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Efficient Estimation of Hedonic Inverse Input Demand Systems 

 

Dadi Kristofersson and Kyrre Rickertsen * 

 

Abstract 

The paper is concerned with efficient estimation of characteristics demand. We derive 

and estimate an inverse input demand system for quality characteristics by using 172,946 

observations over 881 trading days in the Icelandic fish auctions. An improved 

estimation method based on an expanded random coefficient model is suggested as an 

alternative to the currently used two-stage method of Brown and Rosen (1982). The 

estimates demonstrate the improved efficiency of the suggested method. A number of 

empirical results emerge, including a general increase in the demand for quality. 
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Introduction 

The purpose of hedonic price analysis is to determine how the price of a unit of a 

commodity varies with its characteristics, i.e. to estimate the hedonic price function. 

Some recent examples on estimation of hedonic price functions are Nerlove (1995), 

Combris et al. (1997), and McConnell and Strand (2000). However, theory predicts that 

shifts in supply or demand affect the implicit price relationships between the overall price 

of the good and its individual characteristics, and so we need to estimate the underlying 

demand and supply functions for the characteristics. Rosen (1974) developed a two-stage 

method for analyzing hedonic markets. In the first stage, the hedonic price function is 

estimated and in the second stage a system of demand and supply functions for 

characteristics is estimated, using the shadow prices of the characteristics from the first 

stage as variables. Brown and Rosen (1982) showed that this procedure could yield 

estimates of demand and supply functions that are mere transformations of the 

coefficients in the hedonic function. They suggested the currently used two-stage method 

using data from multiple markets. This method utilizes the within-market variation to 

identify the marginal characteristic prices and the between-market variation to identify 

the demand and/or supply function. 

Some econometric problems are associated with Brown and Rosen’s two-stage 

method. First, the first-stage errors are generally heteroscedastic as is easily verified by 

substitution of the second-stage demand model into the first-stage hedonic model as 

discussed below1. Second, given that the supplies of characteristics are perfectly inelastic 

and an inverse demand structure is assumed, the second-stage dependent variables are the 

estimated marginal characteristics prices and the resulting second-stage estimates are 
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unbiased but inefficient. Third, given that the supplies of characteristics are perfectly 

elastic and an ordinary demand structure is assumed, the estimated marginal 

characteristics prices will be used as the second-stage independent variables, resulting in 

biased and inconsistent second-stage estimates. Fourth, given that both the supplies and 

demands of characteristics are endogenous, they have to be estimated simultaneously 

using instrumental variable techniques. For further discussion about the econometric 

problems associated with characteristic demand analysis, see Epple (1987) and Bartik 

(1987). 

In spite of these inherent problems, the two-stage method has frequently been 

used in environmental economics to assess welfare effects of externalities (see Zabel and 

Kiel (2000) for a recent example). The method has also been applied to characteristics of 

other products such as cotton fibers (Bowman and Ethridge, 1992), US automobiles 

(Bajic, 1993), baseball players (Stewart and Jones, 1998), and coal (Kolstad and 

Turnovsky, 1998). 

The contributions of this paper are as follows. First, we derive an inverse input 

demand system for quality characteristics from a distance function under the assumption 

of perfectly inelastic supply of characteristics. In this case, the estimated implicit prices 

will reflect the market’s valuation of the characteristics. 

Second, we use a random coefficient model to estimate characteristics demand. In 

this model, the first-stage hedonic price function and the second-stage inverse input 

demand system are estimated simultaneously using the correct variance structure. This 

joint estimation method has been used to allow for spatial variation in hedonic parameter 

estimates (Jones, 1991 and Jones and Bullen, 1993). We use it to identify the demand 
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structure for data from multiple markets. Our random coefficient model is expanded to 

include an inverse demand system as explanatory variables for the random coefficients2. 

The model solves the problem of a heteroscedastic first-stage covariance matrix and is 

more efficient than the currently used two-stage method. Efficiency is crucial for 

estimates used in welfare analysis, because imprecise estimates may result in misleading 

policy recommendations. The method is applicable when data from multiple markets are 

available and an inverse demand structure is appropriate; for example, in studies of 

welfare effects of environmental quality changes or characteristics demand for fish and 

perishable agricultural commodities. 

Third, we apply the derived input demand system to the buyers in the Icelandic 

auction market for cod3 and compare the efficiency of the random coefficient estimates 

with the traditional two-stage estimates. Fresh fish is a good example of a heterogeneous 

good whose price is determined by characteristics4. We use data for the cod sold in 

Icelandic fish auctions over the 1998-2000 period or more than 170,000 transactions. The 

fish auctions have evolved since 1987 when they were established as a part of the 

liberalization of the fish market. Today, buyers remotely purchase fresh fish in real time 

in one central daily auction connecting 19 auctions in 30 locations. 

