y, Z, p; G) must be decreasing in G. 

(C.3) J(y, Z, p; G) + AC(Ig) is convex in Ig. Then, AC(Ig) must be convex in Ig. 

(C.4) For each (Z, p, y, r, G0), there exists a unique solution for (8). This means that 

there are well-defined supplies of public inputs. 

(C.5) For each (Z, p, y, r, G0), (8) has a unique steady state stock )r,y,p,Z(G
_

 that is 

globally stable. 

(C.6) For any (Z, p, y, r, G0), there exists 
^
r  such that g

^
I  is the optimal public gross 

investment vector at t = 0 in (8), given (Z, p, y, r, G0). 

 

Conditions (D) 

It is assumed that Jg(y, Z, p; r, G) satisfies the following conditions: 

(D.1) Jg(y, Z, p; r, G) ≥ 0 
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(D.2) (i) 0)G r, p;  Z,y,(Jg
G < . This condition is dual to (C.2)(i) and means that there 

are adjustment costs in the provision of public inputs. 

(ii) 0G)G r, p;  Z,y,(J)G r, p;  Z,y,(J)u( *g
GG

g
Gg <−δ+θ

•

. This expression is dual to 

(C.2)(ii): 0)G r, p;  Z,y,(JG < (positive shadow prices of public inputs). 

Given 0)G r, p;  Z,y,(Jg
G < , it is sufficient for (D.2)(ii) to hold that 

0)G r, p;  Z,y,(Jg
GG <−  (that is, increases of the public good decrease the 

shadow price of it). 

(D.3) *G)G,r,p,y,Z('JG'r)G,r,p,y,Z(J g
G

g
•

θ −−  must be concave in r. This is dual to 

condition (C.3). 

(D.4) G)G r, p;  Z,y,(*G)G r, p;  Z,y,(I g
*
g δ+≡

•
 is positive. 

(D.5) The stocks G that solve 

]G)G r, p;  Z,y,(J)[G r, p;  Z,y,(J)G r, p;  Z,y,(*G g
r

1g
Gr −= θ

−
•

, 

 with G(0) > 0, has a unique globally stable steady state )r;y,p,Z(G
_

. 

Then, under conditions (C) and (D), duality between Jg(y, Z, p; r, G) and J(y, Z, p; r, G) 

+AC(Ig) can be established as in equations (9) and (10). The derivative properties 

presented below then hold. 

 

Derivative Properties 

 
1. With respect to Ig: 
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)G r, y;  Z,p,(JAC0 g
GIg

+=  

or 

0AC)G r, y;  Z,p,(J
gI

g
G >=− , 

This is positive given ACIg > 0. 

 

2. With respect to G: 

)G r, y;  Z,p,(JG)G r, y;  Z,p,(Jr)G;p,y,Z(J)G r, y;  Z,p,(J g
Gg

*g
GGG

g
G δ−++=

•

θ  

or 

•

−−δ+θ= *g
GG

g
GgG G)G r, y;  Z,p,(Jr)G r, y;  Z,p,(J)u()G;p,y,Z(J  

This expression is the firms’ willingness to pay for G (shadow price) when the firms 

are at the steady state. If the expression is negative (condition (D.2)(ii)), then public 

inputs reduce cost of production. When the government is also at the SS, that 

expression can be rewritten as 

)r)G;p,y,Z(J()u()G r, y;  Z,p,(J G
1

g
g
G −−δ+θ=− −  

which could be interpreted as a ‘social’ shadow price: the net social benefit (the 

firms’ shadow price of G minus the government’s cost of providing G) adjusted by 

the ‘social’ discount rate plus the depreciation rate of public inputs. 

 

3. With respect to r: 

•

θ += *g
Gr

g
r G)G r, y;  Z,p,(JG)G r, y;  Z,p,(J  

or 
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]G)G r, y;  Z,p,(J)[G r, y;  Z,p,(JG g
r

1g
Gr

* −= θ
−

•

 

which gives the optimal path of G. 

