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Abstract 

 The purpose of this research is to develop a rainfall insurance product to insure 

irrigation costs applied to NAP crops, and to compare  the efficacy of this insurance on a 

dollar basis relative to conventional crop insurance. An economic model is developed that 

illustrates the relationship between rainfall, crop yields, costs of irrigation and profits. 
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I. Introduction 

Despite the best efforts of the U.S. Risk Management Agency, there remain many 

specialty crops in the U.S. under Noninsured Crop Disaster Assistance Programs (NAP) 

with insurance policies that do not represent the true nature of risks.  Given their economic 

significance, it is surprising that so little attention has been provided to specialty crops in 

terms of risk management.  

 Weather insurance, a new approach to risk management, is based on transparent, 

easily observed weather at a specific site and provides firms with the ability to manage 

volumetric risk that derives from seasonal deviations from longer-term climatic norms. 

Although several studies have explored the issue of rainfall insurance in agriculture,  

Bardsley, Abey, and Davenport (1984), Gautman, Hazell, and Alderman (1994), Patrick 

(1988), Quiggen (1986), Sakurai and Reardon (1997), Turvey (2000, 2001), there are no 

known studies dealing with weather insurance to protect specialty crops against costs of 

irrigation in drought years. 

 Water is used to manage growth in many vegetable, fruit, and cereal crops. Drought 

years create significant difficulty for these crops as production costs soar from the use of 

irrigation pumps, fuel and labor.  In many instances, state governments have had to sign 

Emergency Disaster Relief bills to cover unprotected crops.  From an economic point of 

view, a loss due to a shortfall in yields is not different on a dollar for dollar basis than a 

loss due to increased costs of irrigation.  Since the purpose of irrigation is to achieve the 

maximum yield potential of a normal rainfall year, the main consequence of rainfall or 

drought risk is in the cost of irrigation. However, in the same way that a wheat producer on 

non-irrigated land would suffer greater loss due to yield shortfalls in a year of drought, the 
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wheat farmer on irrigated land mitigates the yield loss but incurs an additional cost of 

irrigation.  

The purpose of this research is to develop a rainfall insurance product to insure 

the costs of irrigation applied to NAP crops. To this end, the next sections provide the 

theoretical framework of modeling the irrigation cost insurance. This is followed by a 

description of the cross sectional data and estimation procedure. The fourth section 

presents the empirical results and the last section discusses the usefulness of this new 

product and provides a conclusion to the research. 

 

2.  Conceptual Framework  

In this section, we develop an economic model of irrigation cost insurance to 

illustrate the relationship between a weather variable (rainfall = ω), crop yields y(ω), costs 

of irrigation c(ω) and profits π(ω). We consider multiple states of nature but essentially we 

simplify the process by defining a maximum potential yield that occurs when weather is 

favorable or good. That is  

(1) 

 = Ymax ( )y ωgood

 

Since the maximum potential yield acts as an absorbing barrier for all of  the weather 

stated as good the marginal value product of irrigation above the threshold ωgood is zero. 

When rainfall falls below  ωgood the marginal productivity of rainfall increases but at an 

increasing rate. The production function for output is thus 

(2)  
 = Y ( )MIN ,ymax ( )f ω

 

where ymax= f(ωgood ) > f(ω ). Therefore for ω < ωgood  

(3)  
 >  ∂ 

∂ 
ω ( ) f ω 0 

   

 and 
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(4)  
 < 

∂
∂2

ω2 ( )f ω 0
 

which simply states that as water to the plants increases, plant growth increases but at an 

increasing rate. 

We now consider the cost of irrigation C. The cost function is given by 

(5)   = C ( )MAX ,0 ( )c ω . 

If  ω>ωgood there is no need to irrigate so the cost is zero. Otherwise the cost increases as ω 

decreases. That is 

(6)  
 < 

∂
∂
ω

( )c ω 0

 

and 

(7) 
 >  

∂ 
∂ 2 

ω 2 
( ) c ω 0 

. 

