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Abstract

A model of a (convex) technology of representative and non-repre-

sentative firms in a heterogeneous sector is presented in non-parametric

and parametric versions. The heterogeneity is specified with error

terms. The models including a non-parametric distribution of the

errors can be estimated with entropy econometrics from firm survey

data. This requires two important modifications in the standard ap-

proach to entropy estimation of Golan, Judge and Miller: The compact

support of the probability distribution should be designed to capture

eventual non-zero covariance. And cross-entropy need to be redefined

for cases of multiple observations.
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1 Introduction

The standard way to proceed from survey data to technology is to estimate

with OLS a convex constant returns to scale (CRTS) technology function,

F (xt;α) = εt, where xt is the netputs (variable or fixed) of firm t, α is a

vector of parameters to be found and εt is an error term. The set of points

with F (x;α) = 0 is then the technology of ”the representative firm” on which

further analysis is based. There are two draw-backs in this approach. First,

it does not lead to a CRTS model for the non-representative firms (εt 6= 0). If

εt should be kept constant, that would imply globally increasing (decreasing)

returns to scale for firms with εt < 0(> 0). Second, the distribution of ε

mirrors the heterogeneity of the firms as well as measurement errors and

specification errors due to functional form. With the empirical nature of ε,

it is not expected to be normally distributed, and the use of OLS cannot

be easily rationalized as maximum likelihood. In addition, it is not at all

obvious that OLS will leave behind a reasonable picture of the heterogeneity

in the distribution of ε.

These problems have economical relevance. As is well known, a sector of

heterogeneous firms need not behave as if it consisted of a single represen-

tative firm. With CRTS models for all firms and a suitable representation

of their heterogeneity, one can explore to which extent sector behavior ac-

cording to the representative firm model deviates from that of heterogeneous

firms.
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Modeling of non-representative firms has been undertaken by Howit-

t (1995) with the label of Positive Mathematical Programming. Recently

Paris & Howitt (1998) have developed the ideas in estimating cost func-

tions with heterogeneous parameters. Lansink (1999) have also applied the

same technique. This methodology might be applied in primal mode with a

transformation function with heterogeneous parameters, F (xt;αt) = 0. That

might solve both problems with the standard procedure, if it did not create a

new one. This technology model does not reflect the situation that all firms

have access to the same technological possibilities, and consequently should

have some common structure across firms.

The problem of finding more than one parameter from one observation

and one equation is ill-posed. Parameters cannot be identified without some

additional information. Paris & Howitt (1998) supply this information in

terms of a prior distribution of the parameters. They can then be identified

using an estimation method based on the principle of maximum entropy

developed by Golan, Judge & Miller (1996) (GJM). One might say that

the technological relationship between observations is expressed in the prior

distribution. However, as the prior is not contained in the economical model,

only in the statistical one, this is not entirely satisfactory.

Another drawback with the Howitt-Paris approach is that it utilizes mere-

ly price information on some commodities and merely quantity information

on others. Additional information on quantities and prices are in general

available — if not in the firm survey itself, from other data collecting insti-
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tutions. It may be objected that with CRTS, the perfect duality between

prices and quantities makes information of both superfluous. However, the

correspondence between prices and quantities hold for data recorded without

errors. If data of the one type have errors, erroneous data of the other type

will presumably have some information to be exploited.

The technology models to be developed here reflect both these points.

The common possibilities are specified in the conventional manner with some

convex transformation function F and a relation F (x;α) ≤ 0. where α is a

vector of parameters to be determined. The error structure is unconventional

though, with vectors of multiplicative commodity-wise error terms, ξt, πt, and

an operation · defined as element-wise multiplication. For estimation we have

the feasibility equation:

F (xt · ξt;α) = 0

and the first order conditions:

∂F (xt · ξt;α) = pt · πt

These equations are main constituents of the behavioral model for non-

representative firms, that is firms with (ξt, πt) 6= 0. They do not determine

the scale of operation though. The scale can only be determined with refer-

ence to some bundle of fixed netputs. For sake of estimation the distinction

between variable and fixed netputs need not be maintained in the analysis.
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All commodities have their quantities and their shadow prices on which we

have more or less reliable information.

The model with errors both on quantities and prices might be estimat-

ed with an errors-in-variables approach, if there is a sufficient number of

instruments available. Otherwise, the model will be ill-posed and standard

econometrics is not applicable. In this paper it will be shown how entropy

based econometrics (EE) can be applied in estimating the ill-posed model,

that is the error terms and their non-parametric distribution and eventual

parameters. GJL have provided the introduction to entropy methods and

some practical hints. Otherwise, the research based on Kullback (1959) has

led to several points of constructive criticism of the GJL approach.