 

4. With respect to Z: 

•

θ += *g
Gzz

g
z G)G r, y;  Z,p,(J)G;p,y,Z(J)G r, y;  Z,p,(J  

or 

0G)G r, y;  Z,p,(J)G r, y;  Z,p,(J)G;p,y,Z(J *g
Gz

g
zz <−=

•

θ  

where the sign is given by condition B.2(ii): the value function of the firm is 

decreasing in Z. 

 

5. With respect to y: 

•

θ += *g
Gyy

g
y G)G r, y;  Z,p,('J)G;p,y,Z(J)G r, y;  Z,p,(J  

or 

0G)G r, y;  Z,p,('J)G r, y;  Z,p,(J)G;p,y,Z(J *g
Gy

g
yy >−=

•

θ  

where the sign is given by condition B.2(iii): the value function of the firm is 

increasing in y. Finally, at the SS level of G (or with no adjustment cost of G), 

0)G r, y;  Z,p,(J)G;p,y,Z(J g
yy >= θ  
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Appendix 3 

Bayesian Estimation 

In Bayesian statistics, the parameters to be estimated are treated as random 

variables associated with a subjective probability distribution that describes the state of 

knowledge about the parameters. The knowledge either may exist before observing any 

sample information or might be derived from both prior and sample information. In the 

former case, the associated probability distribution is a prior distribution. In the latter, 

that distribution is a posterior distribution. Thus, different from the classical statistics that 

concentrates on point estimates of a (set of) parameter(s), the objective of Bayesian 

statistics is usually the achievement of the posterior distribution of a (set of) parameter(s). 

Using the Bayesian Theorem, it can be shown that the joint posterior distribution 

of a set of parameters can be obtained from the combination of sample information and 

the joint prior distribution of the parameters (see Judge et al., 1988). That is, 

),(p),,(L)/,(f ΣβΣβyyΣβ ∝      (A3.1) 

where β is the vector of parameters of interest, Σ is their variance-covariance matrix, and 

y is the matrix of sample observations. Expression (A.3.1) states that the posterior joint 

density function of β and Σ (i.e., )/,(f yΣβ ) is proportional to (‘∝’) the likelihood 

function ),,(L Σβy  (which contains all the sample information) times the prior density 

function ),(p Σβ . Intuitively, the prior information about the parameters is modified by 

the available sample information (through the likelihood function) to obtain the posterior 

information about the parameters. 
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Attainment of the posterior distribution requires specification of the prior 

distribution and the likelihood function. In the present study, the prior distribution must 

incorporate the restrictions implied by the economic theory. That is, the assumptions 

required for the adopted economic theory to be true are included as prior beliefs. The 

prior distribution must then assign probability zero to regions of the parameter space that 

do not meet the restrictions and positive probability otherwise. Following O’Donnell et 

al. (1999), the following non-informative20 joint prior distribution was adopted 

)B()BI()(p)(p),(p 2
1N

∈∝∈=
+

− βΣβΣβΣβ I    (A3.2) 

where Β is the subspace of parameter vectors that satisfy the restrictions, N is the number 

of equations, and I(β ∈ Β) is an indicator function that takes the value 1 when a given 

vector of parameters β belongs to Β and takes the value 0 otherwise. 

The SUR model to be estimated is ε+= ),g( βXy , where the N equations have 

been stacked. To specify the likelihood function, then, a distribution for ε must be 

assumed. Following Judge et al. (1985), it is assumed that the error vector has a 

multivariate normal distribution, i.e. )I,0(MVN~ T⊗Σε . The likelihood function is then 

)](tr 5.exp[

],g(-()(',g(-(5.exp[),,(L
12/T

I
12/T

−−

−−

−∝

)⊗)−∝

AΣΣ

βXyIΣβXyΣΣβy
 (A3.3) 

where A is the N x N symmetric matrix with the (i,j)th element equal to aij = (yi-

g(Xi,β))’(yj-g(Xj,β)). 