The profit function can now be described in terms of the rainfall variable, output, and 

irrigation costs as  

(8) 
 = π  − P ( )MIN ,ymax ( )f ω ( )MAX ,0 ( )c ω

 

Where P is the per unit price of the commodity. From (8) it can be seen that profits are 

given as Pymax if rainfall is adequate and Pf(ω)-c(ω) if rainfall is inadequate. Furthermore, 

assuming that rainfall is inadequate, marginal profits obey 

(9) 
 =  π ω  >   −  P  

 
  

 
 
  ∂ 

∂ 
ω ( ) y ω  

 
  

 

  ∂ 

∂
ω ( )c ω 0

. 

Marginal profits are positive since the first term is increasing in ω, while the second term is 

decreasing in ω. In terms of risk and risk mitigation the result states that as rainfall 

decreases output will fall. In order to increase output, rainfall, in the form of costly 

irrigation, must be applied. Therefore in years of drought the dual effects of decreased 

yields and increased irrigation costs result in significant economic losses. Even if irrigation 

increases yields to its maximum level, the cost of irrigation remains as an uncertain cost to 

the producers. 
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 The essential economic elements to this problem from drought are the potential 

yield loss from lack of rainfall and the costs of mitigation. Since the latter is a risk 

reduction response to the former then the insurable quantity is not necessarily yield per se, 

but the cost of irrigation. The yield loss component is economically significant only if 

irrigation is too costly or not available. To see how an indemnity structure works we can 

calculate the loss in profit from the following identity: 

(10) 

 = Z  + P ( ) − ymax ( )y ω ( )c ω

 

Equation (10) says that the indemnity is equal to the yield shortfall time price plus the cost 

of irrigation. If irrigation is not available then c(ω)=0 and the indemnity is given by the 

yield shortfall only. This is P(ymax – y(ω)) and this is similar to conventional crop 

insurance. If irrigation is available then irrigation may increase yields so that the term 

P(ymax – y(ω))→0, but in this case c(ω)>0 and this becomes the insurable event.  

 The notion of rainfall insurance is now clear. Since both y(ω) and c(ω) are 

functions of rainfall, and rainfall is a random variable, then yield and cost uncertainty can 

be established by defining the probability distribution functions for y and c.  Let g(ω) be 

the probability distribution function for rainfall, then the indemnity function for profits is 

calculated by taking the expected deviation from the maximum potential yield, or some 

other target, by defining the amount of rainfall that produces the maximum potential yield. 

In the current discussion this has been denoted by the variable ωgood . Hence the indemnity 

function is given by 

(11)

 = Indemnity d⌠
⌡


0

ω
good

( ) + P ( ) − ymax ( )y ω ( )c ω ( )g ω ω

 

Equation (11) is for the general case. When irrigation is not available then the 

insurance form is similar to conventional crop insurance (CI) by writing (11) as  

(12)   

 = CI d⌠
⌡


0

ω
good

P ( ) − ymax ( )y ω ( )g ω ω
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The final insurance product under consideration is irrigation insurance. Since ymax 

is an absorbing barrier for ω>ωgood then an irrigation strategy that provides irrigation in the 

amount of ωgood - ω will have y = ymax so that the first term in the general indemnity 

function (11) goes to zero leaving the irrigation cost recovery (ICR) indemnity function 

(13) 

 = ICR d⌠
⌡0

ω
good

( )c ω ( )g ω ω
. 

Notice that the irrigation cost recovery indemnity is simply the expected value of irrigation 

costs below the amount that produces the output ymax.  

Next, we consider possibilities for implementing a rainfall based insurance scheme. 

In all of the above equations the stochastic variable of interest is in fact rainfall. To 

estimate the above indemnity schedules, we require information that is not readily 

available for underwriting purposes. Furthermore, yields or revenues or irrigation costs are 

not readily observable without incurring substantial costs. In contrast, rainfall is readily 

observable since most jurisdictions record rainfall, at least at the county level. A rainfall 

based insurance policy can also be designed to mimic or approximate the indemnities for 

crop, revenue, or irrigation cost insurance by using the following rainfall indemnity 

schedule (RIS); 

(14) 

 = RIS z d⌠
⌡


0

ω
good

( ) − ωgood ω ( )g ω ω

. 

