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ESTIMATION OF MINIMUM DEMAND THRESHOLDS:  

AN APPLICATION OF COUNT DATA PROCEDURES 

WITH THE EXISTENCE OF EXCESS ZERO OBSERVATIONS 

 

INTRODUCTION 

 Traditionally, rural economic development has been concentrated on the recruitment and 

attraction of export oriented goods-producing industries.  Industrial recruitment yields industries 

which are primarily export-oriented and provide a base for existing local economic sectors while 

generating input demands for further economic development.  Importantly for local economic 

development professionals, attraction of a goods-producing industry, such as manufacturing is 

highly visible.  The direct employment and income effects of the relocated industry are 

measurable and the local community economic development team usually reaps abundant media 

coverage.  

 Nonetheless, industrial recruitment programs prove to be costly, risky and often yield 

little payoff.  Rural communities are often unsuccessful at industrial recruitment because these 

communities have very limited resources (Hansen 1970).  In order to attract goods-producing 

industries, rural communities with meager resources often grant tax concessions to new or 

relocating firms thereby eliminating opportunities for fiscal gain (Kieschnick 1981, Shaffer 

1989).  Usually the outcome of this type of industrial recruitment is that the local tax burden of 

the resident populace in the local community increases because increased community services 

for the new industry are incurred without an expanding tax base due to the tax moratoria 

(Tweeten and Brinkman 1976).  Moreover, firms that are willing to relocate because of 

incentives and tax abatements are also likely to leave the community if other communities offer 
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better inducements.  Results of recent surveys (Smith and Fox 1990; McNamara and Kriesel 

1993) continue to show that planning commissions still emphasize the recruit of export oriented 

or goods-producing industries, while the pursuit of alternative economic development strategies, 

such as local services and retail sector development, are largely overlooked and often neglected.   

 Questions regarding the development and expansion of rural commercial sectors may be 

addressed by the economic development strategy of import substitution.  Import substitution 

seeks to replace goods and services imported from outside the area with local sources of supply 

(Shaffer 1989).  Import substitution strategies strengthen linkages within the local economy 

because expenditures remain inside the local economy instead of being lost to imports.  Also, 

keeping earned surplus within the local economy enhances local employment and incomes 

(Smith 1994).  For current and future time periods, local economic development strategies must 

give balanced emphasis to the formulation of import substitution strategies as well as relocation 

of goods-producing industries.  

 A commercial sector market analysis tool commonly used to estimate rural commercial 

sector activity is demand threshold analysis.  The demand threshold is defined as the minimum 

market size required to support a particular good or service and still yield an acceptable rate of 

return for the business owner (Berry and Garrison 1958a, 1958b; Parr and Denike 1970; Salyards 

and Leitner 1981; King 1984).  The concept is based on the internal economy of the firm and the 

characteristics of consumer demand.  As dictated by central place theory, the foundation for 

threshold analysis, thresholds are not absolute but vary by good and service.  Demand thresholds 

are usually measured in terms of population required to support one or more firms of a certain 

type.   
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 Empirical estimates of market thresholds are numerous (Berry and Garrison 1958a, 

1958b; Foust and Pickett 1974; Murray and Harris 1978; Salyards and Leitner 1981).  However 

all of these past studies employed ordinary least squares procedures and truncated data sets to 

estimate threshold levels for rural retail establishments.  Studies by Harris et al.  (1996), Harris 

and Shonkwiler (1996) and Wensley and Stabler (1998) have introduced use of count-data 

techniques when data is truncated.  

 This paper expands on previous count data research to incorporate hurdle model 

procedures when excess zero observations are realized.  Specific objectives are to review 

demand threshold analysis, discuss count data procedures when excess zeroes exist and review 

results of threshold demand results when excess zeroes are not addressed by count data 

procedures.  

 

A REVIEW OF MARKET THRESHOLD ANALYSIS 

 Threshold analysis is rooted in central place theory (CPT) in two ways.  First, CPT 

predicts that there is a direct and positive relationship between the population of the central place 

and the number of firms.  Here, number of functions can be proxied by the number of firms 

within the central place.  In other words, as the population of the central place increases, so do 

the number of firms within the place.   

