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Bt Cotton Refuge Policy 
 

Introduction 

Concerns regarding the development of resistance in the bollworm and the budworm to 

cotton genetically modified to express Bacillus thuringiensis (Bt) toxins prompted the 

U.S. Environmental Protection Agency (EPA) to establish limits on the proportion of 

total acres individual producers may plant, representing the first attempt to regulate the 

development of insecticide resistance and the first instance of the use of refuge as a 

policy instrument.  Appropriate refuge proportions, however, are difficult to determine 

because of uncertainty over bollworm and budworm genetic resistance potential in the 

field and uncertainty over the complex relationship between insecticide resistance and 

insecticide use in the field, particularly considering the fact that cotton producers 

routinely spray Bt acres with conventional insecticides to manage yield damages 

associated with numerous insects.  The management of resistance can be viewed as an 

insecticide susceptibility, resource allocation problem (Carlson and Castle), and most 

economic (e.g., Hueth and Regev; Regev, Shalit, and Gutierrez; Plant, Mangel, and 

Flynn), entomological (e.g., Taylor and Headley, Georghiou and Taylor 1977a, 1977b), 

and operations research (e.g., Shoemaker 1973, 1979, 1982) studies have examined the 

single insect, single insecticide version.  Since cotton producers generally use toxin 

mixtures to manage yield damages associated with more than one insect, and since the 

use of toxin mixtures may influence the rate of resistance development to toxins used in 

mixtures (e.g., Georghiou, Curtis, Gould, Mani, Taylor, Caprio) the single insect, single 

insecticide model may not be well suited for the examination of refuge policies under 

realistic cotton production settings. 
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This note examines the influence of genetic resistance potential on treated and 

untreated refuge policies in an operational, deterministic cotton production system that 

accounts for producer use of conventional insecticides (Livingston, Carlson, and Fackler 

2000a, 2000b).  Static refuge policies maximize the present value of average producer 

profit in the state of Louisiana over five- and 10-year planning horizons, assuming 

producers plant Bt and non-Bt cotton and use synthetic pyrethroids to manage yield 

damages associated with bollworm and budworm populations.  The policy model 

incorporates standard, two-locus genetic models of bollworm and budworm, Bt cotton 

and pyrethroid resistance development (Livingston, Carlson, and Fackler 2000c); 

relationships between refuge policy, insecticide resistance, insecticide use, and producer 

profit; and profit maximizing Bt planting behavior and pyrethroid use.  The objective of 

this note is to examine relationships between refuge policies and genetic resistance 

potential.  Since the genetic resistance potential of bollworms and budworms in the field 

is uncertain it is useful to examine the magnitudes and directions of effects changes in 

genetic model parameters have on refuge policies.  Sensitivity analysis can indicate 

potential ranges for refuge policies based on available information, as well as which 

parameters are more important in terms of refuge policy informational requirements and 

future research on resistance potential.  The analysis is particularly important since the 

EPA is examining the viability of the current refuge policy. 

Model 

The policy model appears elsewhere and is only briefly summarized in this section 

(Livingston).  There are two types of cotton, Bt and non-Bt.  The collective actions of all 

Louisiana producers are characterized by a representative producer who chooses the 
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proportion of Bt cotton to plant in Louisiana at the beginning of each growing season to 

maximize average, statewide profit per acre.  The model of production is similar to those 

employed in earlier studies (e.g., Harper and Zilberman).  Bales per Bt and non-Bt acre at 

harvest are given by ( )( )tt
b ABdy ,1−  and ( )( );,1 tt

n ABdy −  where y is maximum 

obtainable yield per acre; db and dn are proportionate damages per Bt and non-Bt acre as 

functions of Bt, the proportion of Bt acres planted at the beginning of growing season t, 

and At, a four-by-one vector of bollworm and budworm, Bt cotton and pyrethroid 

resistance levels observed at the beginning of growing season t.  Average, statewide 

profit per acre is then given by 

 
Average profit per acre is profit per Bt acre, multiplied by the proportion of Bt 

