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Abstract

Agricultural nonpoint pollution isinherently stochastic (e.g., due to weather). In theory, this randomness
hasimplicationsfor the choice and design of policy instruments. However, very few empirical studies have
modeled natural variability. This paper investigates the importance of stochastic processes for the choice
and design of alternative nonpoint instruments. The findings suggest that not explicitly considering the

stochastic processes in the analysis can produce significantly biased results.
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I ntroduction

Agricultural nonpoint source pollution, especially nutrient runoff, is a maor source of many
remaining U.S. water quality problems (USEPA and USDA, 1998). Aseffortsto control these sources are
beginning to take shape (USEPA and USDA, 1998; Ribaudo, Horan, and Smith, 1999), there is a growing
need for economic analysis that can guide the selection and design of policy instruments. However, the
existing literature on the relative efficiency of alternative nonpoint pollution control instruments (e.g.,
Helfand and House, 1995; Larson, Helfand, and House, 1996; Flemming and Adams, 1997; Moxey and
White, 1992; Shortle, Horan, and Abler, 1998; Claassen and Horan, forthcoming; Horan et al., 1999;
Hopkins, Schnitkey, and Tweeten, 1996; Taylor, Adams, and Miller, 1992; Huang, Shank, and Hewitt, 1996;
Mapp et al., 1994) is still far from a consensus on what types of instruments represent good economic
policies (Shortle, Horan, and Abler, 1998).

One reason for these mixed economic results may be, at least in part, alack of convention in how
nonpoint pollution problems are modeled empirically. Nonpoint problems are characterized by several
important features, such asstochastic and unobservable emissions, significant heterogeneity in environmental
impacts and large numbers of polluters (Braden and Segerson, 1993; Shortle and Abler, 1997). However,
different studies account for these features differently. Thislack of convention istroublesome because the
importance of specific nonpoint characteristicsisunclear. Recent studieshavebegunto rectify thisproblem.
For instance, several studiesindicate that it isimportant to design instruments to account for heterogeneity
(e.g., Carpentier, Bosch, and Batie, 1998; Flemming and Adams, 1997; Claassen and Horan, forthcoming;
Horan et a., 1999), although this finding is not applicable to all situations (Helfand and House, 1995).
Indeed, since individual studies typically only focus on a particular water quality problem in a particular
geographical area, the robustness of any results pertaining to the importance of nonpoint features is a
concern.

The highly stochastic nature of nonpoint pollution is of particular interest (Braden and Segerson,
1993; Shortle and Abler, 1997). One implication of stochastic pollution is that the economic benefits of
pollution control are also stochastic. If these benefits depend nonlinearly on emissions, then a degree of
(environmental) risk is associated with production and pollution control choices.? We use the term risk to
indicate that there are economic benefits to controlling moments of the distributions of environmental and
economic outcomes other than just mean emissions. Thus, we distinguish between risk and the level of
stochasticity. Risk depends on both the level of stochasticity and the economic value associated with
stochasticity.

Risk isimportant to the extent that it influences optimal policy design and rel ated outcomes. Indeed,



stochastic processes are potentially important in determining the relative efficiency of policy instruments,
assomeinstrumentsaccount for risk better than others(Shortle, Horan, and Abler, 1998; Horan et al ., 1999).
For example, input-based instruments can be designed efficiently to account for the risk-effects created by
the use of each input. 1n contrast, instruments based on mean emissions cannot account for all of these risk-
effects, and hence cannot be efficient (Shortle, Horan, and Abler, 1998; Shortle and Dunn, 1986).

Relatively few empirical studies have actually modeled stochastic pollution in a meaningful way
(e.g., McSweeny and Shortle, 1990; Mapp et a., 1994; Teague, Bernardo, and Mapp, 1995). Instead, most
studies are either based on a deterministic specification or only consider policy goals that limit mean
environmental impacts, such as mean emissions or alinear aggregation thereof, and do not account for other
distributional moments (of environmental impacts) that may have important economic implications (e.g.,
Helfand and House, 1995; L arson, Helfand, and House, 1996; Litner and Weersink, 1999; Moxey and White,
1994; Flemming and Adams, 1997; Huang, Shank, and Hewitt, 1996; Hopkins, Schitkey, and Tweeten, 1996;
Taylor, Adams, and Miller, 1992; Yiridoe and Weersink, 1998; Carpentier Bosch, and Batie, 1998; Claassen
and Horan, forthcoming).® In contrast, many actual policiesfocus on distributional moments other than the
mean. Examples include treatment requirements for drinking water or capacity regulations for manure
storage, both of which are highly attuned to low probability events(e.g., low levels of pathogensin drinking
water or a100 year flood) that have significant health and/or economic impacts (U.S. EPA, 1993; Ohanian,
1992). Hence, empirical studies that do not consider distrubutional moments other than the mean may
provide insufficient or even misleading input to the policymaking process.

The objective of this paper is to investigate the economic consequences of not accounting for
stochasti ¢ processes when designing and comparing alternative nonpoint pollution control instruments. This
important question remains largely unanswered in the literature.* We begin with a conceptual model to
illustrate theissuesinvolved. Next, asimulation is developed to compare the environmental and economic
impactsof variousinstrumentswhen designed under deterministic and stochasti c specificationsfor nonpoint
processes. The simulation is constructed as an experiment to determine potential impacts under a wide

variety of situations.

A Model of Nonpoint Pollution

Following Shortle, Horan, and Abler (1998), assume a particular resource (e.g., alake) is damaged
by a single residua (e.g., nitrogen). Economic damages, D, are an increasing function of the ambient
concentration of the residual, a, i.e.,, D=D(a), D’>0. Ambient pollution depends on emissions from

nonpoint sources, r; (i = 1, 2,..., n), natural generation of the pollutant, {, stochastic environmental variables
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that influence transport and fate, 6, and watershed characteristics and parameters, , i.e,

a=a(ry,r,...,r, ¢ 6, ¥) (da/dr, >0 Vi). Nonpoint emissionscannot beobserveddirectly (at |east

not at an acceptable cost) and, via stochastic variations in environmental drivers (e.g., weather), are
stochastic. Accordingly, nonpoint sourcescan only influencethe distribution of their emissions. Emissions
depend on an (mx1) vector of variable inputs, x;, site-specific, stochastic environmental variables, v;, and

Site characteristics (e.g., soil type and topography), «;. Therelationship for siteiisr, = r,(x, v;, o).