The layout of the paper is as follows. The estimation of a non-parametric

distribution by means of entropy based econometrics is considered in section

2. In section 3 it is shown how the model above can be estimated with EE

when the technology is non-parametric following Varian (1984). With respect

to EE estimation this is the simplest model. It turns out that there are some

lessons to be learnt which are relevant for estimation of semi-parametric

and parametric models considered in section 4. The paper ends with some

concluding comments.
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2 Estimating a non-parametric distribution

with entropy

The concept of entropy was established by Boltzman in the 1870-s as a mea-

sure of disorder. The idea has proved to be extremely applicable in pro-

cessing of noisy and indeterminate information. It is now heavily connected

with information theory and statistics, where the basic idea is that mini-

mum information consistent with observations should be utilized. Here, a

version named the Kullback-Leibler measure of information — or in GJM’s

terminology cross-entropy — will be utilized.

The Kullback-Leibler measure involves two hypotheses, H1, H0, and two

probability densities for data, f1(x), f0(x), corresponding to the two hypothe-

ses. The measure of information, I(1, 0)

I(1, 0) =

∫
f1(x) ln

(
f1(x)

f0(x)

)
dx

is said to measure the amount of information that supports H1 in favor of H0

(Kullback 1959). It can also be considered as the directed squared distance

from the density f0 to the density f1 (Csiszar 1975). A certain test statistic

based on the minimum value of I(1, 0) subject to certain constraints given

by data, decides whether the support is sufficiently strong to reject H0.

As a special case, minimization of the measure serves as a method of

Bayesian estimation. The prior probability distribution (of errors and pa-
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rameters) is then f0(x). Some additional observations are added and the

posterior distribution, f1(x), is found as the one that minimizes the informa-

tion in favor of H1, or minimizes the squared distance from f0(x) to f1(x). If

this information (distance) is sufficiently large, the posterior may serve as a

prior for the next round. If not, one sticks to the old prior and wait for more

information.

The current setting of technology estimation is not purely Bayesian, how-

ever. We have data and a model that have not previously been combined.

No strong prior distribution exists. This has consequences for the way the

entropy based method should be conducted. If we have data that are rich

in the sense that multiple observations span the domain of the distributions,

f1, f0, the priors should be made relatively uninformative. If there are few

observations — at the extreme merely a single one as in Howitt and Paris’

case — there is no way to an estimated distribution without an informative

prior. This raises the question how EE estimation of distributions can be

adapted to multiple observations and more or less informative priors.

Consider first the ”natural” way of dealing with multiple independent

observations. The information x has then the form of a set of independen-

t but identically distributed, {x1, . . . , xT}. The statistical task is to infer

the distribution of x from observations y, in terms of a posterior density

g1(xt) based on a prior density g0(xt). If there was a functional relationship

xt = F (yt;α) with some parameters α, this task might be done with stan-

dard econometrics. The models that will be considered in this paper have

8



not such relationships however, but rather many-to-many correspondences,

(x1, . . . , xT ) ∈ F (y1, . . . , yT ). This creates an ill-posed model and need for

entropy methods.

The information measure anyway takes the form:

I(1, 0) =

∫ ∏
t

g1(xt) ln

(∏
t g1(xt)∏
t g0(xt)

)
dx1 · · · dxT

=

∫ ∏
t

g1(xt)
∑
t

(ln g1(xt)− ln g0(xt)) dx1 · · · dxT

=
∑
t

∫ ∏
s

g1(xs) (ln g1(xt)− ln g0(xt)) dx1 · · · dxT

=
∑
t

∫
g1(xt) (ln g1(xt)− ln g0(xt)) dxt

∏
s6=t

∫
g1(xs)dxs

=
∑
t

∫
g1(xt) (ln g1(xt)− ln g0(xt)) dxt

The prior and posterior densities can be parametric functions of a certain

class. But the distribution representing technological heterogeneity has an

empirical content that make non-parametric representation preferable. I

therefore switch to the approach of GJM which considers precisely non-

parametric distributions.

The densities g1 and g0 are now approximated with discrete distributions

over a grid of support points X. To be more precise, X ∈ RJ×N so that

every xt with g1(xt) > 0 or g0(xt) > 0 is contained in the convex closure of

the columns of X, X1, . . . , XN . This means that g1(xt) > 0 or g0(xt) > 0

implies the existence of Pt ∈ [0, 1]N with xt = XPt. There are some issues

to be discussed with respect to the design of this grid, but the theoretical
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requirements are clear. The prior distribution is a fixed vector Q ∈ [0, 1]N .