                                                 
20 A non-informative prior distribution is a distribution that does not contain specific information about the 
parameter. Equation (A3.2), form example, does not specify any exact distribution p(β,Σ). If p(β,Σ) is said 
to be a normal distribution, in contrast, then that would be an informative prior distribution. As a 
consequence of adopting a non-informative prior, when this prior is combined with the likelihood function 
in equation (A3.1), the posterior distribution is dominated by the sample information. 
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Finally, having specified both the prior distribution and the likelihood function, 

the joint posterior distribution is 

)B( ],g(-()(',g(-(5.exp[)/,(f T
12/)1NT( ∈)⊗)−∝ −++− ββXyIΣβXyΣyΣβ I   (A3.4) 

As in O’Donnell et al. (1999), the interest is on the characteristics of the marginal 

distribution of β and, then, Σ is considered a nuisance parameter that can be integrated 

out of equation (A3.4). This procedure yields 

)B( )/(f 2/T ∈∝ − βAyβ I      (A3.5) 

Additional integration of this joint posterior distribution would eventually give the 

marginal distribution of β. However, this is not analytically possible. The way this is 

overcome is by adopting numerical methods. In particular, computer-intensive algorithms 

can be implemented in the estimation of the marginal distribution. 

Markov Chain Monte Carlo (MCMC) algorithms, like the Gibbs sampler and the 

Metropolis-Hastings (MH) algorithm, have recently become very popular in applied 

economics. They constitute a technique for generating random variables from a marginal 

distribution without need of analytically calculating the density (Cassella and George, 

1992). That is, instead of computing or approximating the posterior distribution )f( yβ /  

directly, those algorithms allow generating a sample β1,…, βm ~ )f( yβ /  without 

knowing )f( yβ / . The characteristics of the marginal density can then be calculated with 

a large enough sample. For example, the mean of )f( yβ /  is calculated using the sample 

mean (Cassella and George, 1992) 

[ ]ββyβββ Ed)/(f
m
1lim

m

1i

i

m
== ∫∑

∞

∞−
=

∞→
    (A3.6) 
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Hence, for a large enough sample size m, any population characteristic can be obtained 

from the generated observations. 

The Bayesian results shown in this chapter are based on the Metropolis-Hastings 

algorithm presented in O’Donnell et al. (1999).21 This algorithm consists of the following 

steps 

 

1) An arbitrary starting value of the parameter vector βi, i = 0, is specified such that the 

constraints are satisfied; that is, β0 ∈ Β. 

2) Given βi, a candidate value for βi+1, βC, is generated from a symmetric transition 

density q(βi,βC). 

3) βC is used to evaluate the constraints; if any constraint is violated, then the function 

α(βi,βC) is set equal to zero and the algorithm jumps to step 5). 

4) If the constraints hold, then α(βi,βC) is set equal to min[g(βC)/ g(βi), 1], where 

)B( )(g 2/T ∈= − βAβ I  is the kernel of )f( yβ / ; that is,  )B( )/(f 2/T ∈∝ − βAyβ I . 

5) An independent uniform random variable (U) is generated from the interval [0,1]. 

6) The next value in the sequence, βi+1, is generated from the rule 

 
),(   Uif 
),(   Uif 

Cii

CiC
1i







ββα≥β

ββα<β
=β +  

7) The value of i is set equal to i+1 (i = i+1), and the procedure continues in step 2. 

 

                                                 
21 Detailed theoretical explanation of the Gibbs sampler and the MH algorithm is provided in Cassella and 
George (1992), Chib and Greenberg (1996), Gelfand et al. (1990), Gelfand et al. (1992), and Gelfand and 
Smith (1990). For empirical implementation, see Atkinson and Dorfman (2001), Griffiths et al. (1999), 
O’Donnell et al. (1999), and Terrel (1996). 
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Note that the symmetric transition density q(βi,βC) in step 2) must be specified. 

As in O’Donnell et al., the following multivariate normal distribution is adopted 

][ 1
T

1iCi ]X)('X[h,MVN),(q −− ⊗= IΣβββ     (A3.7) 

where 1
T

1 ]X)('X[ −− ⊗ IΣ  is the estimated covariance matrix obtained in the SUR 

estimation, and h is a scalar used to control the size of the ‘step’ in the iteration (i.e., h 

gives the rate at which the parameter space B is investigated).  