Risk and Instrument Design

Throughout this paper, weanalyzeinstrumentsdesigned to maximizethe expected net social benefits
from production.® Assuming firms are price-takers operating in undistorted, competitive markets, the
expected socia net benefits from production are defined as consumers’ surplus, plus firm quasi-rents, plus
any rentsthat accrueto factorsof production not supplied at constant cost to theindustry, minusthe expected

damages from pollution.

First-best input taxes

To see how risk may be important, consider a set of firm-specific taxes applied to each input that
influencesemissions. Theefficient (first-best) tax rates applied to risk-neutral, profit-maximizing firmsare
of the form (Shortle, Horan, and Abler, 1998)

rij:E{D/(a*)}E{%}E{Z;}+E{D/(a*)}cov{aa;?:,Z;j}wov{D/(a*),a;:%} vij (1)
where T isthetax applied to thejth input of theith firm, and wherethe superscript * indicatesthat theRHS
expression is evaluated at the ex ante efficient solution. The optimal tax rate for input j for firmi equals
expected marginal damages, times the expected marginal increase in ambient pollution levelsfrom firmi’'s
emissions, times the expected increase in emissions from increased use of input j at the margin, plus two
covariancetermsthat act asrisk premiums or rewards, depending on the signs. Thetax rate may be positive
or negative depending on the signs and relative magnitudes of the three RHS terms in equation (1).

The sign of the first RHS term will be positive for pollution-increasing inputs and negative for
pollution-decreasing inputs. The signs of the risk terms are ambiguous without further specification. If a
is convex in runoff, then the first covariance termis of the same sign as oVar (ri*)/axij . Thus, whenais

convex, risk and hence t;; areincreased when an increase in the use of the input increases the variance of



runoff.® Similarly, when D" >0, risk and hence T are increased when an increase in the use of the input
increases the variance of a. However, if a is concave in runoff and/or if D’ <0, then increases in the
variance of runoff and/or ambient pollution have the opposite effect on t; ;- Greater variability of
environmental outcomes would be socially beneficial in such cases, which are quite plausible. Ecosystem
heal th and associated economic impacts may berealistically modeled by “ S’ shaped impact functionswhich
have both convex and concave segments (Hershaft et al., 1978). In any case, thefirst risk termis generally
nonzero when ambient pollution isanonlinear function of emissions, whilethe second risk termisgenerally
nonzero when damages are a nonlinear function of ambient pollution.

The risk terms are clearly important to the extent that they affect instrument levels and have
economic consequences. Accordingly, policy prescriptionscould besubject to significant error if instrument
levelsarederived from adeterministic model (amis-specified model inwhich thedistributionsof all random
variables are ignored) when, in reality, pollution is stochastic and risk is important. This can be seen by

comparison of (1) to tax rates derived from a mis-specified model, which are of the form

ga** or;

/
T =D/(a)Ld___
ij ( ) ari axij

Vi )
where the supercript ** denotes that the RHS expression is evaluated at the optimal solution from the mis-
specified model.

Thetax ratesdefined in (2) differ fromthosein (1) inthreerespects. First, there are no expectations
operatorsin (2) sincethe mis-specified model isdeterministic. Thus, other thingsbeing equal, thefirst RHS
term in (1) will differ from the RHS of (2). Analytically, the sign of this difference is ambiguous and
depends on the distributions of the random variables and how they enter into environmental relations and
marginal damages. Consider the marginal damageterm asan example. Only the means of random variables
will matter if marginal damagesare alinear function of the random variables, whereasthe means, variances,
and covariances of the random variables will matter if marginal damages are a quadratic function of the
random variables. Failure to account for these moments can therefore affect the level of the tax and,
accordingly, input use by firms -- even those inputs that have no risk-effects. Other things being equal, a
positive (negative) difference between the first RHS term in (1) and the RHS of (2) indicates that taxes
derived from the mis-specified model will be too low (high) and will not fully transmit the costs (benefits)
that this term represents.

A second differenceisthat therearenorisk termsin (2). Thetax rate ri/ ; therefore does not account

for social costs stemming from environmental risk. The implication is that more risk will result in larger
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taxes and smaller subsidiesin (1) than in (2), other things being equal, and thus the alocation of pollution
control efforts acrossinput choices and individual firmswill differ between the two models. Therewill be
incentives under the mis-specified model for firms to use risk-increasing inputs at inefficiently high levels
and to under-employ risk-reducing inputs. Additionally, firmswith greater contributions to environmental
risk at the margin will face incentives to adopt inefficiently lax pollution controls while firms with smaller
risk contributionswill faceincentivesto adopt i nefficiently stringent control swhen the mis-specified model
isapplied. The differences in the pollution control alocations that arise from the two models may have
important implicationsfor the allocation of economic gains and losses to those with an economic interest in
pollution control.

A final point of comparisonisthat the allocationsat which (1) and (2) are evaluated will differ. The
guantitative implications of this difference are generally ambiguous without further specification. Asan
example, suppose pollution-increasing and risk-increasing inputs are positively correlated and that damages
and all environmental relationsare convex. With risk-increasing inputsbeing used inlarger quantitiesunder
(2) (duetothelack of risk-terms), marginal damagesand margina environmental impactswill belarger. The
effect isalarger tax in (2), somewhat offsetting the lower tax rates that result when there are no risk-terms.
Other specifications may exacerbate differences in tax rates. Generally, differences between (1) and (2)
depend on the specification of the model, with the shape of the damage, ambient, and emissions functions,

aswell as substitution, output, and price effects being particularly important.

Second-best instruments

Similar comparisons can be made for second-best instruments. Theform of second-best input taxes
that are applied uniformly across producers (when adifferentiated structureis preferred) to only asubset of
inputs that affect emissions, and the form of second-best, uniformly applied taxes based on expected
emissionsarederivedin Shortle, Horan, and Abler (1998) and Horan et al. (1999) and are presentedin Table
1 for both the correctly-specified and mis-specified models.” Ineach case, the single correct tax rate depends
on covariance terms involving al producers and al inputs, whereas a first-best tax rate depends only on
convariancesinvolving asingleinput used by asingle producer. These additional covariances, which occur
because the instruments are not differentiated across producers and their input use, represent additional
sources of divergence between the correctly-specified and mis-specified models, relative to the first-best
case.