The posterior P̄ is the expectation of P1, . . . , PT ,
∑T

t=1 Pt/T . In terms of

these discrete distributions, the information measure I(P̄ , Q) is called cross-

entropy and takes the form:

I(P̄ , Q) =
∑
n

P̄n
(
ln P̄n − lnQn

)
The estimated P̄ that results from minimization of cross-entropy subject to

contraints can be spelled out as:

P̄ = argminP̄n≥0


∑
n

P̄n
(
ln P̄n − lnQn

) ∣∣∣∣∣∣∣
(XP1, . . . , XPT ) ∈ F (y1, . . . , yT )

1′Pt = 1, Pt ≥ 0, P̄ =
∑T

t=1 Pt


(1)

Look now at the first order condition with respect to P̄n. The multiplier of

the last constraint is φ:

ln(P̄n −Qn) + 1 ≤ φ

The somewhat surprising situation occurs that the estimated posterior dis-

tribution P̄ is proportional to the prior Q in the points where P̄ is non-zero.

In turn P̄n is non-zero only when some Pnt is non-zero. This means that the

more observations, the closer comes P̄ to Q. This is a highly counterintuitive

effect which suggests that the minimum cross-entropy estimator P̄ of g1(x)
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is inconsistent.

At this stage it should be observed that when entropy methods is used

for interpretation of noisy and indeterminate signals or images, this situation

is quite acceptable — and probably the key to its success. A pattern of

information in terms of a non-parametric distribution should be revealed,

involving a lot of data but essentially only one observation. When a several

images are stacked before processing, one should not expect to find more

information than in the single image. The task of estimating a common

distribution from several independent observation is therefore rather different

from the tasks that entropy methods usually handle. Some revision of the

standard EE seems required to make it work properly for this problem.

An alternative procedure will now be suggested: Assume that the prior

distribution Q is established at time 0. Later observations have not deviated

sufficiently from Q to reject it. At time T , though, it is asked if the accumu-

lated observations, y1, . . . , yT , can be sufficient to make the prior rejected.

Obviously, one has to make use of some average of the observations in this

test, but it need to be different from the one in (1). The average P̄ minimiz-

ing the following measure of accumulated information, AI(PT , . . . , P1, P̄ , Q),

is proposed:

AI(PT , . . . , P1, P̄ , Q) =
T∑
t=1

I(Pt, P̄ ) + I(P̄ , Q)

Thus, P̄ is the distribution which minimizes the sum of squared distances
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from the prior Q to P̄ and from P̄ to all Pt. In terms of the cross-entropy

program, the estimator is:

P̄ = argminP̄n≥0


∑T

t=1

∑
n Pnt

(
lnPnt − ln P̄n

)
+
∑

n P̄n
(
ln P̄n − lnQn

)
∣∣∣∣∣∣∣

(XP1, . . . , XPT ) ∈ F (y1, . . . , yT )

1′Pt = 1, Pt ≥ 0, 1′P̄ = 1


(2)

As a first piece of justification, it should be observed that with merely one

observation, the minimum of AI(P1, P̄ , Q) is identical to the minimum of

I(P1, Q). Thus, nothing new is invented in the one observation case. Sec-

ondly, we have here the desired effect that the influence of the prior on P̄ is

lessened as more observations are added. Actually can the prior be made less

informative by assigning a weight smaller than 1 to the last squared distance.

In the limit the effect of the prior vanishes totally. The posterior is then ac-

cording to the first order conditions of the program, simply, P̄ =
∑

t Pt/T .

This is formally identical to the estimator (1), but now the prior is totally

uninformative.

The estimator P̄ defined by (2), seems to be what is needed for estimation

of a non-parametric distribution from a set of independent noisy observations.

There is of course research to be done on the statistical properties of this

measure. At this stage it should be considered a promising application of EE

to estimation of a distribution. Standard EE estimation following GJM will

simply not do the job.
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3 Estimating the non-parametric producer

model

If netputs of production, xt, and corresponding shadow prices, pt, were ob-

served without error, technology representation would be no problem. Be-

cause of CRTS would the zero profit condition, p′txt = 0, hold for all t.

Convexity of the technology function would imply the WAPM inequalities,

p′sxt ≤ 0 for all s and t, (Varian 1984). This case reveals no heterogeneity as

any discrepancy across firms is explained with different prices.

Errors are likely, however and the WAPM relations are expected to hold

only for the correct prices and quantities, p̂t, x̂t.

p̂′tx̂t = 0

p̂′sx̂t ≤ 0

Multiplicative errors are convenient when dealing with CRTS technologies

because they are independent of scale. Thus,

p̂t = pt · πt

x̂t = xt · ξt
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where ·means element-wise multiplication. These errors need the assumption

though that the sign of each element of xt and pt is correctly observed.