Iteration of this procedure m times gives a sequence of parameter vectors β1,…, 

βm ∈ B. For some s < m, the following holds: βs+1, …, βm ~ )f( yβ / . In words, after a 

large enough sequence of size s (the ‘burn-in’ period), the m-s final drawings converge, 

in the sense that they are drawn from the distribution )f( yβ / . Finally, the estimated β is 

simply the sample mean of βs+1, …, βm. 22 

For estimation purposes, the starting values, the value of the scalar h, and the 

sizes of the ‘burn-in’ period (s) and the whole sample (m) had been established. The 

value of h was set equal to 0.025 after trying different values. The selection was based on 

the maximum rate at which candidate vectors were accepted as the next value in the 

sequence. For many alternative values of h, there was no candidate accepted as next value 

in the sequence. 

The total number of iterations was m = 110,000. The first 10,000 were used for 

the ‘burn-in’ period (s). In terms of the starting values, although the SUR estimates do 

not satisfy the constraints (i.e., the estimated vector β does not belong to B), those 

                                                 
22 The ‘burn-in’ period guarantees two characteristics of the sub-sample of size m-s used to estimate β. 
First, the last m-s observations are effectively drawn from f(β/y). Second, those observations are 
independent from the starting value (Chib and Greenberg, 1996). 
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estimates were used to draw an initial value β0. However, after trying 100,000 draws, no 

vector satisfied the restrictions, implying that the SUR estimates are ‘far’ from the 

required parameter space B. 

An arbitrary vector β0 was then chosen such that these starting values satisfy the 

constraints. The existence of candidate vectors βC such that βC ∈ B and α(βi,βC) > U was, 

however, very sensitive to changes in the starting values. That is, similar to what 

happened with alternative values of h, the case B = {β0} has been the result in many runs 

that tried different starting values. Additionally, when some restrictions on the set B were 

relaxed,23 only 34 out of 100,000 iterations satisfy both βC ∈ B and α(βi,βC) > U, 

implying that βi+1 = βi in almost all the iterations. Given this available data set (the 

sample information), it seems that the set B is very restricted and narrow. Consequently, 

it is difficult to get a reliable posterior distribution. 

Finally, convergence of the distribution was checked by taking two sub-samples, 

s1 and s2, of the last m-s iterations and comparing their means. The sub-sample s1 is 

composed by the first 10,000 observations, while s2 is composed by the last 50,000 

observations. A likelihood ratio test to compare the mean vectors of the two sub-samples 

was performed. Results indicate that equality of the mean vectors is rejected, meaning 

that the iterations have not converged. Increasing the size of the burn-in period and the 

total number of iterations did not change the result of the convergence test. The MH 

parameter estimates, then, cannot be said to characterize the marginal distribution 

)f( yβ / . 

                                                 
23 In particular, the Euler equations and the adjustment cost conditions. See page ??. 
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Table 1A 
Parameter Estimates 

      
Parameter Estimate t Value Parameter Estimate t Value 

            
hk -0.05576 -0.66ag -0.00003 -0.41
bpkk 0.142348 3.66ar -0.02087 -0.40
bplk 0.16427 1.32ay 481.825 1.52
bpkL -0.04882 -3.76bkk -6.57309 -0.60
bplL 0.244829 5.25bkL -15.7573 -2.78
bpkpk -2.13166 -2.21bkg -6.87E-06 -0.80
bpkpl 4.332687 1.89bkr 0.015036 1.65
bplpl -26.9784 -2.85bky -95.7818 -3.13
nkg 8.10E-08 3.76bLL -6.57994 -1.26
nkr -0.0001 -6.01bLg 3.48E-06 0.27
nky 0.205884 3.10bLr -0.00568 -0.54
hl 0.346815 1.39bLy -18.3036 -0.66
nlg -1.66E-08 -0.28bgg 1.29E-11 0.37
nlr 9.21E-06 0.18bgr -1.37E-08 -0.61
nly -0.0178 -0.10bgy 0.000049 0.51
a0 -268.873 -1.76brr 5.01E-06 0.28
ak 105.181 2.67bry 0.019253 0.33
aL 47.76673 1.51byy 482.802 1.30
        
Equation Adj R-Sq. D-W     
Qk 0.975 1.98    
QL 0.996 2.05    
Qm 0.798 1.96      
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Table 2A 
Shadow Prices based on ITSUR Estimates 