 

The Distance Function and Inverse Input Demand Functions 

Kolstad and Turnovsky (1998) developed an input demand system for quality 

differentiated inputs and, for the most part, we follow their theoretical framework and 

notation. However, a major difference is that we treat the supplied quantities of 

characteristics as exogenous. In our case, the daily supplies of the characteristics of fresh 
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fish are given at the start of each auction (see also Barten and Bettendorf, 1989). Under 

this assumption, the daily prices of characteristics are determined by demand, and we 

then derive an inverse instead of an ordinary input demand system for quality 

characteristics. We start with a production technology involving a vector of outputs, y. 

The firm uses conventional inputs aggregated into one composite input, x, and one 

heterogeneous input, q, available with a variety of per unit characteristics, z. We write the 

production set as 

 ( ), , , 0.g x q z y ≤  (1) 

Producers face the price, px, for the composite input and a price function ρ(z;α) 

for the heterogeneous input. Here α is a vector of marginal characteristics price 

parameters that allow for the existence of multiple markets with multiple price functions. 

Let the characteristics vector, z, consist of two types of characteristics; “goods” 

and “bads.” The two characteristics are bundled together in the heterogeneous input. 

They cannot be unbundled without incurring costs. For example, fresh fish includes the 

good fillet and the bad gut. We assume that only the total quantities of the good and the 

bad are of interest for the producer, and that mixing or repackaging different qualities of 

the heterogeneous input can produce these quantities. For example, to produce 100 kg of 

fillets you can either use 200 kg of gutted fish, 230 kg of non-gutted fish, or any 

combination of these two bundles5. We denote the total quantities of the characteristics, 

bad and good, as B and G. In a market, producers can choose between different (B,G) 

bundles with values given by the associated value function V(B,G;α) showing the 

minimum cost of obtaining a specific (B,G) bundle. 
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We assume that the value function has three properties. First, the value function is 

convex, or 

 ( ) ( ) ( )ααα ;~ˆ,~ˆ;~,~;ˆ,ˆ GGBBVGBVGBV ++≥+  (2) 

where ( )GB ˆ,ˆ  and ( )GB ~,~  are two bundles. Since ( )GGBB ~ˆ,~ˆ ++  can easily be assembled 

from the two bundles by repackaging, equation (2) holds. Second, the good is positively 

valued and the bad is negatively valued, implying that V is monotonically increasing in G 

and monotonically decreasing in B. Third, we assume that the cost of providing a bundle 

is independent of the scale of the bundle, implying that the value function is homogenous 

of degree one6. 

Let b and g denote the per unit (of input) quantities of the good and the bad, such 

that 

 / and / .b B q g G q= =  (3a) 

The vector of per unit characteristics consists of the per unit quantities of the good and 

the bad, z=[b g], and the unit value function equals the unit price function or 

 ( ) ( ) ( ) ( ); , ; , ; ; .V z V b g b g zα α ρ α ρ α= = =  (3b) 

Given homogeneity of degree one, we use the heterogeneous input as a numeraire input 

and rewrite the value function V(B,G;α) as 

 ( ) ( ) ( ) ( ), ; ; ; ; .V B G V qz qV z q zα α α ρ α= = =  (3c) 

Implementing the assumptions of repackaging on our production set (1) yields 

 ( ), , 0.g x qz y ≤  (4) 

The producers’ cost minimization problem becomes 

 ( ) ( )( ){ }
,

, , min | ( , , ) 0 and , 0;x xx qz
C p y g x qz y qz xV qz p xα α≡ ≤ ≥+  (5) 
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where the cost function ( ), ,xC p yα shows the minimum costs of producing the given 

vector of outputs, y. Input demand functions can be derived by using the envelope 

theorem on the cost function. 

To derive our inverse input demand system, we define a distance function 

possessing properties corresponding to the cost function, i.e. the distance function is 

homogenous of degree one in input quantities, decreasing in output level, increasing in 

input quantities, and concave in input quantities. We normalize the prices in equation (5) 

so the minimum costs of producing the given level of output become unity, or 

( ), , 1xC p yα = . The distance function is defined by the problem 

 ( ) ( )( ) ( ){ }
,

, , min ; , , 1 and , 0 .
x

x x xp
D x qz y V qz p x C p y p

α
α α α≡ + = ≥  (6) 

Inverse input demand functions are derived from the distance function (6) by the 

envelope theorem 

 ( ), ,
*x

D x qz y
p

x
∂

=
∂

 (7a) 