The WAPM-relations constitute the technological model. The model it-

self challenges the common conception that Varian’s non-parametric models

are inherently deterministic. It should be mentioned though, that Varian

(1985) proposes a related model, and so does Chavas & Cox (1995) with

a little more structure motivated by technical progress. Both contributions

have errors merely on quantities and apply OLS to find the minimum errors

that satisfy the WAPM-relations.

Here the errors and their probability distribution will be found by min-

imization of a Kullback-Leibler measure of information — the measure of

accumulated information, AI(PT , . . . , P1, P̄ , Q), of the previous section — or

in the terminology of GJM, a certain cross-entropy. The use of EE estima-

tion is motivated by the fact that this model is ill-posed. The error terms

(π′t, ξ
′
t)
′ are not exactly identified by the model. Compared to the model of

the previous section, the error vector, (πt, ξt), is the unobservable for which

a non-parametric probability distribution will be estimated. (pt, xt) is the

observable variable vector. And the combination of WAPM relations and

the stochastic model:

(pt · πt)′(xt · ξt) = 0, (ps · πs)′(xt · ξt) ≤ 0 (3)

defines the correspondence between observable and unobservable variables.
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Following GJM a grid of support points X ∈ R2J×N is chosen for the

error vector. As the elements are positive with 1 representing no error, it is

convenient to convert them to logarithms. The grid should then be centered

in origo, and this is one point of the grid labeled 0. The remaining points

should lie sufficiently far away from origo to have all error terms identified

within the interior of their convex closure. This can be accomplished with

a common positive constant D which can be enlarged if required. It is pre-

sumably too much to hope for independent elements. In order to capture all

dependencies within pairs of elements, all vectors of the form δij ∈ R2J where

i 6= j, δiji, δijj ∈ {−D,D} and δijk = 0 for k 6= i, j, should be contained in the

grid. It thus consists of (2J)2(2J − 1)2 + 1 points. With J = 2 the grid then

has 3242 + 1 = 145 points, with J = 10, it amounts to 202192 + 1 = 144401.

This structure of the grid is considerably more complex than what GJM

suggest. Their grid vectors have only one element different from zero. This

implies that smaller grids can be applied. With 3 points for each variable, it

suffices with merely 6J points. This simplicity comes at a large cost, though.

Dependencies between variables are out-ruled by assumption.

And then the prior distribution. First, a warning should be issued: A u-

niform prior with identical probability mass on each point of the grid, is not

a good choice when it comes to variables which are not naturally bounded.

For example should an approximation to a normal distribution have consid-

erably more probability mass placed in the centre point than on the tails.

The distribution of probability mass on centre and tails is not immediately
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clear — unless one can look into the data first. One should expect that they

will speak strongly on this issue, so whatever is chosen as a prior-prior in

the first round, can be corrected in a second round. The important role of

the prior is the distribution of mass among the tails. The natural prior is of

course uniform mass on all tails. One cannot expect that data span all di-

mensions of the domain of the probability distribution. In dimensions where

observations are scant, the prior may play a decisive role.

All prerequisites for EE-estimation of the non-parametric producer model

are now in place. After an initial solve it should be checked whether all error

terms (π′t, ξ
′
t)
′ are in the interior of the convex closure of the grid. This is

ensured when P0t > 0 for all t. Eventually should the grid be enlarged. The

distribution of mass between centre and tails,
∑

t P0t/
∑

t

∑
n6=0 Pnt should

also be computed and the prior should be brought in reasonable accordance.

After a few tentative solves, estimates of πt, ξt for all t are found as XPt.

The heterogeneity of the sector is represented with the estimated distribution

P̄ . This is more or less identical to
∑

tXPt with some flavor of the prior

added. With these results can exercises on the behaviour of the heterogeneous

sector be conducted.

Without any empirical test of the estimation method, it is nevertheless

clear that errors are larger than those computed with OLS, because errors

have not been minimized. What has been minimized is instead a certain

cross-entropy, or a certain sum of squared distances between probability dis-

tributions, or a certain amount of information extracted from the observa-

16



tions.

It is also clear that this version of EE estimation can form a base for

testing of hypotheses — in particular because this was the starting point of

the method. During testing, however, one needs informative priors to express

H0, and the testing model should be based on minimization of the original

Kullback-Leibler information measure within the constraints imposed by H1.