acres planted, plus profit per non-Bt acre, multiplied by the proportion of non-Bt acres 

planted.  The price received by the representative producer for a bale of cotton at harvest, 

p, is held constant, as is maximum obtainable yield.  Proportionate yield damages, db and 

dn, and insecticide treatment costs, cb and cn, per Bt and non-Bt acre, however, are 

increasing functions of resistance levels, and profit per Bt and non-Bt acre will differ 

accordingly.  Only costs associated with the use of Bt cotton, pyrethroids, and other 

conventional insecticides are included in the producer’s cost functions.  The levels of all 

other productive inputs are held constant and assumed employed in profit-maximizing 

proportions independent of insecticide resistance or the proportion of Bt planted in 

Louisiana. 
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Refuge policies, R, maximize the present value of average producer profit per acre 

over a planning horizon that is T years long, solving ( )( );A,A,RB!max
T

t
ttt

R
∑

=1

π subject to 

the producer’s decision rule, ( ) ( ),A,BmaxA,RB tt
B

t
t

π≡  with ;T...t,RBt 10 =≤≤  the 

genetic, resistance development simulation models, [ ] ( )( );,,,, /
1 Θ≡+ tttt AARBGSA initial 

resistance levels, A1; the vector of parameters, �, characterizing bollworm and budworm 

resistance potential in the field; and the constraint .R 10 ≤≤  Since R represents the 

maximum proportion of Bt acres the representative producer may plant in any given year, 

1-R is the minimum, non-Bt refuge proportion. 

St is a four-by-one vector of insecticide survival rates of bollworm and budworm 

larvae facing Bt cotton and non-Bt cotton.  In the case of treated refuge policy, larvae 

face Bt and pyrethroids on Bt acres and pyrethroids on non-Bt acres.  In the case of 

untreated refuge policy, larvae face Bt and pyrethroids on Bt acres and no insecticides on 

non-Bt acres.  Larval survival rates depend on cotton and refuge policy types.  Likewise, 

yield damages and management costs depend on cotton and refuge policy types.  Larval 

survival rates, therefore, are used to link the refuge policy, the Bt cotton planting 

decision, and insecticide resistance to producer profit through the genetic models and the 

damage and cost functions.  See Livingston for a complete discussion of the methods and 

data used to estimate the parameters of the genetic, resistance development simulation 

models and the damage and cost functions. 

Costs and benefits of refuge policies are measured in terms of cotton producer 

profitability over finite planning horizons.  All other policy costs and benefits are 

ignored.  In particular, the long run profitability of the market supplier of Bt cotton is 
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ignored.  The costs of firm compliance and technology registration are ignored, including 

barriers to entry facing potential competitors that may be exacerbated by policy 

compliance.  Costs associated with deriving, initiating, maintaining, and enforcing the 

policy are ignored.  Costs associated with Bt and pyrethroid resistance in cotton insects 

that infest other transgenic Bt crops, fruit and vegetable crops in which producers rely on 

foliar Bt insecticides, and crops in which producers use pyrethroids are ignored.  The 

future availability of alternative pest management technologies is also ignored.  Cotton 

producer profitability provides a tractable measure of the costs and benefits associated 

with resistance management.  Producer profits do not capture all costs and benefits; 

however, the measure certainly captures some of the costs and benefits of resistance 

management. 

An interior solution to the resistance management problem equates the present 

value of average producer profits per acre to the present value of average resistance costs 

per acre over the planning horizon.  Ceteris paribus, refuge increases (decreases) when a 

parametric shift increases (decreases) the present value of average resistance costs per 

acre relative to the present value of average profits per acre.  Bollworm and budworm 

susceptibility to Bt is a resource that is mined more rapidly when higher proportions are 

planted.  As is the case with any resource, the efficient rate of exploitation decreases with 

the length of the planning horizon; accordingly, refuges increase with the length of the 

planning horizon.  Likewise, refuges increase with parameters that increase the present 

value of average resistance costs relative to the present value of average profits. 