 Second, and perhaps more fundamental, CPT predicts that goods will have a specific 

limitation to the size of their market in a spatial sense.  The radius of this market determines the 

range of the good.  The larger the range of the good, the larger the spatial size of the market 

supporting that good.  The key determinants of a good’s range are the demand for the good and 

the cost of supplying the good.  Specifically, the interaction of the Losch demand cone and the 
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firm’s average cost curve determines the range or market size of the good.  Given that the cost 

structure facing the firm is determined exogenously from CPT (i.e., factor prices and good’s 

production technology) the primary determinant of a good’s range, or spatial market, will be the 

characteristics of the good’s aggregate demand structure (i.e., demand cone).  A spatial 

equilibrium is achieved when the dollar volume under the demand structure is just sufficient to 

cover operating costs and allow an acceptable rate of return.  

 Threshold analysis attempts to proxy the demand structure for a good by relating 

population to the number of functions (i.e., number of businesses) within a particular central 

place.  Berry and Garrison (1958a, 1958b) suggested that this relationship can be expressed as  

 P Bβ= α  (1) 

where P is the place’s population, B is the number of businesses of a particular type within the 

place and α  and β  are parameters to be estimated.  The nonlinear specification follows from 

CPT.  In practice, the estimated equation is a double-log model.  Given estimates of α  and β , 

one may substitute B = 1 and solve for the population required to support one firm.  Hence, a 

proxy measure for the size of the supporting demand structure for the good is provided.  

 The use of this specification for estimating market thresholds raises several problems.  

First, the use of a logarithmic transformation affects the nature of the estimates produced.  The 

regression procedures estimate the logarithm of the number of businesses, not the number of 

businesses themselves.  The antilog of these estimates are biased estimates of the number of 

businesses (Haworth and Vincent 1979).   

 A second difficulty arises by the use of the logarithmic transformation when a place’s 

number of businesses for a particular type is zero.  Since the logarithm of zero is negative 

infinity, a small positive number is usually added to all observations or zero observations are 
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removed from the sample.  In rural areas where there are numerous places with no retail activity 

in some sectors, this difficulty can lead to serious problems.  Adding a small positive number 

will result in upward, nonparallel shift of the relationship and biased estimates of threshold 

populations.   

 A third problem many past researchers seemed to share was a reversal of the logical 

cause-effect relationship between population and number of businesses (Chrisman 1985).  Berry 

and Garrison (1958a) for example, regress number of businesses onto population.  Because the 

number of businesses is the random variable within the problem, placing it on the right-hand-side 

of the equation results in both biased and inconsistent estimates.  Not all threshold studies, 

however, are subject to this shortcoming (Foust and de Souza 1977; Foust and Pickett 1974).  

 A fourth shortcoming of the bulk of the empirical threshold literature is the sparseness of 

the specification of the estimated equation.  Numerous studies use population as the sole 

determinant of market demand.  As argued by Murray and Harris (1978) the number of 

businesses supported by a given population is influenced by many factors.  Other studies or retail 

activity have determined that socioeconomic factors, such as income levels and distribution, 

population density and spatial competition can dramatically affect the size and shape of the 

market demand cone (Deller and Chicoine 1989; Henderson 1990).  By omitting relevant 

variables, the parameter estimates will be biased.  

 A final problem concerns the use of OLS procedures to estimate numbers of businesses.  

Ordinary least squares assume that the number of businesses are normally distributed which 

implies that the possible values which can be taken by the random variable are normally 

distributed around the estimate.  There is little reason to suppose the values are normal.  In fact, 

the number of firms are non-negative and integer which would suggest count data procedures.  
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 Harris et al. (1996) and Harris and Shonkwiler (1996) applied count data procedures to 

estimate minimum demand thresholds at the county level.  Wensley and Stabler (1998) employed 

count data procedures to estimate demand thresholds for rural Saskatchewan at the local or 

community level.  In so doing, they highlighted a common observation that rural areas are 

characterized by lower demand thresholds and, therefore, higher frequency of business 

establishments relative to areas that are more proximate to urban centers, other things being 

equal.   

 However, when using county data procedures, overdispersion can be associated with a 

prevalence of zero data.  Employing regime-splitting zero inflated negative binomial or hurdle 

negative binomial the prevalence of zeroes in the data can be addressed.  These procedures 

correct for any heteroscedasticity associated with the count data model without accounting for 

the qualitative difference between zero and non-zero outcomes in the data generating process.  