The informative prior can be found first by estimating the model as explained

above with an uninformed prior and the constraints ofH0. It is less clear what

the distribution of I(1, 0) actually is. The grid based method that have been

followed here, is essentially non-parametric. Possibly can some asymptotic

distribution be assigned, but in any case is boot-strapping possible.

4 Semi-parametric and parametric producer

models

With the non-parametric model of the previous section, it may happen that

the price and/or quantity information has obvious weaknesses that can be

mended with additional information. This is particular the case with respect

to price information, where the available information is found at market,

not at the firm. For example, information on the education of the farmer

may introduce price variations in the family labor applied on the farm and

explain the variance of the respective error term. Information on farmer’s

age may likewise explain the variance of quantity errors. Agricultural land

17



is another factor for which additional information may be appropriate. Data

on precipitation, length of growing season and average temperature indicates

the quality of the land and may explain the variance of quantity errors on

land. Data on acreage payments (not set-aside) may likewise come in on the

price side. Of course are acreage payments expected to carry over to land

rents, but this absorption need not be complete.

Farm surveys have most often rather detailed information on region. Re-

gional dummies can then be used for prices and/or quantities to explain

variation. With panel data one may even introduce farm dummies. Any

such additional explanatory variable will be comprised in a vector, zt. Their

eventual explanatory power can be tested with equations

p̂t = pt · exp(lnπt + γzt), x̂t = xt · exp(ln ξt + βzt)

to be incorporated in cross-entropy program. γ and β are here parameter ma-

trices to be determined. Such modeling is parallel to the use of instrumental

variables in standard econometrics.

In the GJM-approach are support points assigned also for such parame-

ters. This seems to be waste of computational resources. When cross-entropy

is minimized, the best values come up. There is no essential difference be-

tween these parameters and the parameters coming from minimization of a

log-likelihood function. Only when the probability distribution of the pa-

rameters are needed, a support is required. As these parameters carry no
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specific economic meaning, this part can in general be skipped.

A more relevant issue is whether these variables (or subsets thereof) actu-

ally improves the model. This is again an issue for testing as explained above.

Zero parameter values against optimized values. However, with the current

methodology it does not make sense to take zero values as H0. Optimized

parameters will then be brought to zero under cross-entropy-minimization,

and H0 can never be rejected. By working the other way with optimized

parameters as H0, the minimum cross-entropy will measure the minimum

loss of information due to parameter restrictions. If this loss is small, can H0

be rejected and parameters be kept zero for sake of simplicity.

Both non- and semi-parametric models can be converted to fully paramet-

ric ones by means of a parametric convex and linearly homogeneous transfor-

mation function, F (x;α) where α is a vector of parameters. (Unless strictly

required, the reference to the parameter vector will be skipped.) Such a func-

tion satisfies the subgradient inequality, ∂F (x̂s)x̂t ≤ F (x̂t), and the WAPM

relations can consequently be expressed in terms of the equations:

F (x̂t;α) = 0

∂F (x̂t;α) = p̂t

For estimation of α in the parametric model, much the same comments ap-

plies as with the parameters γ and β of the semi-parametric model. In gen-
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eral, the parameters themselves carry no specific economic meaning. Their

values and their probability distributions are irrelevant. What matters are

their contribution to the model when optimized. Is the model with a subset

of parameters fixed to 0 (or some other default value) a significantly poorer

model than the one with optimized values? Testing will show. This test-

ing is slightly different from testing γ and β because non-zero-parameters

are not associated with additional explanatory variables. Nevertheless, a

non-zero parameter may extract particular information from a variable, so

testing should proceed as above. Estimate first the model with parameters

optimized and a relatively uninformative prior. Use the resulting estimate of

the errors as an informative prior in the test-solve with zero parameters. If

the loss of information is small, parameters can be kept zero.

5 Concluding comments

The problem of estimating heterogeneous CRTS technologies with a common

structure has been posed and is solved with entropy econometrics. The solu-

tion is most likely not the only one, and possibly not the best one, but it seems

at least consistent. A prior distribution of the heterogeneity can be specified

and will be decisive when observations are few, but will be downplayed when

observations are numerous. In contrast, entropy based estimation following

Golan et al. (1996) is not consistent for this task. This may be part of the

explanation why successful application of their methods is reported mainly
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for single observation situations.

The suggested model will, if correct, constitute a significant extension of

entropy econometrics into models of multiple observations. The benefit from

entropy methods is in any case the ability to deal with ill-posed models. This

may bring relief to researchers in applied econometrics. Lots of assumptions

that are required with standard methods to get models identified, can now

be dropped. With less assumptions there are less tests to make and less

models to reject. This should make more time and effort available for testing

of economically relevant hypotheses.
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