 ( ) ( ) ( ), , ; * ; *D x qz y V qz z
qz qz z

α ρ α∂ ∂ ∂
= =

∂ ∂ ∂
 (7b) 

where px* and α* denote the optimal values of px and α. The last equality in equation 

(7b) follows from equation (3c) since 

 

( ) ( ) ( )

( ) ( )

; ;;

; ;1 .

q z q zV qz z
qz qz z zq

z z
q

z q z

ρ α ρ αα

ρ α ρ α

∂ ∂   ∂ ∂   = =
∂ ∂ ∂ ∂

∂   ∂ = =
∂ ∂

 (8b) 

The choice of functional form of hedonic models has been discussed by, for 

example, Cropper et al. (1988). However, theory provides no clear guidance for the 
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choice of a “best” functional form. We use a linear form for two reasons. First, our panel 

data set is highly unbalanced and identification problems are more frequent for non-linear 

than linear models. Second, the parameter estimates of the linear hedonic model are the 

marginal prices, simplifying the second-stage estimation. Our linear hedonic price 

function has the form 

 
1

K

nt kt knt
k

p zβ
=

=∑  (9) 

where pnt is the price of transaction n in day (or sub market) t, βkt is a time-varying 

parameter representing the marginal price of characteristic k, and zknt is the level of 

characteristic k. The marginal price of each characteristic is given by 

 .nt
kt

knt

p
z

β∂ =
∂

 (10) 

The translog, generalized Leontief, and generalized McFadden functional forms 

are commonly used to approximate cost functions. These forms can also be used to 

approximate distance functions. Since the quantity data include zero observations, we use 

the generalized McFadden form with a trend variable 

 ( )
1 1

1 1 1 1 1

, ,
2

I J I I I
t

ij it jt iy it t i it i it
i j i i iIt

yD q y t c q q b q y a q d q t
q

− −

= = = = =

≡ + + +∑∑ ∑ ∑ ∑   (11) 

where symmetry implies that cij=cji. Dividing all cross effects by a numeraire input, qIt, 

imposes homogeneity. The qi variables are defined in Table 1 and the quantity of cod 

from other sources than the fish auctions (i=9) is used as numeraire input. The trend 

variable, t, is added to allow for changes over time. 

By using the envelope theorem (7b) on equations (9) and (11), the inverse input 

demand functions representing the marginal characteristic prices are 
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1

1

.
J

t
kt k kj jt ky t k

jkt It

D ya c q b y d t
q q

β
−

=

∂= = + + +
∂ ∑  (12) 

 

Data 

Íslandsmarkaður, the Network of Icelandic fish auctions, provided the data set. It 

includes auction data for cod over the 1998 – 2000 period, covers 1008 auction days with 

176,674 transactions, and includes a quantity of 138,776 tons with a market value of 17.1 

billion ISK or about US$ 236 million7. 

Some observations were excluded due to extreme prices (174 observations) and 

missing observations of independent variables (2,814 observations). Furthermore, some 

days, especially Saturdays and Sundays, have few transactions. Unbalanced data 

represents no problem for the random coefficient model; however, Brown and Rosen’s 

(1982) two-stage method uses OLS at stage one and requires a full rank hedonic model 

for each day. To facilitate comparison of the estimates of the random coefficient model 

with the estimates of the two-stage method, we excluded any day with fewer observations 

than twice the number of estimated parameters. In our case 127 days, including 36 

Saturdays and 75 Sundays, with fewer than 14 observations were excluded8. Our final 

sample consisted of 172,946 observations, including 881 days. 

The buyers know the weight class of the fish, whether the fish is gutted or not, 

and the storage time of the fish. We included these characteristics in the first-stage 

hedonic model and defined the good, fillet, and the bads, gut and storage. This is 

parameterized in the model as five dummy variables describing the five weight classes of 
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fish sold in the auctions, a dummy variable indicating whether the fish was gutted or not, 

and a variable for the number of days of storage. 

For the second-stage inverse input demand system, we included variables 

describing the daily supply of inputs. Our inputs included the total quantity of fish (minus 

gut) in each weight class and the total quantity of gut9. We included the product of the 

number of days of storage and quantity as a proxy variable for bacterial content and other 

quality factors associated with storage. Furthermore, Statistics Iceland provided data for 

the quantity of cod from other sources than the fish auctions, the number of workers in 

the Icelandic fish processing industry as a proxy variable for labor, and the output 

quantity measured as the value of the output in constant January 1998 prices. 