Unit output price and insecticide treatment costs per acre are held constant for the 

Louisiana production region, which is on average responsible for only seven percent of 
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total U.S. cotton production (U. S. Department of Agriculture 1998).  Louisiana acre-

weighted averages are used to specify unit costs per acre.  The Bt technology fee is 

$32.00 per acre, and the costs of Bt and non-Bt seed per acre are ignored due to a low 

discrepancy between the two (Hubbell et al. 2000).  The cost of one pyrethroid 

application is $7.81 per acre, and is the cost of treating by air, weighted by the proportion 

of acres treated by air, plus the cost of ground treatment, weighted by the proportion of 

acres treated using ground sprayers in Louisiana for the 1998 crop year (Bagwell 1999).  

The cost of one conventional insecticide application is $15.00 per acre, which is a 

conservative estimate of the average unit cost of available insecticides used to manage 

bollworm and budworm populations. 

Output price is $305.67 per 480-pound bale, which is the average price received 

by U.S. producers over the 1987 to 1997 crop years (U. S. Department of Agriculture 

1998).  Data on pounds per harvested acre, total acres harvested, and total acres planted 

are used to estimate maximum obtainable pest-free bales of cotton per planted acre (U. S. 

Department of Agriculture 1998).  Pounds per harvested acre are deflated by the ratio of 

harvested to planted acres for the years 1987 to 1998 to obtain observations on pounds 

per planted acre.  Pounds per planted acre are inflated by five percent to adjust yields 

roughly for yield damages associated with the bollworm – budworm complex.  Average, 

seasonal bollworm – budworm complex yield damages for the state of Louisiana over 

this period are 3.4 percent, with a high of 7.5 percent and a low of 1.7 percent.  The five-

percent weighting factor provides a conservative estimate of the maximum obtainable 

yield.  The mean of this series, 1.5014, is pest-free bales per planted acre, which is 

assumed the same on Bt and non-Bt acres.  Treated and untreated refuge policies are 
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derived to maximize the present value of average profit per acre received by the 

representative producer over five- and 10-year planning horizons.  Profits received in 

future periods are converted into present value equivalents using an annual, three-percent 

interest rate and an appropriate discount rate schedule. 

Results 

The genetic simulation models used to predict bollworm and budworm, Bt and pyrethroid 

resistance development are specified using vectors of parameters that characterize 

bollworm and budworm genetic resistance potential in the field.  Since Bt became 

commercially available in 1996 sufficient field data on resistance measures are 

unavailable, thus parameters that characterize bollworm and budworm, Bt resistance 

potential in the field are specified exogenously based on available information.  Field 

data on pyrethroid resistance measures for both species, however, are available and are 

used to estimate parameters that characterize bollworm and budworm, pyrethroid 

resistance potential in the field.  The specified and estimated parameters are provided in 

Tables 1 and 2.  Livingston provides a complete discussion of the data, estimation 

procedures, and information sources. 

 Treated and untreated refuge policies are derived for various specifications of the 

genetic model parameters in order to examine relationships between refuge policies and 

genetic resistance potential.  Treated refuge policies allow producers to apply 

conventional insecticides on Bt and non-Bt acres; untreated refuge policies allow 

producers to apply conventional insecticides only on Bt acres.  Refuge policies and 

profit-maximizing Bt cotton planting proportions are computed using a simple grid 

search constrained to the finite set {0.00,0.01,0.02…0.98,0.99,1.00}, subject to estimates 
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of initial Bt and pyrethroid resistance levels in Louisiana at the beginning of the year 

1999 growing season. 

Treated Refuge Policies 

Figures 1 and 2 present treated refuge policies for different specifications of the 

degree of recessiveness of the inherited Bt resistance trait in both species for the five- and 

10-year planning horizons, beginning with the 1999 Louisiana crop year.  Recessiveness 

values are taken from the set {0.00,0.25,0.50,0.75,1.00} for bollworms and from the set 

{0.50,0.75,0.90, 0.99,1.00} for budworms.  Unless otherwise stated, genetic model 

parameters are set at the values provided in Tables 1 and 2, some of which are different 

from those specified earlier (Livingston; Livingston, Carlson, and Fackler, 2000c). 