Deterministic modeling efforts can affect the (perceived and actual) rel ative economic performance

of aternative instrumentsin addition to their absolute performance. For example, ambient taxes and taxes
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based on mean emissions may appear to be first-best under a deterministic specification, but they can only
be second-best in a stochastic setting (Horan, Shortle, and Abler, 1998; Shortle and Dunn, 1986). Thisis
because instruments based on mean environmental performance do not adequately provide incentives for
firms to consider how their choices impact the variance and higher moments of the distribution of

environmental outcomes.

A Simulation M odel

Little can be said analytically about how the design of different instruments and their associated
economic consequences might beaffected by deterministic modeling when pollutionisstochastic. However,
we should be able to say something of policy relevance by specifying the model in a realistic fashion.
Therefore, to gain further insight, we have developed a simulation experiment involving one thousand
independent, hypothetical watersheds. The use of hypothetical watersheds permits complete control over
the design of the experiment and, by comparison to one or a small number of case studies of actual
watersheds, increases our ability to investigate these issues for a variety of conditions. Although the
watersheds are hypothetical, significant effort was taken to ensure the relationships are representative of
more realistic settings, particularly those involving agricultural sources -- the most important source of
remaining water quality problemsin the U.S. (USDA and USEPA, 1998).

The simulation model has the same general structure as standard conceptual models of agricultural
nonpoint pollution (e.g., Shortle and Dunn, 1986; Shortle, Horan, and Abler, 1998). Specifically, each
watershed containsfour nonpoint sources, where each source essentially represents classes of producersthat
vary according to cost structure and environmental impacts. These variations are taken to occur at the sub-
watershed level, so that each source represents aggregate production within a region. Producers in each
region operate in competitive markets, taking prices as given, although the commodity (corn) price is
endogenousto the watershed and land prices are endogenousto each region.? Productionisatwo-level CES
function of acomposite ‘biological’ input (land and fertilizer) and a composite ‘ mechanical’ input (capital
and labor). Details of production and input and output markets are provided in the appendix.

Nonpoint emissions (runoff) per acre areinfluenced by excessfertilizer use(i.e., fertilizer not taken
up by the crop) per acre as well as a stochastic, weather related term. Specifically, farm i’ s runoff per
acre, r;/x, (where x;, island), isasecond-order approximation of actual per acre runoff, whichistakento
beanincreasing, convex function of excessfertilizer useper acre, g,,i.e, r;/x,=b;;g; +b,, 9 +V,g;, Where
g;=X%,/%q, X, isexcessfertilizer, and v; isarandom variable with zero mean. The specification for the

random termis consistent with that of Just and Pope (1978). In particular, alarger value of g, (dueto either
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more fertilizer or lessland) resultsin alarger mean and variance of r,/x,.

Runoff from each source is transported to a water body according to a stochastic (due to weather)
process, athough only afraction of the runoff generated at each site becomes part of the ambient pollution
concentration in the water body. The proportion of the runoff that is transported is modeled as a constant
transport coefficient, @,. In aggregate, pollution transport and the resulting ambient pollution levels are
reasonably represented by a first-order approximation (Roth and Jury, 1993) based on the sum of the
transported runoff (loadings) from all sources, a=(¢y +d)L, where L = i @,r, isloadings, ¢ is a
deterministic parameter, and & isarandom variable with zero mean. Thus, moir:ell oadingsresult in agreater
mean and variance of a. Finally, the resulting ambient pollution concentration creates economic damages,
denoted D. Economic damages are a second-order approximation of actual damages, which is taken to be
an increasing, convex function of a,i.e, D = dla+d2a2.

More details of the model and data used for calibration are provided in the appendix. In particular,
the elasticities and other parameters used to calibrate the model are drawn from aliterature that reports a
range of values. This parameter uncertainty is dealt with through a Monte Carlo (sensitivity) analysisin
which the uncertain values are randomly distributed. Each of the one thousand watershedsin the model is
developed from asingledraw of all uncertain parameter val ues, and the resultsfrom each watershed are used
toformadistribution of results. More detailsof thisprocedure are a so provided in the appendix. However,
note the distinction between parameter uncertainty and stochastic variables. In each draw, parameters are
treated as deterministic while stochastic variables remain stochastic.

Weobtainresultsfor four alternative schemesto reduce nutrient runoff: efficient input taxes(defined
by firm-specific taxes applied to fertilizer and land), uniform fertilizer taxes, firm-specific taxes based on
mean runoff, and uniform mean runoff taxes. These schemes have real world analogues. Measures to
regulate fertilizer use, primarily in the form of fertilizer quotas or taxes, are a common feature of policy
proposals to reduce nutrient pollution, and have been implemented in some states in the U.S. and Europe
(Leuk, 1994; Ribaudo, 1998). Crop land retirement, in the form of the Conservation Reserve Program, is
amajor approach to agricultural nonpoint pollution control in the U.S. (USDA-ERS, 1997).

For each scheme, first- or second-best instruments and associ ated welfare measures are determined
taking all stochastic components into consideration (the correct model). Values of al instruments and
associated welfare measures are also determined optimally under an incorrect, deterministic specification
inwhich all random variablesare evaluated at their means (the perceived results of the mis-specified mode!).
Inaddition, the actual distributions of environmental and economic results (i.e., taking the stochastic nature

of pollution into consideration) are determined given the values of the instruments derived using the mis-
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specified model (the actual results of the mis-specified model). (The model is constructed so that the
perceived and actual resultsof the mis-specified model will only differ with respect to expected damagesand
hence expected socia net benefits). Large differences in results from the correctly specified and mis-
specified models indicate the need for a stochastic specification, while small differences suggest a
deterministic specification may be adequate.