The variables are defined, and the mean values are reported, in Table 1. The 

characteristics variables, z, belong to the first-stage hedonic price function while the 

other variables belong to the second-stage inverse input demand system. To ease the 

interpretation of the first level estimates, the second-stage variables are normalized at 

their means when the model is estimated. 

 

(Table 1 here) 

 

Estimation Method 

Considerer a random coefficient model for the price of transaction n in sub market 

t, pnt, specified as 

 ( ) ( )2 2~  N 0,  and ~  N 0, .
nt t nt

t nt

p

iid iid

µ α ε
α τ ε σ

= + +
 (13) 
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The model has one fixed effect, µ, and two variance components. One variance 

component, τ2, represents the variation in prices between different markets and the other, 

σ2, represents the variation in prices within each market. 

The random coefficient model can also be represented as a pair of linked models. 

This alternative representation is more easily generalized to more complex models. At 

level one, the price is expressed as the average price for sub market t, βt, and an error 

term, εnt, such that 

 ( )2~  N 0, .
nt t nt

nt

p

iid

β ε

ε σ

= +
 (14) 

At level two, the average price is expressed as the mean price of all sub markets, µ, and 

an error term representing random deviation of the average price in each sub market from 

that mean, αt, or 

 ( )2~  N 0, .
t t

t iid

β µ α

α τ

= +
 (15) 

As is evident, substitution of equation (15) into equation (14) results in equation (13). 

To explain the variation in marginal prices between markets, we replace the mean 

price, µ, in equation (15) by our inverse input demand system and the random deviation 

from the mean price, αt, by a vector of errors, ut, such that the second-level model 

becomes 

 t t tq uβ = Γ +  (16a) 

 ( )~  N 0,t uu iid Σ
r

 (16b) 



 13

where q is a vector of variables explaining demand in sub market t, and Γ is the matrix of 

demand parameters. 

Using matrix notation, the hedonic price function (9) in stochastic form may be 

written as 

 nt nt t ntp z β ε′= +  (17a) 

 ( )2~  0, .nt iidε σN  (17b) 

By inserting equation (16a) into (17a), we get the reduced form model 

 ( ) ( ) .nt nt t t nt nt t nt t ntp z q u z q z uε ε′ ′ ′= Γ + + = Γ + +  (18) 

Equation (18) is a random coefficient model (Bryk and Raudenbush, 1992). It is evident 

from equation (18) that the second level errors, ut, are heteroscedastic in z. 

Although the error terms given by equations (16b) and (17b) are assumed to be 

independent, the variance structure is quite complex. It has a first-level variance and a 

second-level variance-covariance matrix. The covariance terms allow the random prices 

to vary according to a higher-level joint distribution. The implicit prices are not defined 

as fixed, separate, and independent but as drawn from a higher-level distribution. If the 

elements in the second-level covariance matrix are zero, there is no gain in expanding the 

system beyond the first level (Bryk and Raudenbush, 1992). 

Some restrictions are generally appropriate in demand analysis. Homogeneity and 

symmetry are imposed parametrically on the system. Let R be the matrix of restrictions 

and write equations (16a), (16b), (17b), and (18) as 

 t t tRq uβ = Γ +  (19a) 

 ( ) ( )nt nt t t nt nt t nt t ntp z Rq u z Rq z uε ε′ ′= Γ + + = Γ + +  (19b) 
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 ( )ut iidu Σ,0N ~
r

 and ( )2~  0, .nt iidε σN  (19c) 

For simplicity, we assume that the covariance matrix Σu is diagonal. 

The model specified by equations (19) contains more than one error term, and 

therefore cannot be estimated by ordinary least squares (OLS). We use iterative 

generalized least squares (IGLS) as implemented by the Proc Mixed procedure in SAS®. 

This algorithm simultaneously estimates the fixed and random parameters in a sequence 

of linear regressions until it reaches a convergence. This facilitates the estimation of a 

variety of random coefficient models. For a discussion, see Singer (1998). 

 

Empirical Results 

We present parameter estimates for the first-stage hedonic price function in Table 

2. The OLS column shows the ordinary least squares (OLS) estimates for the data, pooled 

across sub markets (trading days). These estimates are only consistent in the unlikely 

case that the marginal prices are fixed across the sub markets; they are mainly presented 

as a comparison. The two-stage column gives the average parameter estimates of the 

single day hedonic functions that is the first stage of Brown and Rosen’s two-stage 

method. The RC column shows the estimates from the random coefficient (RC) model. 

The t values are given in the parentheses. 