Treated refuge policies are highly dependent on specifications of the degree of 

recessiveness of the inherited Bt resistance trait in both species.  Generally, treated refuge 

policies decrease with the level of recessiveness of the inherited Bt resistance trait, 

because resistance develops less rapidly in both species for any given statewide 

proportion of Bt planted.1 When bollworm recessiveness is 0.50 or 0.75, however, refuge 

policies decrease when budworm recessiveness is reduced from 0.75 to 0.50.  When 

budworm recessiveness is 0.50 and the bollworm inherits Bt resistance as a completely 

dominant, or as an intermediately dominant trait, Bt resistance levels at the beginning of 

the year 1999 growing season are very high, and the treated refuge proportion declines so 

that a higher proportion of Bt can be planted in the first growing season.  Bt is not planted 

                                                
1 Recall recessiveness parameters are constrained to the unit interval, [0,1].   Values close to 0 indicate 

dominant resistance inheritance, and values close to 1 indicate recessive resistance inheritance. 
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Table 1.   Estimated and specified genetic model parameters for the budworm. 

Cypermethrin Resistance Parameters 

Dependent Variable Average, annual budworm survival vs.  10 �g/vial cypermethrin 

Observations  12 

Parameter   Estimate St.  Error P-Value 95% C.I.____ 

Fitness cost   0.51068 0.10370 0.00116 [0.272,0.750] 

Recessiveness   0.83059 0.24933 0.01036 [0.256,1.406] 

Larval Mortalityg  0.85510 0.06898 0.00000 [0.696,1.014] 

Initial Frequency  0.00614 0.04018 0.88236 [-0.09,0.099] 

 
Regression Statistics  SSE  0.03414 TSS  0.19357 R2  0.82364 s2  0.00428 
 

Bt Cotton Resistance Parameters 

Parameter   Value      Source(s)___ 

Fitness cost   0.0000      a 

Recessiveness   0.8000      b 

Larval Mortality  0.9500      c 

Initial Frequency  0.0015      d 

 
Generations per season 3      e 

Generations per year  5      e 

Winter survival  0.0350      f 

_______________________________________________________________________ 
Sources and Notes: (a) Gould and Anderson, 1991.  (b) Van Duyn, 2000.  (c) Hardee et al., 1997; Lambert 
et al., 1998.  (d) Gould et al., 1997.  (e) Ralph Bagwell, 1999; Steve Micinski, 1999.  (f) Stadelbacher and 
Pfrimmer, 1972; Stadelbacher and Martin, 1980.
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Table 2.   Estimated and specified genetic model parameters for the bollworm. 
Cypermethrin Resistance Parameters 

Dependent Variable Average, annual bollworm survival vs.  5 �g/vial cypermethrin 

Observations  12 

Parameter   Estimate St.  Error P-Value 95% C.I.____ 

Fitness Cost   0.56973 1.25121 0.66097 [-2.316,3.455] 

Recessiveness   0.98343 1.28416 0.46578 [-1.978,3.945] 

Larval Mortalityf  0.94943 0.00878 0.00000 [0.929,0.970] 

Initial Frequency  0.00037 0.10718 0.99731 [-0.247,0.248] 

 
Regression statistics  SSE 0.00461  TSS  0.02287  R2  0.79828   s2  0.00058 
 

Bt Cotton Resistance Parameters 

Parameter   Value      Source(s) 

Fitness Cost   0.0000      a 

Recessiveness   0.5000      b 

Larval Mortality  0.6000      c 

Initial Frequency  0.0135 

Generations per season 2      d 

Generations per year  5      d 

Winter survival  0.0350      e 

 
________________________________________________________________________ 
Sources and Notes: (a) Gould and Anderson, 1991.  (b) Fred Gould recommended the 
interval [0.25,0.75].   (c) Hardee et al., 1997.  (d) Ralph Bagwell and Steve Micinski, 
1999.  (e) Stadelbacher and Pfrimmer, 1972; Stadelbacher and Martin, 1980.
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Figure 1 Treated refuge policies for the five-year planning horizon for various bollworm and 

budworm, Bt recessiveness specifications.   All other parameters are set at the values specified in 