Obviously, the specification of stochastic processes and risk may have an important impact on
results.” To ameliorate any potential biases due to model construction, the stochastic processes and risk
components have been specified quite simplistically (although realistically). Ambient pollutionisalinear
function of therandom components, each of whichisindependently distributed. Consequently, thequadratic
damage term is the only source of risk in the model (e.g., the first covariance term on the RHS of (1)
vanishes) given thelinear and independent specification of stochastic terms. The Monte Carlo analysisalso
helpsto alleviate any biasdueto model construction by providing resultsfor arange of risk componentsand
distributions of stochastic variables. Thisallowsusto compareresultsfromwatershedswithlittlevariability
in stochastic components and little risk with results from watersheds in which these stochastic and risk

elements are more important.

Results
Tax rates

We begin by comparing, for each policy scenario, the optimal tax rates derived in the correctly
specified model (the correct tax rates) with those derived in the mis-specified model (theincorrect tax rates).
Theresultsare expressed in Table 2 asthe percentage difference between the correct and incorrect tax rates
(i.e., 100(correct tax - incorrect tax)/correct tax).

First, consider the input tax scenarios. The efficient and uniform fertilizer tax results are similar,
with the correct fertilizer tax rates being larger than the incorrect tax ratesin al samples. Specifically, the
difference between correct and incorrect tax rates range from 0.12% (in the case of very little risk) to 84%
(inthe case of substantial risk), with asample average difference of 30% to 37%. Theincorrect tax ratesare
smaller in each case becausefertilizer isarisk-increasing input and, as described above, there areincentives
under the mis-specified model for farmsto use risk-increasing inputs at inefficiently high levels. Notethat
the difference between correct and incorrect tax ratesis proportionately larger in Regions1 and 3, which are
greater contributors to risk due to the greater proportion of runoff that is transported from these regions.
Also, onaverage, thedifferencein correct and incorrect tax ratesare proportionatel y smaller in Region 4 than

in Region 2, which contributes more to risk since fertilizer is used more intensively in this region.
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For the case of efficient land subsidies, the correct subsidies are 34% larger than incorrect subsidies
in Region 1 and 10.5% larger than incorrect subsidiesin Region 3, on average. Therange of differencesin
these regions is large, however, extending from -50% to 248%. Positive differences generally occur in
Regions 1 and 3 because land is a risk-reducing input (in terms of its impact on the variance of ambient
pollution), and so there will be marginal incentives under the mis-specified model for farmsin theseregions
to under-employ land (i.e., smaller subsidies). However, thelarger fertilizer taxesin theseregionsunder the
correct model result in proportionately larger output effects and hence proportionately smaller derived
demandsfor land. The net effect isthat lessland is employed in Regions 1 and 3 under the correct model
than in the mis-specified model. In contrast, the correct subsidies are 26% smaller than incorrect subsidies
in Region 2 and 27% smaller than incorrect subsidiesin Region 4, on average. Therange of differencesin
theseregionsisalsolarge (but smaller than that of Regions 1 and 3), extending from —80% to 25%. Negative
differences generally occur in Regions 2 and 4. Thisis because the larger output effectsin Regions 1 and
3 under the correct model drive up the output price, resulting in proportionately larger increases in the
dervied demand for land in Regions 2 and 4 under the correct model. Thus, lessof asubsidy isrequired than
in the mis-specified model.

Now consider the expected runoff tax scenarios. The expected runoff tax encourages farms to
substitute land for fertilizer, and al so to reduce output and hence the use of both of these inputs. Reducing
fertilizer use and/or increasing land use reduce risk; however, the incorrect model does not take these
additional benefits into account (even in the correct model, these risk-impacts cannot both be efficiently
managed using an expected runoff tax (Shortle and Dunn, 1986)). Accordingly, for aimost every sample,
fertilizer use and land use aretoo high in Regions 1 and 3 (which have the greatest risk-impacts dueto larger
transport coefficients) in the mis-specified model, with anet effect of too much risk dueto greater fertilizer
use. These input use decisions correspond to smaller incorrect taxes relative to the correct taxes.
Specifically, thedifference between correct andincorrect tax ratesintheseregionsrangefrom 0.16%to 89%,
with sample average differences of 39.5% and 38%. Greater fertilizer use and land usein the mis-specified
model are accompani ed by more output and asmaller output price, reducing the derived demand for land and
fertilizer in Regions2 and 4. Thisalsoresultsin smaller incorrect taxesrelative to correct taxesfor the vast
majority of the samples, although with lessfertilizer and land (and hence output) due to the smaller output
price. However, these smaller taxesare not reflected in Table 2 astheincorrect taxes are substantially larger
than the correct taxes on average. These large mean differences occur in asmall percentage of samplesin
which the correct taxes for Regions 2 and 4 are essentially zero due to the small contribution these regions

make towards ambient pollution and also risk, while the taxes for Regions 1 and 3 are large due to their
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significant risk contributions in these samples. Thus, any percentage change from the correct taxes in
Regions 2 and 4 in these cases will necessarily be large enough to bias the entire distribution of results. As
it happens, the incorrect tax rates are actually slightly positive in these limited samples, primarily because
pollution control isreallocated from Regions 1 and 3 since the mis-specified model does not recognizetheir
contribution to risk (and thus the mean contributions of Regions 2 and 4 towards ambient pollution are seen
as more important). Thus, farmers who would not optimally bear pollution control costs are subjected to

taxes when risk is not considered.

Welfare levels

We now compare welfare levelsresulting from the correctly specified model (correct welfare) with
those resulting from the mis-specified model (incorrect welfare, i.e., actual welfare, as measured by the
correct model, based on producer responses to the taxes derived in theincorrect model). Wedo thisin two
ways. First, for each policy scenario, we compare correct and incorrect welfare directly (Table 3), aswell
asincorrect welfareand the perceived welfarethat results under the mis-specified model (perceived welfare,
i.e., welfare predicted by the mis-specified model) (Table 4). Second, we compare the relative (perceived)
performance of thevariouspolicy approachesunder thetwo model s, where performanceismeasuredinterms
of the various welfare measures (Table 5).

Differencesin absolute per for mance (actual and per ceived). First, consider adirect comparison
of correct and incorrect welfare. The results are expressed in Table 3 as percentage differences from the
correct welfare measures. Asis required, the correct model results in larger expected net social benefits,
although these benefits do not differ much between the correct and mis-specified models. Evenin samples
in which risk is significant, the differences are only moderate at around 8% for all instruments. However,
differencesin the welfare accruing to different groups with an interest in production are significant in most
cases. Differencesinincorrect and perceived welfare (Table4, wheretheresultsare expressed aspercentage
differences from the incorrect welfare measures) follow an opposite pattern. The incorrect model
consistently overestimates expected social net benefits, by as much as 22% in some samples. These
differences are due to inaccurate estimates for expected damages, which are discussed below.