In (14) the integral component gives the probability weighted expectation of rainfall below 

the good amount (e.g. millimeters of rain per month). The value of z represents the 

economic value of rainfall per millimeter or inch. In general, z in  equation (14)  can be 
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any value elected by the insurer but would normally be defined in the neighborhood of 

average irrigation cost: 

(15) 

( )  cz ω
ω

=

 

For example suppose that z=$1,000 and ωgood = 10 inches, then for every inch of rainfall 

below ωgood, the insured receives $1,000. If there is no rainfall then the insured would 

receive $10,000 (10 in x $1,000/in) to cover yield, revenue, or cost shortfalls, but if actual 

rainfall exceed ωgood then the indemnity is zero. By defining and empirically estimating 

C=c(ω), it is possible to map on this cost function the range of critical rainfall outcomes by 

defining the inverse function, ω =c-1(C). From this relationship, an indemnity schedule and 

insurance premium can be developed. 

 

 3. Empirical Estimation  and Data Specification 

In this paper, a constant elasticity cost of irrigation function is assumed: 

(16)  
   C A βω=

 

where C represents the total variable cost of irrigation, A is an intercept multiplier, ω, is 

annual rainfall, and β is the cost elasticity of rainfall1. The two coefficients of the model A 

and β are expected to be positive and negative, respectively. Using the above functional 

form, the marginal cost of rainfall is  given by  

(17)  

1 ( )  c '( )  c A βω ω βω
ω

−∂
= =

∂
 

                                                           
1 It is important to note the simplifications made here. Our cost function is assumed only to be a function of rainfall, 
when other factors may well affect the cost of irrigation. Also, our use of annual rainfall is probably naïve. A more 
likely measure would be cumulative rainfall during the summer months, or as in Turvey (2001) specific periods 
throughout the growing season. 
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The necessary condition for rainfall insurance to be effective is that c’(ω) < 0 so that rain 

has an impact on the cost of irrigation. For the empirical estimation, the constant elasticity 

cost function is written equivalently as 

(18)   
ln ln lnC A β ω= +

 

Effectiveness can be measured by the cost elasticity of rainfall, β, which measures the 

percentage change in the cost of irrigation given a percentage change  in rainfall. 

 The primary data are cross-sectional data from the 1998 Farm and Ranch Irrigation 

Survey (FRIS), a survey of operators of irrigated farms (U.S Department of Commerce). 

This survey provides cross-sectional data on annual operating (maintenance and repairs, 

and energy) cost of irrigation. In contrast, Rainfall data are obtained from NOAA records 

and are merged with the FRIS data. Since cross sectional data of average farms in 48 U.S. 

states are used, unobserved heterogeneity among farms is accounted for in this study 

through the use of regional dummy variables in an OLS regression.2 

Table 1 presents the sample data used in the analysis. Average farm costs for 

machinery and repairs, energy and irrigation are $3,037.69,  $6,157.75, and $9,195.44, 

respectively. The mean annual rainfall across all states is 39.17 inches. Table 2 shows the 

correlations between the variables. Of importance are correlations between rainfall and 

different categories of irrigation costs. These correlations are negative. They indicate that a 

decrease in  rainfall will most likely correspond with higher cost of irrigation.  

Since there are regional differences in terms of climate, the least-square dummy 

variable (LSDV) estimator is used to estimate the long-run cost function. It is expressed as: 

                                                           
2 Our use of cross-sectional, state-wide data is not the most desirable source of data. Our preferred approach would be 
to use consistent time-series for a county, state or region. However, such data are not readily  available. While our 
estimates are useful for illustrative purposes, readers should be cautious about using the estimates for real world 
applications. 
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(19)      

1

1
ln ln ln

n

f r r f f
r

C A Dα β ω ε
−

=

= + + +∑
  

where Cf is the total variable farm cost of irrigation for the state farm average; αr is the 

regional-specific fixed-effect; Dr is the regional-effect dummy variable that takes the value 

1 for region r and zero otherwise.  Since the number of regions n is small, the estimation of 

equation (19) is achieved (using OLS) by suppressing the constant term and adding a 

dummy variable for each of the n regions, or equivalently, by keeping the constant term 

and adding n-1 dummies; ωf is the vector of observed rainfall; β is the unknown cost 

elasticity parameter; and εf is the error term which is independently and identically 

distributed (i.i.d.) across average (state) farms and uncorrelated with the rainfall variable. 