Tables 1 and 2. 
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Figure 2 Treated refuge policies for the 10-year planning horizon for various bollworm and 

budworm, Bt recessiveness specifications.   All other parameters are set at the values specified in 

Tables 1 and 2.
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for the remainder of the five- or 10-year horizons in either case due to high levels of 

resistance arising from producer exploitation of the low treated refuge policy in the first 

growing season.  Treated refuge policies increase with the length of the planning horizon, 

since Bt cotton must be maintained as an effective management tool for relatively longer.  

Note that after 0.90 budworm recessiveness, treated refuge policies decline dramatically 

independent of the level of bollworm recessiveness.  Note also that the rate of decline of 

treated refuge policies over the [0.90,1.00] budworm recessiveness interval increases 

with the length of the planning horizon. 

      When budworm recessiveness is approximately complete, Bt resistance is managed 

efficiently with relatively small treated refuges.  Budworm susceptibility to Bt is 

conserved completely, but bollworm susceptibility is exhausted completely over the 

[0.90,1.00] budworm recessiveness interval for each planning horizon.  In terms of 

producer profitability, it is efficient to conserve budworm susceptibility but exhaust 

bollworm susceptibility over this interval for the five- and 10-year horizons.  As a result, 

treated refuge policies decline with budworm recessiveness irrespective of the level of 

bollworm dominance. 

Figures 3 and 4 display the relationship between treated refuge policies and the 

level of bollworm Bt mortality.  Treated refuge policies are derived for the same set of 

recessiveness values when bollworm Bt mortality is set at 80%.  As expected, treated 

refuge policies increase with the level of bollworm Bt mortality because Bt resistance 

develops sooner the higher the mortality rate for any given statewide proportion of Bt 

planted.  Under the base case parameters in Tables 1 and 2, treated refuge policies are  
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Figure 3 Treated refuge policies for the five-year planning horizon for various bollworm and 

budworm, Bt recessiveness specifications.    Bollworm and budworm Bt mortality are set at 80% and 

95%, respectively.   All other parameters are set at the values specified in Tables 1 and 2. 
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Figure 4 Treated refuge policies for the 10-year planning horizon for various bollworm and 

budworm, Bt recessiveness specifications.    Bollworm and budworm Bt mortality are set at 80% and 

95%, respectively.   All other parameters are set at the values specified in Tables 1 and 2. 
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relatively invariant with respect to increases in budworm mortality above 95%.  Treated 

refuge policies still decline over the [0.90,1.00] budworm recessiveness interval, 

irrespective of the level of bollworm recessiveness, and the rate of decline increases with 

the length of the planning horizon.  The same is true when bollworm and budworm, Bt 

mortality is set at 80 and 99%, respectively.  If budworm recessiveness is between 0.90 

and 1.00, present value maximizing treated refuge policies do not depend appreciably on 

the level of bollworm recessiveness.  If, however, budworm recessiveness is less than 

0.90, treated refuge policies depend on bollworm recessiveness. 

Untreated Refuge Policy 

Untreated refuge policies are sensitive to Bt recessiveness, however, the 

magnitude of the dependence is minimal relative to the treated refuge case.  This is 

because the estimated fitness cost of pyrethroid resistance is high for both species 

(Livingston; Livingston, Carlson, and Fackler 2000b).  As a result, susceptibility to 

pyrethroids is actually regenerated in both species under untreated refuge scenarios.  This 

in turn leads to toxin mixture effects that reduce the rate of Bt resistance in both species 

(Livingston).  It is, therefore, not surprising that minimum non-Bt refuge policies are not 

very sensitive to changes in Bt recessiveness.  Notice also that untreated refuge policies 

do not vary significantly with the length of the planning horizon when fitness costs are 

this high. 