Consumers' surplus is smaller under the correct model for al samples, indicating that optimally
managing risk resultsin an output reduction (Table 3). The reductions in consumers’ surplus range from
minuscule in samples with minimal risk to almost 40% in samples with significant risk, with an average
reduction of about 6% for differentiated policy instrumentsto morethan 11% for uniforminstruments. Since

consumers’ surplusis unaffected by risk, there are no perceived differences from actual results.

10



The biggest differences in welfare occur with respect to expected damages (Table 3). Expected
damages are smaller under the correct model for all samples, indicating a significant welfare improvement
from accounting for risk. The reductions in expected damages range from almost nothing in samples with
minimal risk to amost 386% in samples with significant risk, with an average reduction of about 71% for
differentiated policy instruments to about 55% for uniform instruments. Differences in incorrect and
perceived damages(Table4) follow an opposite, although lesspronounced, pattern. Themis-specified model
consistently underestimates expected damages by 41% to 44% on average across samples, and by as much
as 91% in some samples, due to the fact that the mis-specified model does not value risk.

Finally, consider the differencesinlandowners’ surplusunder the correct and mis-specified models
(Table 3). Inaggregate, the differences are generally small on average, with moderate positive or negative
differences occurring in some samples. However, differences in the returns to landowners in particular
regionsmay bequitelarge, even on average. Aswith consumers' surplus, there are no perceived differences
from actual results since landowners' surplus is unaffected by risk.

Differencesin per ceived relativeperformance. Now consider therel ative(perceived) performance
of the various policy approaches under the two models, where performance is measured in terms of the
variouswelfaremeasures(Table5). Inthecorrect model, for example, efficient taxesalwaysresultin greater
expected social net benefits, greater consumers' surplus, and smaller expected damagesthan any of the other
policy scenarios, and generally result in greater landowners’ surplusthan any of the other scenarios (except
for the uniform expected runoff tax). In contrast, the mis-specified model predictsthat the welfareimpacts
of efficient taxes are equivalent to those of non-uniform expected runoff taxes, and overpredictsthe number
of samples for which the efficient tax produces greater landowners' surplus than the uniform fertilizer tax
and the uniform expected runoff tax. However, incorrect predictions are not necessarily a problem unless
the welfare measures being compared are significantly different from each other. For example, mean social
net benefits under efficient taxes are only 0.01% larger than those under anon-uniform expected runoff tax,
and similar mean differences with respect to the other welfare measures are also less than 1% in this case.
Thus, it matters little whether efficient taxes or non-uniform runoff taxes are applied, which is interesting
because much has been made of the fact that non-uniform expected runoff taxes are inefficient dueto their
inability to account for risk (Shortle and Dunn, 1986).° However, differencesin landowners' surplus are
amost 3% larger in Region 1 and 1.5% larger in Region 3 on average (and larger in many other cases) under
non-uniform taxes (not reported in Table 5), which may be significant in monetary terms.

For comparisons involving other combinations of instruments, the mis-specified model generally

makes accurate comparisons on the basis of expected social net benefits, consumers’ surplus, and expected
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damages. Theonly significant exceptionsarefor consumer’ ssurplusand expected damagesfor comparisons
involving uniform fertilizer taxes and uniform expected runoff taxes. The mis-specified model has more

difficulty when comparing landowners' surplus, particularly when broken down by region.

Extreme events

Finally, accounting for environmental risk isimportant intermsof how policy instrumentsinfluence
the probability of extreme events. Our particular concern lies with the probability of unwanted extreme
events, such as excessive runoff and associated | evels of ambient pollution and economic damages. A point
of reference is needed to define an extreme event. Therefore, for each policy scenario and for each
environmental performance measure, we define an extreme event as one in which the performance measure
takes on avaluein excess of two standard deviations above the mean, where the relevant mean and standard
deviation arethoseresulting in an optimal solution using the correct model. For example, consider auniform
fertilizer tax. First, the optimal tax isderived in both the correct and mis-specified models. Next, the mean
and standard deviation of each performance measure (runoff, ambient pollution, and damages) is cal cul ated
given the production choices resulting from the correct tax. These statistics are used to determine extreme
valuesasdescribed above. Finally, the probability of exceeding thesevaluesis calculated and compared for
the uniform fertilizer taxes in the correct and incorrect models.

The results of this exercise are presented in Table 6. For simplicity, a Monte Carlo approach was
not used in deriving these results. Instead, mean values were used for all uncertain parameter values. The
associated extreme critical valuesfor each policy are asfollows: runoff critical values are on average 116%
larger than mean runoff in each region, ambient pollution critical values are on average 139% larger than
mean ambient pollution, and damage critical values are on average 196% larger than mean damages.

Table 6 clearly showsthat the probability of extreme eventsislarger when the mis-specified model
isapplied. Thisisexpected. However, the differences in the probabilities associated with extreme events
issubstantial, differing by afactor of three or four for the case of ambient pollution, and afactor of threefor
damages. Thus, policy measures that do rely on risk information are much less likely to result in severe
environmental outcomes, such asamassive fish kill due to nutrient over-enrichment, than policy measures

that take this information into account.

Conclusion
Freguently, policy regarding the control of pollution or of natural events, such asfloods, focuseson

reducing the risk of the extreme events. Thisfocusis natural: mean levels of these events may affect more
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people more of thetime, but of greater political concern arerelatively rare extreme events, which may affect
only afew people, but in catastrophic ways. An exampleis a pathogenic outbreak in alocal water supply.
Large sums of money are expended to protect drinking water from such occurrences. The political costs of
an outbreak can be high, particularly when children or the elderly become ill and/or die as aresult. An
economic model that acknowledges only mean water quality events will not capture the range of possible
welfare impacts. Hence, amodel that does not consider the stochastic aspects of physical processes, asis
the case for most existing, economic modelsfor the control of pollution or other natural events, will beless
than satisfactory for policymaking purposes. Furthermore, eventhe meanwelfareimpactsestimated by these
models may be incorrect.