The coefficient on rainfall, β, is expected to be negative.  The regional fixed-effects 

represented by different dummy variables associated with αr are expected to be positive or 

negative. Two versions  of the model were run. The first used total irrigation costs 

(maintenance and repairs), while the second used only the cost of energy. 

After estimating empirically equation (19), it is possible to map on the total or 

energy cost function the range of critical rainfall outcomes. Several strike levels of rainfall 

are calculated by inverting equation (19) and using the estimated parameters of the LSDV 

model and the mean values in Table 1. The purpose of the inversion is to provide some 

relationship between the rise in cost of irrigation and the rainfall deficit. To determine the 

critical rainfall values, energy and total costs of irrigation are held constant at their mean in 

the first case. The rainfall strike level is determined by ω* = ω(C *, A, β).   outcomes The 

inverse function is defined as follows: 



 11

(20)     

1

* ( )c
A

βωω  =  
 

 

(21)    

1

* 1 ( )c
c A

β
βωω

β

−

∂  =  ∂  
 

In our example, we provide estimates for the state of New Jersey. Since the Mid Atlantic 

regional dummy variable was dropped, the estimates in Table 3 with all dummy 

coefficients set to zero gives an estimate for the Mid Atlantic region. Annual rainfall in 

New Jersey is 45.47 inches. Substituting 45.47  inches into the regressions resulted in an 

estimate of c(ω) of $1,045.32 for energy and $2,449.85 for total costs. By incrementing  

c(ω) from 0% to 25%, we use equation (20) to extract the appropriate rainfall strike level. 

Using the above computed range of critical rainfall outcomes, premiums are 

computed as follows: 

(23) 
( )

*
*

0

c( )   g( ) d( )premium
ωω ω ω ω ω

ω
= −∫

 

for an option-like insurance policy, and 

(24) 

*

0
 z ( ) d( )premium g

ω
ω ω= ∫

 

for a lump sum payments. The difference between (23) and (24) is that the former, the 

indemnity increases with reduced rainfall, whereas in the latter a lump sum payment of z is 
*

0
paid if rainfall falls below * with a probability   ( ) d( ).g

ω
ω ω ω∫
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5. Empirical Results 

Table 3 presents the results of the LSDV regressions of the energy cost model and 

total irrigation. These cost models may be interpreted as long-run cost models of irrigation 

since we used cross-sectional data. The estimated parameters as well as associated standard 

errors are presented. Both models have low explanatory power but most of their 

coefficients are significant at  least at the 0.01 level of significance. The parameters of the 

cost elasticity of rainfall are negative, indicating that an increase in rainfall will decrease 

the cost of irrigation. Energy cost of irrigation is more sensitive to change in rainfall than 

the total cost of irrigation. This is due to its highly negative correlation (-0.453) with the 

rainfall variable.  

The estimated models were used to predict the energy and total costs of irrigation 

for New Jersey. Using equation (15) and the predicted costs, average total and average 

energy costs of irrigation were computed (2,449.85/45.47=$53.88) and 

(1,045.32/45.47=$22.99). These unit costs represent the economic values of rainfall per 

inch. 

 Tables 4 and 5 present the results of irrigation insurance calculations. Using time-

series data of New Jersey precipitation from 1949 to 2000,  the mean rainfall is about 

45.47 inches with a standard deviation of 6.6 inches, suggesting that drought is a relatively 

rare event in New Jersey.  Assuming a normal probability distribution function for rainfall, 

Monte Carlo simulations were used for insurance premium computation.  

Two types of rainfall insurance products are used for illustration in Tables 4 and 5:  

the put option and the lump sum option. Premiums  for the put option are generated using 

equation (23). For the lump sum option , the economic value of rainfall is assumed to be 
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constant at the level of $2,000 and $1,000 for total cost and energy cost of irrigation, 

respectively. As shown in both tables, premiums are positively associated with strike levels 

of rainfall. Table 4 shows the insurance costs when the insurance is tied to the energy costs 

of irrigation, while Table5 reports the results for total irrigation cost. To interpret these 

results consider the 10% increase row in Table 4. If an insured wants to protect or insure 

costs of about $1,149.85 then equation (20) the corresponding level of rainfall to insure is 

30.04 inches. Since, with a standard deviation in annual rainfall of only 6.6 inches per 

year, the cost of this insurance is low and only $0.53. For a lump sum payment of $1,000 if 

rainfall is below 30.04 inches, the insurance cost is $9.8. 