The parameter estimates are in Icelandic crowns (ISK). The estimated parameters 

have the expected signs and are significantly different from zero. The goods, cod of 

different weight classes, have positive parameters while the bads, gut and storage, have 

negative parameters. The price of the smallest fish is lowest and the price of the largest 

fish is highest indicating a clear preference for larger fish. For example, the RC estimates 
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show that the price per kilogram of cod larger than five kilos is 155.73 ISK, while it is 

118.37 ISK for cod smaller than two kilos. 

The parameters are not very different across the estimation methods, with the 

exception of the storage parameters. In most cases, the OLS estimates are numerically 

larger than the other estimates, but, as noted above, they are inconsistent given different 

characteristics prices in different sub markets. The t values suggest that the random 

coefficient model generally has higher t values than Brown and Rosen’s two-stage 

method, demonstrating the increased efficiency of the estimates. 

At the bottom of the table, the variance of the regressions, 2σ̂ , the value of the 

log-likelihood function, Logl, and Akaike’s information criterion, AIC, are reported. The 

two-stage estimates are obtained by using a dataset consisting of parameter estimates and 

we do not report goodness of fit measures for this model. The random coefficient model 

has a substantially better fit than the pooled OLS model, demonstrating increased 

explanatory power. 

 

(Table 2 here) 

 

Variance component estimates for the random coefficient model without the 

second-level expansion, test statistics for the variance components being equal to zero (Z 

value), and the associated P values are reported in Table 3. We reject the hypothesis that 

the corresponding variance component for each characteristic is zero and conclude that 

the marginal characteristics prices vary from day to day. This conclusion indicates that 

the expanded random coefficient model is preferred to the OLS estimates. The variance 
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component estimates also show that the variability of the marginal characteristics prices 

increases with the size of cod, and that this variability is larger within each weight class 

than for the characteristics gut and storage. 

 

 (Table 3 here) 

 

The parameters of the inverse demand system (12) estimated by Brown and 

Rosen’s two-stage method and by the expanded random coefficient model are presented 

in Tables 4 and 5. Except for the trend, the variables of the second-stage were normalized 

to the mean to facilitate interpretation. An increase of 1.0 in a normalized variable 

represents a 100% increase as compared with the mean values reported in Table 1. A 

parameter estimate of –1.0 implies that when quantity increases by 100%, the 

corresponding characteristic price decreases by 1.0 ISK. The trend was normalized such 

that the parameter estimates show the annual changes in characteristics prices. 

The parameters of the random coefficient model have numerically higher t values 

in 38 of the 49 cases, indicating an increased efficiency. Moreover, 29 and 35 of the 

estimated parameters are significant at the 5% level in Tables 4 and 5, suggesting that 

small effects are more easily detected by using the random coefficient model. In addition, 

two of the significant parameters in Table 4 have unexpected signs. There are significant 

negative output effects for cod between 3.5 and 5 kilos (b4y) and for cod larger than 5 

kilos (b5y) and, furthermore, an insignificant negative output effect for cod between 2.7 

and 3.5 kilos (b3y). None of these effects is significant in the random coefficient model. 
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The last column in Table 4 contains the adjusted R2 values and the last column in 

Table 5 contains the relative reduction in the variance components; see Bryk and 

Raudenbush (1992) for a discussion of this measure. As expected, the values are quite 

different. In the two-stage method, the first-level errors associated with each day’s 

marginal prices are assumed away, resulting in overestimated fit for two equations and 

underestimated fit for two equations. These results, as well as the differences in t values, 

indicate that the random coefficient model improves the estimates, especially for small 

and variable marginal prices. 

Focusing on the estimates of the expanded random coefficient model in Table 5, 

all the own-quantity variables with the exception of the largest fish are significant and 

have the expected negative sign. The cross-quantity parameters indicate that cod from 

different weight classes are substitutes. As expected, the cross-quantity effects of gut and 

storage on the price of cod in different weight classes are positive. Increased labor supply 

has a negative effect on the price of each weight class, indicating substitution between 

labor and the size of the cod. The prices of gut and storage are negative, and the positive 

labor parameters for gut and storage also indicate substitutability. Two significant output 

effects are found; one positive for a good and one negative for a bad. The positive trends 

for all weight classes suggest price increases over the three-year period. On the other 

hand, the negative trends for gut and storage show increasingly negative prices for these 

characteristics. In most cases, the parameters suggest that the quantity effects are small, 

with decreases of less than 2 ISK for 100% increases in the quantities of characteristics, 

as compared with the mean values. However, there are some exceptions. The effects of 

increased labor supply on the price of the small and labor-intensive fish are –6.25 ISK 



 18

(<2 kg), -4.70 ISK (2-2.7 kg), and –3.03 ISK (2.7-3.5 kg). The effects lessen with 

increased size. The effect of labor supply on the marginal price of gut is also substantial 

and positive. As the labor supply increases, compensation for accepting gut is reduced. 