Thispaper examinestheimplicationsof explicitly considering the stochastic nature of environmental
processes when devel oping nonpoint pollution control policies. We find that even with a quite ssmplistic
specification for risk, several important results arise from thisanalysis. First, risk hasimportant impactson
the magnitudes of policy instruments. Second, the impacts of risk on expected net benefits are relatively
small, while the impacts of risk on the allocation of welfare are relatively large in many cases. Thisresult
issignificant for policymaking purposes, given that the all ocation of welfaremay be of moreimportancethan
the aggregate welfare level. Third, the perceived welfare calculated from a mis-specified model differs
significantly from actual welfarelevelsthat result when using policy choicesderived from the mis-specified
model. Thus, the actual impacts of a policy are likely to differ significantly from the predictions of naive,
deterministic models. Somewhat surprisingly, these incorrect perceptionsactually resultinthemis-specified
model and the correct model yielding almost identical comparisons of the relative performance of various
first-best and second-best instruments, although the mis-specified model does not always make accurate
comparisons regarding the returns to consumers and landowners under the various policy approaches.
Finally, wefind that deriving optimal policy instrument levelsusing risk-based model s significantly reduces

the probability of unwanted, extreme events such as excessive pollution and damage levels.

Appendix

Thesimulation model closely followsthat of Claassen and Horan (Forthcoming). 1neach watershed,
four nonpoint sources produce a single, identical agricultural commodity (corn) according to a constant
returnsto scale, two-level CEStechnology (Sato, 1967). Corn production dependson acomposite biological

input and acomposite mechanical input. Thebiological input isproduced using land and fertilizer according
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to aconstant returnsto scale CEStechnology. The mechanical input dependson labor and capital, but isnot
decomposed into these inputs because labor and capital pricesare held fixed and hence labor and capital are
used in constant proportions. Production heterogeneity iscreated through input cost shares(Table A1), with
farms 1 and 2 using fertilizer more intensively on a per acre basis than farms 3 and 4. Initial outputs and
costsareidentical acrossfarmsto reducetheimpactsof scal e effectsamong sources since heterogeneity does
not occur along theselines. Aggregate revenue and costsfor thissector equal one. With all input and output
prices set equal to one initialy, output equals revenue and inputs equal factor costs.

Output and land prices are endogenous. The output market is at the watershed level and output
demand ismodeled asafirst-order approximation of actual demand. Incontrast, land supply takesaconstant
elasticity form and isdefined for each source(i.e., if each sourcerepresents aggregate productioninaregion
of the watershed, then land supply is defined at the regional level).

Ontheenvironmental side, runoff, ambient pollution, and damage functions are desribed in thetext.
Environmental heterogeneity is created by farms 1 and 3 having larger initial average runoff per acre (i.e.,

r./(x,0,)) on average (Table Al; see also discussion of Monte Carlo analysis below). Transport
coefficients represent another important source of environmental heterogeneity asfarms 1 and 3 on average
have higher transport coefficients than other farms (Table A1; see aso discussion of Monte Carlo analysis
below). Mean ambient pollution equalsoneinitially. Finally, economic damagesfrom pollutioniscalibrated
by setting initial expected damages equal to 20% of initial net benefits (similar to an upper bound reported
by Smith (1992) for groundwater damages) and by choosing an elasticity of expected damages (Table Al).

Theimpactsof stochastic environmental terms are model ed using a Gaussian Quadratureto provide
an exact measure of expected damages and related terms (Miller and Rice, 1983; Preckel and DeVuyst,
1992). Since r, and a arelinear in the random variables and damages are quadratic, each random variable
only needsto be evaluated at two pointsto provide an exact measure of all relevant expected values (Miller
and Rice, 1983). Thejoint distribution for the five random variables therefore consists of 32 points.

A number of elasticities and other parameters are needed to calibrate the model. However, the
literature reports arange of values. To deal with this parameter uncertainty, we follow Abler and Shortle
(1995) and Davis and Espinoza (1998) and perform a Monte Carlo (sensitivity) analysis to obtain a
distribution of ex post results.** Specifically, themodel issolved onethousand times, taking many parameter
values as randomly and independently distributed. Each iteration represents a single draw of all uncertain
parameter values and, at each iteration, parameter values are assumed known with certainty. 1n effect, each
iteration represents an individual watershed. Uncertain parameter values are all assumed to be uniformly

distributed according to reasonable bounds suggested by theliterature. Theparametersandtheir distributions
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areasoreportedin Table A1l. Source-specific valuesareallowed todiffer at eachiteration, athough source-
specific values of a particular parameter are all taken from the same distributions (unless specified
otherwise). The sample size of one thousand is large enough to obtain fairly tight confidence intervals

around the sample expected net benefits for each scheme.
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Table 1. Second-Best Taxes Derived Under Correct and Mis-Specified Models
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the (1x(m-m’)) vector of untaxed inputs.

Note: Superscripts#, ##, T, and 1 denote the variables are evaluated at their optimal value given the specification of the model and instruments being used.



Table 2. Percent Differences Between Optimal Tax Rates
from Correctly Specified Model and Optimal Tax Rates from Mis-Specified Model

Region on Tax Base Policy Instrument
Which Tax is
Imposed Efficient Fertilizer Uniform Non-Uniform Uniform Expected
Taxes and Land Fertilizer Taxes  Expected Runoff Runoff Taxes
Subsidies Taxes
Region 1 Fertilizer 32.98% 37.24
(or uniform rate) (21.79)° (23.56)
[0.16, 81.08]° [0.19, 81.88]
Land 34.0
(62.16)
[-41.43, 421.49]
Expected 39.45 39.23
Runoff (24.58) (24.28)
[0.2, 84.59] [0.22,82.17]
Region 2 Fertilizer 31.55
(21.79)
[0.16, 81.08]
Land -26.38
(20.08)
[-76.37, 25.17]
Expected -20,957.16
Runoff (340287.62)
[-6460060, 85.5]
Region 3 Fertilizer 335
(23.17)
[0.12, 84.15]
Land 10.56
(36.19)
[-49.67, 248.02]
Expected 38.1
Runoff (25.5)
[0.16, 89.02]
Region 4 Fertilizer 30.21
(21.12)
[0.13, 84.15]
Land -26.89
(19.97)
[-80.62, 0.45]
Expected -16343.05
Runoff (366085.5)

[-8185890, 86.37]

Notes: 2Sample mean of percent differences: 100(correct tax - incorrect tax)/correct tax.
bSample standard deviation of percent differences.
“Sample range of percent differences.