 

6.  Conclusions 

With a growing interest in weather-based insurance products, this paper has 

advanced the proposition that rainfall insurance can be used to insure against costly 

irrigation. A theoretical model was developed along the lines of tradeoff between the loss 

in revenues from unirrigated crops and the cost of irrigation to preserve yields in years or 

periods of drought. A simple cost function was estimated to illustrate the salient points of 

our proposition, and an example of costs of irrigation and insurance were calculated for 

New Jersey. Two types of insurance products were presented. The first has option like 

qualities wherein the payoff is linear with respect to rainfall increments below a strike (in 

inches). The second offered a lump sum payment if rainfall falls below the strike. Monte 

Carlo simulation was used (5000 iterations) and the results reported. 

 This paper is intended to be illustrative and did not examine the efficacy of 

irrigation insurance relative to other forms of insurance such as crop insurance. Such a 
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study should be undertaken. We also noted some deficiencies in the modeling approach we 

used. The use of cross sectional models using annual rainfalls is far less desirable. Then 

using time-series costs for a particular farm, region or state, with rainfall measured over 

specific time periods throughout the growing season. 

Nonetheless, this paper provides a reasonable starting point for examining how 

weather-based insurance product can be used to mitigate excessive irrigation costs for 

farmers.  
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Table 1: Statistics on Irrigation Costs and Rainfall (Cross sectional Data) 

 

 Machinery/Repair Cost 

($) 

Energy Cost 

($) 

Total Cost 

($) 

Rainfall 

 (inches) 

Mean 3,037.69 6,157.75 9,195.44 39.17 

Standard Deviation  2,565.62 6615.00 8,828.89 14.09 

Minimum 270.00 134.02 439.64 13.45 

Maximum 12,742 32,190.02 44,932.02 63.38 

 

Table 2: Correlation Matrix 

 

 Machinery/Repair Cost  Energy Cost Total Cost Cumulative Rainfall 

Machinery/Repair Cost 1.000    

Energy Cost 0.813 1.000   

Total Cost 0.900 0.985 1.000  

Cumulative Rainfall -0.148 -0.453 -0.382 1.000 
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Table 3:  Estimated Regression Equations of Cost of Irrigation  

 

Variable Total Cost Energy Cost 

Intercept 8.30 

(2.03) 

7.83 

(2.19) 

LRain -0.13 

(0.53) 

-0.23 

(0.57) 

New England -0.47 

(0.57) 

-0.73 

(0.61) 

South 0.75 

(0.47) 

1.01 

(0.51) 

Midwest 0.95 

(0.49) 

1.32 

(0.53) 

Southwest 2.17 

(0.70) 

2.63 

(0.75) 

West 1.30 

(0.60) 

1.79 

(0.65) 

Number of 

Observations 

48 48 

F-Statistic 4.68 7.31 

RMSE 0.930 0.998 

R-Square 0.41 0.51 
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Table 4: Irrigation (Energy) Cost Recovery Indemnity for New Jersey 

 

 Predicted Energy Cost 

($) 

Rainfall Strike 

level (inches) 

Premium 

Option Energy 

($) 

Premium Lump  

Sum Energy ($) 

Mean 1,045.32 45.47 65.82 500 

5% Increase 1,097.58 36.78 7.24 94 

10% Increase 1,149.85 30.04        0.53 9.8 

15% Increase 1,202,12 24.76 0.03 0.8 

20% Increase 1,254.38 20.58 0 0 

25% Increase 1,306.65 17.23 0 0 

 

Table 5: Irrigation (Total) Cost Recovery Indemnity for New Jersey 

 Predicted Total Cost ($) Rainfall Strike 

level (inches) 

Premium 

Option Total 

($) 

Premium Lump  

Sum Total ($) 

Mean 2,449.85 45.47 131.63 1,000 

5% Increase 2,572.34 31.24 1.81 31 

10% Increase 2,694.83 21.84        0 0.4 

15% Increase 2,817.33 15.52 0 0 

20% Increase 2,939.82 11.18 0 0 

25% Increase 3,062.31  8.17 0 0 
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