Among the largest parameter estimates are the trends for cod from different weight 

classes, with annual increases from 9.14 ISK to 28.04 ISK per kilogram and year. 

 

(Tables 4 and 5 here) 

 

To facilitate interpretation, the second-level flexibilities are reported in Table 6. 

The own-quantity flexibilities are negative and significant for all weight classes except 

the largest, for which the flexibility is not significantly different from zero. As expected, 

the different weight classes are substitutes. The substitution effect seems to be smaller, 

the greater the weight differences are. For example, the cross-quantity flexibility between 

medium-sized (2-2.7 kg) and small cod (<2 kg) is –0.03, while it is reduced to –0.01 

between small cod and very large cod (>5 kg). As discussed above, labor is a substitute 

for cod but the substitution effect is reduced with increasing size. The substitutability 

between labor and gut is substantial, indicating that gutting is labor intensive. Trend 

flexibility is smallest for the smallest fish and largest for the largest fish, and there has 

been a shift in demand towards larger fish. The trend flexibilities for gut and storage are 

also substantial, indicating that the market has become more willing to pay for quality. 

The own-quantity flexibilities for gut and storage have the highest numerical values, 

suggesting that the demand for these characteristics is more responsive to supply. 
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(Table 6 here) 

 

Conclusions and Implications 

When data from multiple markets is available and an inverse demand structure is 

appropriate, we suggest using an expanded random coefficient model instead of the two-

stage method of Brown and Rosen that is currently used. The estimated t values 

demonstrate that the suggested method results in more efficient estimates as compared 

with the less precise, and somewhat dubious, estimates from the two-stage method. 

The own-quantity flexibilities for cod of different weight classes are small, 

showing that the quantities of characteristics supplied to the Icelandic market could be 

increased substantially without reducing prices. This result is not surprising since the 

buyers mainly export their final products to the world market and cannot affect domestic 

prices. The inelastic own-quantity flexibilities also underline the need for quota 

regulations in a fishery where prices will not regulate supply. 

The own-quantity flexibilities of gut and storage are numerically larger than those 

of cod in different weight classes, showing that the market is more sensitive to the supply 

of bads than goods. Furthermore, there is a trend in demand away from the bads. This 

trend is especially clear for storage indicating an increased preference for fresh fish. 

Large quantity variations in the goods have small effects on prices, while small quantity 

variations in the bads have large effects on the prices. These results are not surprising in a 

market where supply is strictly regulated by a quota system and the world market sets 

prices. In such a market, the buyers can influence the price only through the quality 

characteristics they can change, in our case the bads, gut and storage. 
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The trend flexibilities suggest a shift in demand towards larger fish. The inelastic 

own-quantity flexibility for the largest and most expensive cod in combination with this 

increased demand for larger cod suggest that it is profitable for fishermen to catch large 

cod. The results indicate that the economic incentives to discard small cod at sea are 

substantial, increasing over the study period, and not affected by the supply. Given the 

practical surveillance problems in quota-regulated fisheries with many fishermen, 

dumping is potentially a serious problem and our results imply that the regulatory 

authorities should give this problem serious consideration. 

 

Footnotes 

1. See equation (18) below. 

2. These explanatory variables may be termed higher level variables, hence the term 

multilevel hedonic model. 

3. Atlantic cod (referred to as cod) is an interesting species from an economic point of 

view. Of the whitefish species, cods, hakes and haddocks, the Atlantic cod, with an 

annual catch of about one million metric tons, is the most important in a total whitefish 

catch of about nine million tons (FAO, 2002). Whitefish is the second largest group of 

fish traded in the world market after pelagic species such as anchovies and sardines. 

4. For studies of fish, see McConnell and Strand (2000) on the Hawaiian auction market 

for tuna, and Carroll et al. (2001) on the Japanese tuna market. 

5. Although repackaging may be an implausible assumption for goods such as houses, it 

is a plausible assumption for many types of inputs, for example, different grades of fuel 
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in energy production with pollution constraints or gutted and non-gutted fish in the 

production of fillets. 

6. Homogeneity of degree one for the value function in G and B implies that the value 

doubles when the quantities of G and B double. For example, if the value of 100 kilos of 

fillets and 50 kilos of gut is 100, then the value of 200 kilos of fillets and 100 kilos of gut 

is 200. Homogeneity seems to be a plausible assumption in our case given the variety of 

different technologies coexisting in the Icelandic fishing industry, from one-man vessels 

to factory trawlers. 