Figures 5 and 6 present untreated refuge policies for various combinations of the 

fitness cost parameters.  Recessiveness is set at 0.50 and 0.80, and Bt mortality is set at 

0.80 and 0.99 for the bollworm and budworm, respectively.  As shown, untreated refuge  
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Figure 5 Untreated refuge policies for the five-year horizon for various fitness costs, 0.50 and 0.80 

recessiveness, and 80% and 99% Bt mortality for the bollworm and the budworm, respectively.  All 

other parameters are set at the values specified in Tables 1 and 2. 
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Figure 6 Untreated refuge policies for the 10-year horizon for various fitness costs, 0.50 and 0.80 

recessiveness, and 80% and 99% Bt mortality for the bollworm and the budworm, respectively.  All 

other parameters are set at the values specified in Tables 1 and 2. 
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policies decrease with bollworm and budworm fitness costs.  When fitness cost increases, 

relatively small untreated refuges lead to pyrethroid susceptibility regeneration and to 

toxin mixture effects that reduce the rate of Bt resistance development.  The effect is 

more pronounced in the bollworm since mortality is relatively higher in the bollworm, 

magnifying the impact of refuge on resistance development with changes in fitness cost.   

Note also that the effect of fitness on untreated refuge policies increases with the length 

of the time horizon. 

 The influence of fitness on untreated refuge policies depends on bollworm 

pyrethroid recessiveness.  At high fitness costs, levels of recessiveness at or below the 

estimated value have no effect on pyrethroid resistance; that is the base case value is 

effectively dominant.  To illustrate the influence of bollworm pyrethroid recessiveness on 

fitness cost effects, figures 7 and 8 present untreated refuge policies for various fitness 

costs when bollworm pyrethroid recessiveness is complete.  When bollworm pyrethroid 

recessiveness is complete, bollworm fitness cost no longer influences untreated refuge 

policies.  Over the five-year horizon, untreated refuge policies still decline with budworm 

fitness cost.  Over the 10-year horizon untreated refuge policies decline with budworm 

fitness cost, but then increase with fitness cost levels over 0.25.  Remarkably, untreated 

refuge policies actually decline with the length of the planning horizon.  When the 

bollworm inherits pyrethroid resistance as a completely recessive genetic trait, pyrethroid 

resistance develops very slowly in the bollworm, independent of the cost of fitness.  As a 

result, a significant pyrethroid toxin mixture effect is present which reduces the rate of Bt 

resistance development for any constant proportion of Bt cotton planted in the state of 
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Figure 7 Untreated refuge policies for the five-year horizon for various fitness costs, 0.50 and 0.80 

recessiveness, 80% and 99% Bt mortality for bollworms and budworms, respectively, and 1.00 

bollworm pyrethroid recessiveness.  All other parameters are set at the values specified in Tables 1 

and 2. 
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Figure 8 Untreated refuge policies for the 10-year horizon for various fitness costs, 0.50 and 0.80 

recessiveness, 80% and 99% Bt mortality for bollworms and budworms, respectively, and 1.00 

bollworm pyrethroid recessiveness.  All other parameters are set at the values specified in Tables 1 

and 2. 
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Louisiana.  This in turn reduces untreated refuge policies.  The toxin mixture effect on 

long run, discounted producer profit increases with the length of the planning horizon, 

reducing the need to conserve Bt susceptibility even more. 

Summary Remarks 

This note demonstrates the dependence of treated and untreated refuge policies on genetic 

simulation model parameters and on the length of the planning horizon.  Policy makers 

are urged to obtain as accurate a picture as possible regarding the potential the bollworm 

and the budworm possess for developing resistance to Bt cotton, as well as conventional 

insecticides that are currently being used with Bt cotton, or those that may be used with 

Bt cotton in the future.  An accurate representation of the complex dynamics associated 

with potential cross-effects on resistance and producer response must play a role in 

refuge policy design, since cotton producers will continue to use conventional 

insecticides when planting Bt cotton.  The length of the planning horizon and the arrival 

and availability schedule for alternative bollworm and budworm management 

technologies are of critical importance and should also be given due consideration. 
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