 

STATISTICAL MODELS 

The alternative count-data specifications considered in this study are based on the Poisson 

distribution of random variable iY , with parameter λ i: 

 ( ; ) !, 0,1, 2,...i iy
i i i i ih y e y y−λλ = λ =  (2) 

In the context of regression, the parameter λ i is allowed to vary according to 

 ( ) var( ) exp( )i i i iE Y Y x′= = λ = β  (3) 

where ix  is a vector of explanatory variables for observation i and β is corresponding parameter 

vector. 
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Poisson Model 

The first statistical model we consider is the Poisson model.  Using (2), the sample likelihood 

function for an independent sample of n observations is 

 
1

( , ) ( ; )
n

i i
i

L y h y
=

β = λ∏  (4) 

where 1 2[ , ,..., ]ny y y y ′= .  Prediction and effects of explanatory variables are based on the 

conditional mean expression (3). 

 

Single-Hurdle Model 

Although the Poisson distribution admits zero values in the dependent variable, the sample used 

in this study contains a large proportion of zeros, which exceed what would typically be 

predicted by the Poisson model.  To accommodate these excessive zeros, we construct hurdle 

count models, which are motivated by the Gaussian hurdle specifications of Cragg (1971) and 

Blundell and Meghir (1987).  Consider latent variables *
id  for the binary outcome and *

iy  for the 

level outcome.  For the single-hurdle model, the observed value of the dependent variable iy  

relates to these latent variables such that1 

 
* *if 0

0 otherwise.
i i iy y d= >
=

 (5) 

Assume the binary outcome * 0id >  is governed by a Gaussian structure, with probit probability 

                                                
1  General procedure for constructing single-hurdle count model is discussed in Mullahy 
(1986) and Gurmu (1998). Pohlmeier and Ulrich use single-hurdle count model in modeling 
health-care demand. 
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2* / 21

Pr( 0) ( )
2

iz w
i id z e dw

′α −

−∞
′> = Φ α =

π∫  (6) 

where  and iz α  are conformable vectors of explanatory variables and parameters.  In (6), ( )Φ ⋅  is 

the standard normal cumulative distribution function.2  Then, the probability mass for 

observation i takes the form 

 
*

*

Pr( 0) if 0

( ; | 0) Pr( 0) if 0.

i i

i i i i i

d y

h y y d y

≤ =

λ > > >
 (7) 

Using (2), (5), (6), and (7), the sample likelihood for the single-hurdle model is 

 [ ] [ ]
0 0

( , ; ) 1 ( ) ( ) ( ; ) 1 (0; ) .
i i

i i i i i i i
y y

L y z z h y h
= >

′ ′α β = − Φ α Φ α λ − λ∏ ∏  (8) 

In (8), [ ]( ; ) 1 (0; )i i ih y hλ − λ  is the probability mass of the truncated Poisson where 

(0; ) i
ih e−λλ = , using (2).  This model corresponds to the continuous (Gaussian) single-hurdle 

specification of Cragg (1971, equations (7) and (9)).  Because the likelihood function (8) is 

separable in α and β, estimation can be carried out by a probit estimation (for α) using the full 

sample, and a truncated regression (for β) using the truncated sample ( 0iy > ).  Prediction and 

effects of explanatory variables can be based on the probability, conditional mean, and 

unconditional mean of iy , respectively: 

 ( 0) ( )i iP y z ′> = Φ α  (9) 

 [ ]( | 0) 1 (0; )i i i iE y y h> = λ − λ  (10) 

                                                
2  The first-hurdle probability can be composed with alternative distributions such as the 
Poisson, negative binomial (2), and exponential distributions.  It is easy to show that use of a 
count distribution for the binary outcome amounts to an upper censored (at one) count 
regression, but we find that use of discrete probability distributions presents no advantage over 
the Gaussian distribution in modeling the binary outcomes.  Mullahy (1986) points out that use 
of the exponential distribution, along with an exponential parameterization similar to that of (3), 
yields the familiar logistic probability for the first hurdle. 
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 [ ]( ) ( ) 1 (0; )i i i iE y z h′= Φ α λ − λ  (11) 

Population threshold estimates are calculated from the conditional mean (10) and unconditional 

mean (11), respectively.  Further, elasticities with respect to explanatory variables can be derived 

by differentiating these expressions.  These expressions also imply that the elasticities of 

probability (9) and conditional mean (10) with respect to a variable (say ijx , a common elements 

of  and i iz x ) add up to the elasticity of unconditional mean (11). 