7. The exchange rate 01.01.2000 was 100 ISK = US$1.38. 

8. The estimation results for the random coefficient model did not change substantially 

when the excluded observations were included. 

9. According to Birgisson and Þorsteinsson (1997), gut in Icelandic cod is on average 

about 18% of the whole fish weight. 
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Table 1. Definitions and Mean Values of Variables 

Variabl

e 

Definition Mean 

p The price of each lot in ISK deflated by January 2000 exchange rate 

index 

124.55 

z1 Dummy variable, 1 for very small cod, < 2.0 kg 0.06 

z2 Dummy variable, 1 for small cod, 2.0 kg - 2.7 kg 0.24 

z3 Dummy variable, 1 for medium size cod, 2.7 kg - 3.5 kg 0.27 

z4 Dummy variable, 1 for large cod, 3.5 kg – 5.0 kg 0.17 

z5 Dummy variable, 1 for very large cod, > 5.0 kg 0.27 

z6 Dummy variable for gutting, 1 for non-gutted and 0 for gutted 0.62 

z7 Storage, days 0.49 

q1 Total daily quantity of cod having characteristic z1, tons per day 10.16 

q2 Total daily quantity of cod having characteristic z2, tons per day 49.84 

q3 Total daily quantity of cod having characteristic z3, tons per day 58.46 

q4 Total daily quantity of cod having characteristic z4, tons per day 28.52 

q5 Total daily quantity of cod having characteristic z5, tons per day 49.71 

q6 Total daily quantity of gut, tons per day 21.60 

q7 Total daily quantity times storage, tons*days 117.85 

q8 Number of workers in the Icelandic fishing industry 7,447  

q9 Quantity of cod from other sources than the fish markets, tons per month1 9,856 

y Total output of the Icelandic fish industry, millions ISK per month2 2,359  

t Trend - 

1 Monthly data including an unknown quantity of undersized cod and not directly comparable to the 

quantities from the auction markets. 

2 Measured in January 1998 value. 
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Table 2. Parameter Estimates of the Hedonic Price Function (in ISK)1 

 OLS Two Stage2 RC 

107.97 105.53 105.48 Cod, < 2.0 kg 

(438.85) (210.77) (238.19) 

119.22 118.37 118.37 Cod, 2.0-2.7 kg 

(734.05) (228.06) (276.56) 

134.12 133.03 133.12 Cod, 2.7-3.5 kg 

(861.17) (257.78) (319.84) 

138.62 138.70 138.90 Cod, 3.5-5.0 kg 

(810.10) (264.78) (361.99) 

157.93 155.77 155.73 Cod, > 5.0 kg 

(1131.85) (261.87) (327.42) 

-17.37 -15.84 -15.93 Non-gutted cod 

-(130.89) -(42.93) -(63.49) 

-1.73 -0.81 -0.71 Storage 

-(21.01) -(4.50) -(5.76) 

    

2σ̂  484 - 157 

Logl -784732 - -690629 

AIC 1569465 - 1381273 

1 Estimated t values in parentheses. 

2 Average parameter estimates. 
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Table 3. Variance Component Estimates 

Variable Estimate Z value P value 

Cod, < 2.0 kg 199.2 17.71 0.000 

Cod, 2.0 - 2.7 kg 231.0 19.68 0.000 

Cod, 2.7 - 3.5 kg 317.5 20.14 0.000 

Cod, 3.5 – 5.0 kg 365.4 19.81 0.000 

Cod, > 5.0 kg 736.1 20.46 0.000 

Non-gutted cod 51.3 17.43 0.000 

Storage 8.7 13.98 0.000 
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Table 4. Estimated Parameters and Adjusted R2 Using Two-Stage Method1 