Average By Decade 
 

Decade P*g P*r 
     
1949-1959 -0.00000004 0.00086800 

 
1960-1969 -0.00000034 0.00071460 

 
1970-1979 -0.00000082 0.00080810 

 
1980-1989 -0.00000129 0.00135480 

 
1990-1994 -0.00000115 0.00141570 
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Table 3A 
Short-Run Elasticities of Demand for Private Inputs 

w/ Respect to Public Goods - ITSUR Estimates 
Average By Decade 

   
Decade EKG_SR EKR_SR ELG_SR ELR_SR EMG_SR EMR_SR 

       
1949-1959 -0.00320 0.00163 0.00573 -0.00678 -0.19251 0.34572

   
1960-1969 -0.00593 0.00229 0.01569 -0.01409 -0.34502 0.49375

   
1970-1979 -0.01534 0.00492 0.05827 -0.04354 -3.07294 5.80969

   
1980-1989 -0.03504 0.01594 0.16666 -0.17651 -1.70414 5.23461

   
1990-1994 -0.05688 0.03242 0.26842 -0.35618 -1.49635 3.71132

 

 

Table 4A 
Long-Run Elasticities of Demand for Private Inputs 

w/ Respect to Public Goods - ITSUR Estimates 
Average By Decade 

       
Decade EKG_LR EKR_LR ELG_LR ELR_LR EMG_LR EMR_lR 

       
1949-1959 -0.0052 0.0015 -0.0494 0.0582 -0.0542 -0.3770 

       
1960-1969 -0.0093 0.0021 -0.1214 0.1086 0.0562 -0.1892 

       
1970-1979 -0.0227 0.0042 -0.4690 0.3491 0.7331 -0.3488 

       
1980-1989 -0.0543 0.0143 -1.0949 1.1555 1.7980 -1.3611 

       
1990-1994 -0.0874 0.0289 -1.7906 2.3675 2.4069 -2.9955 
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Table 5A 
Adjusted Elsticity of Cost with Respect to Output 

ITSUR Estimates 
Average By Decade 

       
Decade εcy εcg εgy εcr εry εA

cy 

       
1949-1959 6.0191 0.0162 -11.6249 -0.3326 -12.7337 10.0654 

       
1960-1969 3.3421 0.1955 -7.1423 -0.2877 -10.2991 4.9092 

       
1970-1979 1.6886 0.9398 -3.0628 -0.5372 -5.3083 1.6617 

       
1980-1989 2.9251 2.7906 -1.6174 -2.4054 -1.9774 3.1680 

       
1990-1994 5.0124 4.2069 -1.3134 -5.3131 -1.2816 6.2965 
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Table 1B 
MH Parameter Estimates 

      
Parameter Estimate t Value Parameter Estimate t Value 

      
hk -0.05068 -2.06 ag 0.000032 1.76 
bpkk 0.252834 13.34 ar -0.01231 -1.19 
bplk -0.05284 -16.27 ay -259.881 -1.70 
bpkL 0.415566 2.89 bkk -0.8161 -0.37 
bplL 0.178916 6.93 bkL 2.563959 1.84 
bpkpk -1.49199 -2.12 bkg 2.41E-06 0.92 
bpkpl 4.119652 5.28 bkr -0.00177 -0.80 
bplpl -38.4536 -5.33 bky 15.13473 1.68 
nkg -1.27E-09 -0.22 bLL 1.751193 0.90 
nkr 2.63E-06 0.59 bLg -0.00001 -1.83 
nky -0.0221 -2.75 bLr 0.009502 1.90 
hl 0.612025 3.33 bLy 20.56857 1.31 
nlg 3.80E-09 0.19 bgg 2.77E-11 1.79 
nlr -3.5E-05 -1.41 bgr -8.65E-08 -9.44 
nly 0.155178 2.19 bgy -0.00002 -1.55 
a0 134.2401 1.59 brr 8.61E-06 1.97 
ak -19.6675 -1.88 bry -0.00926 -1.02 
aL -22.1636 -1.30 byy 1274.933 9.22 

 



 

54

 

Table 2B 
Shadow Prices of Public Inputs 

MCMC Estimates 
Average By Decade 

Decade P*g P*r 
     
1949-1959 0.0000008 0.0004382 

(0.0000002) (0.0002293) 