 

Double-Hurdle Model 

Another specification, common in the continuous case literature but rarely (if any) considered in 

count modeling, is the double-hurdle model.3  The double-hurdle model features an additional 

censoring mechanism to generate zeros.  Drawing on the continuous case of Blundell and Meghir 

(1987) and Cragg (1971, equations (5) and (6)), the probability of a zero observation is 

 * * * * *Pr( 0) Pr( 0) Pr( 0) 1 Pr( 0) Pr( 0)i i i i id d y d y≤ + > ≤ = − ≤ ≤  (12) 

The probability of a positive observation is 

 * * * *Pr( 0) ( , | 0) Pr( 0)i i i i iy h y y d> λ > >  (13) 

Using (2), (5),  (12), and (13), the sample likelihood for the double-hurdle model is 

 [ ]{ }
0 0

( , ; ) 1 ( ) 1 (0; ) ( ) ( ; )
i i

i i i i i
y y

L y z h z h y
= >

′ ′α β = − Φ α − λ Φ α λ∏ ∏  (14) 

It is interesting to note that by reparameterizing γ = −α so that ( ) 1 ( )i iz z′ ′Φ γ = − Φ α , the 

likelihood function (14) corresponds to the zero-inflated Poisson specification of Lambert 

                                                
3  One exception appears to be Shonkwiler and Shaw (1997), who propose double-hurdle 
model count models for recreational demand modeling.  We are not aware of any empirical work 
based on double-hurdle count models.  
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(1992), which was proposed to accommodate excessive zeros in the sample.  As in the single-

hurdle model, prediction (population threshold estimates) and effects of explanatory variables are 

based on the probability, conditional mean, and unconditional mean: 

 [ ]( 0) ( ) 1 (0)i iP y z h′> = Φ α −  (15) 

 [ ]( | 0) 1 (0)i i iE y y h> = λ −  (16) 

 ( ) ( ) ( )i i i i iE y z z′ ′= Φ α λ = Φ − γ λ  (17) 

As the Poisson, single-hurdle, and double-hurdle models are not nested, selection among these 

competing specifications can be carried out by Vuong’s (1989) nonnested specification test.  In 

particular, let f and g be n-vectors containing the log-likelihoods of competing models. ι  be an n-

vector of ones, and define d = f − g.  Then, Vuong's standard normal statistic (Vuong 1989, equation  

(5.6)) can be calculated as z d d d d n= ′ ′ − ′ι ι/ [ ( ) / ] /2 1 2 . 

 

DATA AND SAMPLE 

Data used in this study are compiled from two primary sources: the 1990 Census of Population 

and Unemployment Compensation Insurance files (ES202) maintained by the Wisconsin 

Department of Workforce Development.  Because of the nature of the firm count data (i.e., 

ES202) smaller firms that do not meet the minimum requirement for reporting are lost to the 

analysis.  Generally, these small firms, commonly referred to as “mom n’ pop” operations, have 

limited impacts on local markets, hence any bias from undercounting firms is assumed to be 

minimal.  Data are for all 1747 municipalities in Wisconsin.  In this study we investigate the 

grocery sector, focusing on sampling units with population between 100 and 5,000.  A smaller 

proportion of observations with missing data for important variables are excluded.  This leaves a 

final sample of 1,588 observations for analysis. 
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 The dependent variable is the number of establishments (grocery stores).  The 

explanatory variables include population, percentages of population over 65 and under 18, 

medium household income, proportion of commuters, proportion of urban population, and the 

proportion who live under poverty as defined in the 1990 Census.  Sample statistics for all 

variables are presented in Table 1. 

 Table 2 presents the frequency distribution of the dependent variable (number of grocery 

stores).  Among the sample, 1197 towns (75%) record no grocery stores.  The large proportion of 

zero observations suggest that failure to accommodate these excessive zeros are likely to lead to 

unreliable results. 

 

RESULTS 

Parameter Estimates 

The Poisson, single-hurdle, and double-hurdle models are estimated with maximum-likelihood 

method, based on the likelihood functions (4), (8), and (14), respectively.  Results of Vuong’s 

nonnested tests, presented in Table 3, suggest that the single-hurdle and double-hurdle models 

both outperform the Poisson model.  Further, contrary to findings in much of the Gaussian hurdle 

literature, the double-hurdle model does not perform better than the single-hurdle model at the 

10% level of significance, suggesting that zeros are governed entirely by the Gaussian process 

and the additional hurdle in the double-hurdle model is not an effective censoring mechanism. 

 Maximum-likelihood estimates of all models are presented in Table 4.  At the 10% level 

of significance, all but one variables are significant in the Poisson model, whereas significance is 

more sparse in the single-hurdle and double-hurdle models.  Population, percent of population 

over 65, and proportion living under poverty are significant in both the binary and level 
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processes in the double-hurdle model, while only population is significant in both processes in 

the single-hurdle model.  Differences between the single-hurdle and double-hurdle results appear 

quite notable.  For instance, the percent of population under 18 and medium household income 

are significant in the binary process but not in the level process, while the results are opposite for 

the double-hurdle model, with the two variables affecting level but not binary. 