 ckj bky dk 

 1 2 3 4 5 6 7 8   

2R  

1 -1.49 -3.34 -1.35 -1.87 -1.88 2.02 0.30 -6.35 3.08 8.88 0.80 

(-2.65) (-6.19) (-2.67) (-3.83) (-3.66) (4.78) (1.36) (-3.23) (1.25) (15.85) - 

2 - -3.64 -2.11 -2.62 -0.93 2.72 1.64 -3.70 3.42 11.61 0.68 

 - (-3.03) (-2.52) (-3.47) (-1.32) (3.05) (3.51) (-1.77) (1.35) (20.55) - 

3 - - -1.60 -1.62 -0.87 1.15 0.91 -2.60 -1.23 16.94 0.64 

- - (-1.44) (-2.22) (-1.26) (1.23) (2.12) (-1.29) (-0.48) (30.19) - 

4 - - - -2.61 -1.74 3.08 1.35 1.04 -5.04 19.27 0.79 

- - - (-2.78) (-2.60) (4.53) (4.21) (0.51) (-1.96) (33.54) - 

5 - - - - 0.80 0.67 1.35 2.74 -7.34 28.80 0.77 

- - - - (0.84) (1.03) (4.21) (1.14) (-2.50) (43.66) - 

6 - - - - - -8.02 -3.82 8.08 -3.17 -2.95 0.14 

- - - - - (-5.60) (-6.47) (5.46) (-1.73) (-7.23) - 

7 - - - - - - -0.73 -0.04 1.12 -1.22 0.07 

- - - - - - (-1.92) (-0.06) (1.26) (-6.13) - 

1 Estimated t values in parentheses. 
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Table 5. Estimated Parameters and R2 Using Expanded Random Coefficient Model1 

 ckj bky dk R2 2 

 1 2 3 4 5 6 7 8    

1 -1.55 -3.13 -1.54 -1.58 -1.61 1.36 0.19 -6.25 3.00 9.14 0.43 

 (-3.18) (-6.98) (-3.74) (-4.18) (-3.69) (4.48) (1.21) (-3.33) (1.32) (17.21) - 

2 - -3.28 -2.44 -2.27 -1.07 2.09 1.25 -4.70 5.27 11.23 0.52 

 - (-3.35) (-3.63) (-3.84) (-1.83) (3.13) (3.61) (-2.61) (2.44) (23.24) - 

3 - - -2.37 -1.38 -1.48 1.28 1.15 -3.03 1.10 16.56 0.66 

 - - (-2.72) (-2.47) (-2.67) (1.86) (3.69) (-1.80) (0.53) (35.30) - 

4 - - - -2.02 -2.05 1.66 0.56 -0.76 -2.51 18.76 0.76 

 - - - (-2.93) (-4.03) (3.39) (2.34) (-0.48) (-1.29) (42.17) - 

5 - - - - 0.14 1.20 0.30 2.03 -4.54 28.04 0.80 

 - - - - (0.19) (2.51) (1.26) (1.03) (-1.91) (52.00) - 

6 - - - - - -6.25 -2.86 10.61 -5.58 -2.38 0.30 

 - - - - - (-5.88) (-6.64) (9.70) (-4.27) (-7.97) - 

7 - - - - - - -0.53 0.10 0.36 -1.37 0.12 

 - - - - - - (-1.99) (0.18) (0.56) (-9.08) - 

1 Estimated t values in parentheses. 

2 Estimated as the relative reduction in estimated variance components due to expansion; see Bryk and 

Raudenbush (1992). The unexpanded variance component estimates are given in table 3. 
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Table 6. Flexibilities for the Second Level1 

 ekj eky ekt 

 1 2 3 4 5 6 7 8   

1 -0.01 -0.03 -0.01 -0.01 -0.01 0.01 0.00 -0.06 0.03 0.08 

(-3.18) (-6.98) (-3.74) (-4.18) (-3.69) (4.48) (1.21) (-3.33) (1.32) (17.21) 

2 -0.03 -0.03 -0.02 -0.02 -0.01 0.02 0.01 -0.04 0.04 0.09 

 (-6.98) (-3.35) (-3.63) (-3.84) (-1.83) (3.13) (3.61) (-2.61) (2.44) (23.24) 

3 -0.01 -0.02 -0.02 -0.01 -0.01 0.01 0.01 -0.02 0.01 0.12 

(-3.74) (-3.63) (-2.72) (-2.47) (-2.67) (1.86) (3.69) (-1.80) (0.53) (35.30) 

4 -0.01 -0.02 -0.01 -0.01 -0.01 0.01 0.00 -0.01 -0.02 0.13 

(-4.18) (-3.84) (-2.47) (-2.93) (-4.03) (3.39) (2.34) (-0.48) (-1.29) (42.17) 

5 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.01 -0.03 0.18 

(-3.69) (-1.83) (-2.67) (-4.03) (0.19) (2.51) (1.26) (1.03) (-1.91) (52.00) 

6 -0.09 -0.13 -0.08 -0.11 -0.08 0.40 0.18 -0.69 0.36 0.15 

(-4.48) (-3.13) (-1.86) (-3.39) (-2.51) (5.88) (6.64) (-9.70) (4.27) (7.97) 

7 -0.28 -1.84 -1.71 -0.82 -0.44 4.23 0.79 -0.15 -0.54 2.03 

(-1.21) (-3.61) (-3.69) (-2.34) (-1.26) (6.64) (1.99) (-0.18) (-0.56) (9.08) 

1 Estimated t values in parentheses. 