Table 3. Percent Differences between Actual Welfare
from Correctly Specified Mode and Actual Welfare from Mis-Specified Model

Welfare Measure Policy Instrument
Efficient Fertilizer Uniform Non-Uniform Uniform
Taxesand Land Fertilizer Taxes  Expected Runoff Expected
Subsidies Taxes Runoff Taxes
Expected Social Net 1.322 1.69 131 1.42
Benefits (L54)° (1.82) (1.59) (1.61)
[0.00, 7.74]° [0.00, 8.09] [0.00, 7.74] [0.00, 7.98]
Consumers' Surplus -6.26 -13.01 -6.08 -10.23
(4.74) (9.19) (4.62) (7.32)
[-20.34, -0.02] [-39.86, -0.06] [-20.3,-0.02] [-34.2,-0.05]
Expected Damages -70.9 -54.48 -70.84 -56.29
(71.45) (45.33) (71.38) (50.56)
[-385.72, -0.1] [-203.59, -0.15] [-385.62,-0.1] [-299.73,-0.12]
Landowners Surplus
(by region)
Region 1 -22.28 -6.13 -18.33 -4.98
(27.64) (6.82) (23.11) (11.01)
[-238.22, 10.66] [-41.66,4.77] [-183.01,11.03] [-83.02, 18.42]
Region 2 7.34 -6.07 7.75 1.64
(7.18) (6.12) (6.96) (6.58)
[-33.46, 30.05] [-38.02, 4.67] [-27.52,29.64] [-29.73,25.12]
Region 3 -3.72 5.52 -2.38 4.07
(7.53) (4.49) (6.42) (4.47)
[-43.32, 16.3] [0.01, 22.38] [-33.94, 16.19] [-9.59, 22.39]
Region 4 6.82 5.4 6.82 6.16
(5.39) (4.3) (5.33) (5.19)
[-4.69, 27.38] [0.01, 18.51] [-4.18, 27.23] [-2.99, 25.83]
Landowners Surplus 1.48 1.95 2.2 3.33
(aggregate) (2.05) (2.82) (2.27) (3.18)
[-3.01, 12.38] [-3.93, 13.88] [-1.96, 12.84] [-0.86, 16.8]

Notes: *Sample mean of percent differences: 100(correct welfare - incorrect welfare)/correct welfare.

bSample standard deviation of percent differences.

“Sample range of percent differences.



Table 4. Percent Differences between Actual Welfare

from Mis-Specified Mode and Perceived Welfare from Mis-Specified Model

Welfare Measure Policy Instrument

Efficient Uniform Non-Uniform Uniform

Taxes/Subsidies on Fertilizer Taxes  Expected Runoff  Expected Runoff
Fertilizer and Land Taxes Taxes

Expected Social Net -3.64° -6.05 -3.64 -4.83
Benefits (3.23)° (4.91) (3.23) (4.04)
[-14.32, -0.01]° [-21.71, -0.01] [-14.32, -0.01] [-17.88, -0.01]
Expected Damages 41.4 44.25 41.4 43.23
(28.08) (28.03) (28.08) (28.05)
[0.11, 91.6] [0.14, 90.43] [0.11, 91.6] [0.14, 91.41]

Notes: 2Sample mean of percent differences: 100(actual welfare - perceived welfare)/actual welfare.
bSample standard deviation of percent differences.
“Sample range of percent differences.



Table 5. Comparison of Instrumentsin Correctly Specified Models and in Mis-Specified Models, and Number of Mistakes from Using Mis-Specified Models

Policy Welfare Measure Percent of Samplesin which Row Instruments Outperform Column Instruments (by welfare measure)
Instruments Uniform Fertilizer Tax Non-Uniform Expected Runoff Taxes Uniform Expected Runoff Tax
Correct Mis-Specified M odel Correct Mis-Specified Model Correct Mis-Specified Model
Model Model Model
Efficient Expected Net Social 100 100 (02 ----P 100 Equivalent (100) [0.01] 100 100 O)
taxes/ Benefits
subsidies Consumers' Surplus 100 100 (0) 100 Equivalent (100) [-0.04] 100 996  (04) [8.84]
Expected Damages 100 100 ()] 80.4 Equivalent (100) [-0.01] 100 100 O)
Landowners Surplus 68 822 (15 [-1.64] 100 Equivalent (100) [-0.17] 5.8 6.8 (3.2 [-1.06]
Uniform Expected Net Social 0 0 (0) 64 64 (1.6) [-0.25]
Fertilizer Tax  Benefits
Consumers' Surplus 0 0 (0)] 98 3.6 32 [-277]
Expected Damages 0 0 ()] 8.2 7 (2.8) [-1.56]
Landowners Surplus 255 178 (9.6) [1.31] 16 1 (0.6) [0.7]
Non-Uniform  Expected Net Social 100 100 O)
Expected Benefits
Runoff Taxes Consumers’ Surplus 100 99.6 (0.4) [9.0]
Expected Damages 100 100 O)
Landowners Surplus 8.8 8.6 (22) [-0127]

Notes. 2Percent of samplesin which mis-specified model predicts relative performance incorrectly.
Sample mean of actual percentage differencesin welfare from the use of row versus column instruments, computed using correct model and for only those
samples in which the mis-specified model isincorrect.



Table 6. Probability of Extreme Events Resulting From Policy Choices in Correctly and Mis-Specified Models*

Probability Policy Instruments
Efficient Uniform Fertilizer Non-Uniform Uniform Expected
Taxes/Subsidies on Taxes Expected Runoff Runoff Taxes
Fertilizer and Land Taxes
Correct Mis- Correct Mis- Correct Mis- Correct Mis-
Model Specified  Model Specified  Model Specified  Model Specified
Model Model Model Model

Prob(Region 1's runoff > 0.00 0.31 0.00 0.18 0.00 0.3 0.00 0.17
two standard deviations
above the mean)®
Prob(Region 2's runoff > 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.12
two standard deviations
above the mean)
Prob(Region 3's runoff > 0.00 0.17 0.00 0.07 0.00 0.17 0.00 0.1
two standard deviations
above the mean)
Prob(Region 4's runoff > 0.00 0.00 0.00 0.081 0.00 0.00 0.00 0.05
two standard deviations
above the mean)
Prob(ambient pollution > 0.04 0.14 0.04 0.12 0.04 0.15 0.04 0.12
two standard deviations
above the mean)
Prob(damages > two 0.05 0.16 0.05 0.15 0.06 0.17 0.05 0.15
standard deviations above
the mean)

Notes. 2Results are calculated with uncertain parameter values evaluated at their mean values.