One of the major purposes in estimating these econometric models is calculation of 

minimum demand thresholds.  These thresholds are calculated based on the mean expression for 

the Poisson model, and conditional and unconditional means for the two hurdle models 

suggested above.  The results are presented in Table 5.  The Poisson model gives higher 

threshold at one establishment but tends to give more conservative threshold estimates at higher 

counts than the two hurdle models.  The single-hurdle model also produces higher 

“unconditional” demand thresholds than the double-hurdle model. 

 Threshold estimates are often calculated from more simplified empirical estimates such 

as the ordinary least-squares estimates.  This highlights the importance of using the hurdle 

models to estimate population thresholds.  The hurdle models allow calculation of “conditional” 

demand thresholds, which can be more useful than the unconditional estimates.  For instance, the 

conditional threshold estimate suggests the population required to support two establishments, 

conditional on the “fact” that one establishment is already existent.  The conditional results, also 

presented in Table 5, suggest uniformly more conservative threshold estimates than their 

unconditional counterparts between the two hurdle models considered. 

As the three models are parameterized differently, effects of explanatory variables can be 

evaluated further by calculating elasticities.  The results, presented in Table 6, suggest that the 

effects of explanatory variables on the probability and level (number) of grocery stores vary, 
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notably so in some cases, across models.  For instance, the elasticities of conditional level with 

respect to all variables are insignificant, whereas the elasticities of probability are significant 

with respect to all but two variables (proportion who commute, proportion living in urban area).  

Thus, the explanatory variables affect the number of grocery stores through probability and not 

level.  Elasticities for the double-hurdle model, on the other hand, suggest that these variables 

can affect both the probability and number of grocery stores.  For instance, the elasticities of 

probability, conditional level and unconditional level (number) of grocery stores with respect to 

percent of population under 18 years old are all significant and positive, whereas the 

corresponding elasticities with respect to proportion who commute are all negative and 

significant.  The Poisson model suggests very different elasticities.  For instance, the results 

suggest that when population increases by 1 percent, all else equal, the number of grocery stores 

increases by 0.63 percent.  The corresponding (unconditional) elasticities are both under 0.30.  

The elasticity with respect to proportion under poverty (−0.47) is also notably different from the 

corresponding elasticities in the single-hurdle model and double-hurdle model. 

 

CONCLUDING REMARKS 

Previous analysis of demand thresholds are often based on over-simplified statistical procedure 

such as the ordinary least squares.  More recent studies use count-data regression models.  

Although the probability mass functions used in the count-data model admits zero values in the 

dependent variable, the excessive zeros in some of the samples often cannot be predicted by 

traditional count-data models.  The hurdle count specifications considered in this study 

accommodate the excessive zeros by allowing for separate stochastic processes that generate the 

zero and positive counts and provide the flexibility in modeling count outcomes.  Our findings 
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suggest that failure to accommodate the excessive zeros may cause notably different threshold 

estimates.  While the hurdle specifications considered in this study are based on the basic 

Poisson distribution, further study might consider generalization of these framework to more 

generalized specifications such as the single-hurdle and double-hurdle negative binomial models. 
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Table 1.  Sample Statistics (Sample Size = 1588) 

Variable Mean Std. dev. 

Number of grocery stores  0.33  0.67 

Population (thousands)  1.11  0.90 

Percent of population over 65  14.70  6.14 

Percent of population under 18  28.10  4.57 

Medium household income (thousands)  27.33  8.41 

Proportion of commuters  18.56  9.05 

Proportion living in urban area  1.97  12.95 

Proportion living under poverty  6.20  4.55 

SOURCE:  1990 Census of Population 

 

Table 2.  Frequency Distribution of Number of Establishments: Groceries 

Number of 

Establishments 

 

Frequency 

Number of 

Establishments 

 

Frequency 

0  1197 3  21 

1  287 4  5 

2  77 5  1 

SOURCE:  Wisconsin Department of Workforce Development, Unemployment Compensation Insurance Files 

(ES202) 
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Table 3.  Voung’s Standard Normal Statistics for Nonnested Tests of Hypotheses 

Model (log-likelihood) Single-Hurdle Double-Hurdle 

Double-Hurdle (−949.06)  − 

Single-Hurdle (−940.33) − 1.22 

Poisson (−973.57) 3.96 3.60 

 
Note: Test statistic is distributed as standard normal. 
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Table 4.  Maximum-Likelihood Estimates 