1960-1969 0.0000005 0.001426 
(0.0000003) (0.0002053) 

1970-1979 0.0000010 0.0043971 
(0.0000006) (0.0004762) 

1980-1989 0.0000048 0.0094812 
(0.0000011) (0.0009774) 

1990-1994 0.0000098 0.0131529 
(0.0000012) (0.0013057) 
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Table 3B 
Short-Run Elasticities of Demand for Private Inputs 

w/ Respect to Public Goods - MCMC Estimation 
Average By Decade 

       
Decade EKG_SR EKR_SR ELG_SR ELR_SR EMG_SR EMR_SR 

       
1949-1959 0.001024 -0.00314 -0.000064 0.000209 -0.055511 0.0165787 

 (0.004361) (0.004948) (0.000521) (0.000369) (1.911529) (1.6393535) 

1960-1969 0.001571 -0.010085 -0.000274 0.000395 0.227909 -0.201544 
 (0.008291) (0.007133) (0.001304) (0.000703) (0.665811) (0.4454666) 

1970-1979 0.004234 -0.022613 -0.000945 0.001136 0.351909 -0.398083 
 (0.022389) (0.016082) (0.004381) (0.001967) (0.437095) (0.2141283) 

1980-1989 0.009688 -0.073346 -0.002552 0.004348 0.319634 -2.875702 
 (0.051173) (0.052028) (0.011634) (0.007419) (1.412777) (0.7075312) 

1990-1994 0.01524 -0.144549 -0.004074 0.008698 1.854532 7.7162574 
 (0.080443) (0.102555) (0.018737) (0.014966) (2.526301) (2.3555209) 

 

 

Table 4B 
Long-Run Elasticities of Demand for Private Inputs 

w/ Respect to Public Goods 
Average By Decade 

       
Decade EKG_LR EKR_LR ELG_LR ELR_LR EMG_LR EMR_lR 

       
1949-1959 0.002857 -0.00876 0.000498 -0.00163 -0.01863 -0.01004 

 (0.00027) (0.000829) (1.65E-05) (5.38E-05) (0.004214) (0.004425) 

1960-1969 0.002366 -0.01567 0.001421 -0.00252 -0.01692 -0.03368 
 (0.000284) (0.001882) (3.88E-05) (6.87E-05) (0.009149) (0.004084) 

1970-1979 0.006648 -0.03662 0.00399 -0.00588 -0.06431 -0.17719 
 (0.000803) (0.004426) (0.000134) (0.000198) (0.043828) (0.016638) 

1980-1989 0.016232 -0.12677 0.00912 -0.01906 -1.1995 -2.01438 
 (0.002087) (0.016297) (0.000295) (0.000617) (0.34993) (0.200925) 

1990-1994 0.022502 -0.22018 0.015937 -0.04173 4.580564 6.403403 
 (0.001775) (0.017371) (0.000547) (0.001433) (1.311022) (1.783446) 
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Table 5B 
Adjusted Elsticity of Cost with Respect to Output - MCMC Estimation 

Average By Decade 
       

Decade εcy εcg εgy εcr εry εA
cy 

       
1949-1959 2.08066 -0.01931 17.12097 -0.00999 0.74827 1.74257 

 (0.088874) (0.005226) (11.76344) (0.005263) (39.3168) (0.444036) 

1960-1969 2.278679 -0.02102 1.315998 -0.03838 2.884776 2.140291 
 (0.112834) (0.009346) (7.227383) (0.005559) (31.79968) (1.553354) 

1970-1979 2.581448 -0.07948 0.564339 -0.20971 1.486848 2.224795 
 (0.155223) (0.048143) (3.099318) (0.028902) (16.38993) (3.945232) 

1980-1989 10.46272 -2.54554 0.298008 -4.15066 0.553867 7.405213 
 (40.29378) (13.01153) (1.63664) (15.19929) (6.105425) (93.66995) 

1990-1994 -5.87366 3.100688 0.241997 4.283043 0.358983 -3.58576 
 (0.954618) (0.679007) (1.329035) (0.609656) (3.95717) (17.70768) 

 

 