M eans and standard deviationsare cal cul ated from the correctly specified model, given the policy instruments

under consideration



Table Al. Factor Cost Shares and Distribution of Uncertain Parameters

Region Cost Shares
Biological Mechanical
Land Fertilizer
Region 1 0.25 0.35 04
Region 2 .025 0.35 04
Region 3 04 0.2 04
Region 4 04 0.2 04
Uncertain Parameters Distribution Mean Variance Sources and/or Justification for Parameter Ranges
Elasticity of demand U(-1.2, -0.45) -0.825 0.0469 Consistent with the domestic elasticity of demand for corn
in the Corn Belt and Lake States. See Claassen and Horan
(forthcoming) for derivation.
Elasticity of land supply ~ U(0.15, 0.45) 0.3 0.0075 Chavas and Holt (1990); Holt (1990); Lee and
Helmberger (1985); Tegene, Huffman, and Miranowski,
(1988)
Elasticity of substitution  U(0.1, 0.9) 0.5 0.0533 Binswanger, (1974); Chambers and Vasavada, (1983);
between composite Fernandez-Cornejo, (1992); Hertel, (1989); Kawagoe,
inputs Otsuka, and Hayami, (1985); Ray, (1982); Thirtle, (1985)
Elasticity of substitution  U(1.1, 1.4) 1.25 0.025 Binswanger, (1974); Chambers and Vasavada, (1983);
between land and Fernandez-Cornejo, (1992); Hertel, (1989); Kawagoe,
fertilizer Otsuka, and Hayami, (1985); Ray, (1982); Thirtle, (1985)
Average per acre runoff:
Farms1and 3 U(0.2, 0.4) 0.3 0.0033 NRC, (1993); Peterson and Frye, (1989); Smith, Schwarz,
Farms 2 and 4 U(0.1, 0.3) 0.2 0.0033 and Alexander, (1997)
Uptake U(0.6, 0.8) 0.7 0.0033 Keeney, (1982); Peterson and Frye (1989), NRC (1993)
Elasticity of per acre U1, 2 15 0.0833 The chosen bounds ensure an increasing, convex function,
runoff e.g., Hallberg, (1987); NRC, (1993); Weinberg and Kling,
(1996).
Coefficient of variation:  U(0.1, 3) 1.55 0.7008 Koutsoyiannia, (1999); Manguerra and Engel, (1998)
ambient pollution
(CVA)
Coefficient of variation:  U(0.1, CVA) 0.825*  0.1752* Koutsoyiannia, (1999); Manguerra and Engel, (1998)
runoff
Runoff Transport
Farms 1 and 3 U(0.6, 0.9) 0.75 0.0075 Fisher et al., (1988); Smith, Schwarz, and Alexander,
Farms2 and 4 U(0.01, 0.3) 0.155 0.0070 (1997)
Elasticity of damages u(1.2, 2) 16 0.5333 The chosen bounds ensure an increasing, convex function

Note: Cost shares are consistent with the range of estimates for corn production in the Corn Belt and Lake States
(Claassen and Horan, forthcoming; USDA-ERS; USDA-ERS, 1990). * Expected mean and variance based on CVA
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11.

Endnotes

The views expressed here are those of the authors and do not necessarily reflect those of USDA -
ERS.

There are two ways that benefits could be a nonlinear function of emissions: (1) benefits are a
nonlinear function of environmental quality, or (2) environmental quality is anonlinear function
of emissions.

The degree to which risk is accounted for in these and other studiesis not always made clear.

A few studies in which instruments are designed to achieve an exogenous environmental
constraint with agiven probability do evaluate how instruments and control costs respond to
increases in this probability (McSweeny and Shortle, 1990; Teague, Bernardo, and Mapp, 1995).
This provides some indication as to the importance of stochastic processes.

The alternative to maximizing the net social benefits from production would be to maximize the
net private benefits from production subject to an exogenously defined, probabilistic
environmental constraint (i.e., a cost-effectiveness approach). We maximize net social benefits
because this approach provides greater insight into the economic merits of modeling risk and
because it eliminates the need to specify the type of constraint (there are many possibilities) and
the level of the constraint.

Let f=f(q) (f/,f”>0), whereg=q(h). Then cov{f’(q),0q/doh} isof the samesign as

cov{ q,0q/oh}=.5(avar{ q}/aoh), wherethis equality followsfrom: ovar{q}/oh=
d(E{q?} -E{q}?)/oh= 2(E{qdqg/oh} -E{q} E{dq/ah}) = 2cov{ q,dq/dh} . Thisresult
is used throughout the paper, athough with different definitions for f, g, and h.

These taxes are not described here, but are described in detail in Shortle, Horan, and Abler
(1998) and Horan et al. (1999) .

The geography of watersheds are such that they may vary greatly in size and in terms of
economic importance. We assume awatershed of sufficient size/importance that changesin
aggregate production have market price impacts. The elasticity of demand is varied across
watersheds to permit arange of price effects.

The same stochastic processes affecting environmental outcomes are also likely to influence
production. In the present model, we model production deterministically to focus on stochastic
environmental processes. However, it is generally important that these processes be taken into
consideration as well.

The non-uniform expected runoff taxes perform very well because the mean and variance of
runoff are positively correlated in the model. Thus, reducing mean runoff indirectly reduces the
variance of runoff, an important source of risk in the model.

Ex post results describe the expected outcome of a situation in which all parameter values will be

known when policies are designed and implemented, even if many parameter values are
uncertain at present. In contrast, ex ante results describe the expected outcome of asituation in
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which at least some parameter values remain uncertain even when policies are designed and
implemented.
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