 

  Single-Hurdle Model   Double-Hurdle Model  

 

Poisson 

 Binary Level  Binary Level 

Constant  −3.817‡   −3.997‡  −0.872   −0.480  −4.244‡ 

  (0.752)   (0.644)  (1.753)   (2.050)  (1.097) 

Population   0.570‡   0.533‡  0.455‡   0.493‡  0.448‡ 

  (0.036)   (0.048)  (0.062)   (0.165)  (0.050) 

Percent of population over 65  0.113‡   0.125‡  0.039   0.173‡  0.092‡ 

  (0.012)   (0.012)  (0.026)   (0.043)  (0.018) 

Percent of population under 18  0.074‡   0.086‡  −0.030   −0.031  0.104‡ 

  (0.015)   (0.013)  (0.038)   (0.047)  (0.026) 

Medium household income  −0.049†   −0.040‡  0.005   −0.034  −0.031‡ 

  (0.011)   (0.009)  (0.025)   (0.030)  (0.014) 

Proportion who commute  −0.012†   −0.007  −0.036‡   0.017  −0.020‡ 

  (0.007)   (0.005)  (0.017)   (0.019)  (0.008) 
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Table 4 continued  
 

Proportion living in urban area  −0.002   0.003  −0.138   0.014  −0.002 

  (0.004)   (0.003)  (1.082)   (0.029)  (0.006) 

Proportion under poverty  −0.075‡   −0.074‡  0.015   −0.093‡  −0.044‡ 

  (0.015)   (0.012)  (0.033)   (0.039)  (0.022) 

Log-likelihood  −973.57  −940.33  −949.06 

Note:  Asymptotic standard errors in parentheses.  Daggers ‡ and † denote significance at the 5% and 10% levels, respectively. 



 

 

23 

Table 5.  Population Thresholds 

Number of Poisson  Single-Hurdle  Double-Hurdle 

Establishments   Unconditional Conditional  Uncondition
al 

Conditional 

 1  3,729   3,582  −   3,383  − 

 2  4,945   5,350  4,790   4,848  3,603 

 3  5,657   6,386  6,047   5,741  4,878 

 4  6,161   7,068  6,770   6,381  5,613 

 5  6,553   7,575  7,290   6,878  6,140 

 6  6,873   7,981  7,701   7,285  6,557 
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Table 6.  Elasticities of Conditional Mean with respect to Continuous Variables 
 

 Poisson  Single-Hurdle Model   Double-Hurdle Model  

    
Prob. 

Cond. 

Level 

Uncond. 

Level 

  

Prob. 

Cond. 

Level 

Uncond. 

Level 

Population   0.63‡   0.21‡  0.06  0.27‡   0.16  0.09‡  0.24† 

  (0.04)   (0.02)  (0.13)  (0.13)   (0.14)  (0.01)  (0.14) 

Percent of population 65+  1.66‡   0.65‡  0.07  0.72‡   −0.07  0.24‡  0.17 

  (0.17)   (0.06)  (0.16)  (0.17)   (0.49)  (0.04)  (0.51) 

Percent of population 18−  2.08‡   0.84‡  −0.11  0.74‡   2.81‡  0.52‡  3.33‡ 

  (0.43)   (0.13)  (0.25)  (0.29)   (1.06)  (0.15)  (1.18) 

Medium household income  −1.35‡   −0.39‡  0.02  −0.37‡   −0.27  −0.15‡  −0.42 

  (0.30)   (0.09)  (0.09)  (0.13)   (0.62)  (0.07)  (0.67) 

Proportion who commute  −0.23†   −0.05  −0.08  −0.13   −0.46†  −0.07‡  −0.52‡ 

  (0.13)   (0.03)  (0.18)  (0.18)   (0.25)  (0.03)  (0.27) 

Proportion living in urban area  −0.00   0.00  −0.03  −0.03   −0.02  −0.00  −0.02 

  (0.01)   (0.00)  (0.20)  (0.20)   (0.03)  (0.00)  (0.03) 

Proportion under poverty  −0.47‡   −0.16‡  0.01  −0.15‡   0.04  −0.05  −0.01‡ 

  (0.09)   (0.03)  (0.04)  (0.04)   (0.21)  (0.02)  (0.23) 

Note:  Asymptotic standard errors in parentheses.  Daggers ‡ and † denote significance at the 5% and 10% levels, respectively. 


