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Abstract.  This paper investigates the finite sample distributions of maximum likelihood
estimators for nonstationary probit models.  We find that, analogous to standard OLS
models, commonly used tests statistics almost always reject the null hypothesis of no
relationship between xt and a latent yt, even when they are, in fact, generated by
independent random walks.  However, if cointegrating relationships are present in the
model, parameter distributions are better behaved and standard z and Wald test statistics
are consistent.

1.  Introduction

A host of studies, beginning with Granger and Newbold (1974), have investigated

the properties of linear model parameter estimators when some or all of the model

variables are generated by nonstationary processes.  This article builds on that work by

extending the current research to cover latent variables generated by nonstationary

stochastic processes. We find that, as with standard linear models involving nonstationary

series, the commonly used tests almost always reject the null hypothesis of no

relationship between xt and yt, even when they are, in fact, generated by independent

random walks. Analogous to the outcome for fully observed nonstationary processes,

spurious correlation may be avoided if at least one of the regressors is correlated with the

independent variable. To our knowledge, it is the first empirical work to show that the

problem of spurious regression extends to the realm of latent variable analysis.

This paper looks at the finite sample distributions of statistics commonly

associated with binary models when regressors are generated by nonstationarity

processes.  Three cases are discussed.  First, I examine the case where the latent variable
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and regressor are cointegrated processes.1 Small sample parameter estimates and test

statistics exhibit significant bias. Using response surface analysis, the probit estimates are

shown to converge at n, reminiscent of the properties of cointegrating vectors associated

with standard cointegrated models. Next, I study the case where the regressor and the

latent dependent variable are generated by independent integrated processes. Probit

parameter estimates and related test-statistics are shown to be unbiased, but diverge at

rate n, again suggestive of the standard observed variable case. Finally, I examine the

statistical properties of a three-variable model containing one latent variable. Of the two

independent variables, only one is actually cointegrated with the latent variable while the

other is independent. This case reveals the dual rates of convergence found by Park and

Phillips (1999b) in their asymptotic analysis of nonstationary binary choice models.  The

results show that when one of the variables is cointegrated with the latent variable,

spurious inference may be avoided.

2.  The Basic Model

Consider the following data generating process (DGP):

1t t tx x u−= + (2.1)

*t t ty x vβ= +

where ut is a stationary random vector and vt is a stationary random variable, with

covariance matrices Σu and Σv, respectively.  For non-zero values of β, xt and y*t are

cointegrated and a large body of research suggests methods for estimating β and its

associated t-statistics; see Hamilton (1994) for a thorough discussion.  In contrast, we

                                                          
1 Two I(1) processes are said to be cointegrated if some linear combination of the variables is a stationary
I(0) process (Hamilton 1994).



4

examine the latent dependent variable case where the yt is observed only when yt*

exceeds some threshold value α so that:

*

*
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t
t

for y
y
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α

>
= 

≤
(2.2)

This DGP could be used to characterize a time-based index function model with index

function  txβ α− . Assuming a normal distribution for vt:

*( ) ( ) ( ) ( )t t t t t tP y P x v P v x xα β α β α β α> = + > = < − = Φ − (2.3)

The conditional log likelihood is for the standard (independent errors) probit

model (Amemiya 1985):

1

log { log ( ' ) (1 ) log[1 ( ' )]}
n

i i i i

i

L y x y xβ α β α−

=
= Φ − + − − Φ∑ (2.4)

Parameter estimates are typically estimated using Newton’s method.  For the probit

model the matrix of second derivatives is calculated as:

2 log ( ' ) ( ' )
'

' ( ' ) ( ' )

i i i i i i
i i i

i i i ii

L q q x q q x
H x x x

q x q x

φ β φ β β
β β β β

 ∂= = − + ∂ ∂ Φ Φ 
∑ (2.5)

where 2 1i iq y= − .  

Previous authors have estimated the parameters of this model using logit or

probit, assuming vt is independent and identically distributed as a normal or logistic

random variable, respectively (Alm and Whittington 1995, Alm, McKee and Skidmore

1993).  Other articles have proposed estimators for cases where error term, vt, is serially

correlated (White 1994). Park and Phillips’(1999b) paper investigated the asymptotic

properties of the model parameters and test statistics when the model is correctly

specified.
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Amemiya (1985) shows that for the cross-section data that is typically studied in

the literature 1
0

ˆ( ) (0, )n N Hβ β −− → .  The Hessian is negative semi-definite and the

function is globally concave.  These results rest upon the assumption of the independence

amongst the observations.  For time series applications, independence assumptions are

largely invalid.  In the extreme case of dependence, latent nonstationarity, Park and

Phillips (1999b) show that the H converges to a random limit matrix, and is therefore not

constant.  The matrix is, however, almost surely negative definite and the limit function is

globally concave leaving open the possibility of convergent ML models. They also find

that the though probit-based model parameters are consistent, a different rate of

convergence applies to nonstationary regressors than when regressors are stationary.

Interestingly, dual convergence rates are observed, with n3/4 rate convergence in the

direction of the null hypothesis, and  n1/4 rate convergence applying in all other directions.

Park and Phillip’s (1999b) findings support the conjecture that ML estimators and

resulting test statistics for nonstationary models may have very different properties from

those found in stationary models. Although insightful, their investigation addressed non-

cointegrated and correctly specified models in an asymptotic framework.  In practice,

some examination of spurious regression and cointegration could be very useful for

econometricians.  If spurious regression is a weakness of  nonstationary ML models, then

a theory of cointegration would be exceedingly useful.  Therefore, in the next sections,

we investigate finite sample properties of ML estimators and the rate of convergence for
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parameter distributions under first, the cointegrated case, the independence case, then

finally a case where the model is partially cointegrated.2

3.  The cointegrated case

To investigate parameter test statistics when the latent variable is cointegrated

with the independent variable, 24,000 replications were generated for the model:

1t t tx x u−= + (3.1)

*t t ty x vβ= +
*

*
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t
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y
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≤
Where xt, ut, vt, yt  and y*t are nx1 vectors indicating the two variable model with one

observed variable and one latent variable. The series vt and ut are distributed as N(0,1),

making xt and y*t I(1) cointegrated processes for nonzero values of β. We allow α to

range from

0.2 to 0.9 and β values from -0.1 to -0.9.  The sample size, n, ranges from 25 to 245 in

increments of 20.  There are 10 experiments total, with 12 values of n each replicated

2,000 times, giving 24,000 observations for the cointegrated case.  The parameters of the

model are estimated using probit and the BHHH maximization algorithm in GAUSS.

The covariance matrix of the parameters is computed from the quasi-maximum

                                                          
2 Independence in the nonstationary model means independence between the latent variable and the
regressor rather than independence amongst the observations.
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likelihood covariance matrix of the parameters3: 1 1ˆ ˆˆA BA− −  where 
2

1

1ˆ
'
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∂=
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n θ θ=

∂ ∂   =    ∂ ∂   
∑ .

Figure 1 charts the kernel density of the ML probit estimate of β for β= -0.15 and

β=-0.9 at sample sizes of 24 and 245.  The distribution is clearly right skewed for β= -

0.9, although the skewness falls as the sample size rises.  For β= -0.15, the asymmetry is

very mild at n equal to 25, and imperceptible at the larger sample size.

The standard error of β and the empirical means of the distribution of β are shown

in Table 1 for different values of and β and n.  The  ML probit estimate of β is biased in

small samples. The bias tends to diminish as the sample size grows.  A rather unique

feature of the distribution is its clear dependency on the value of β.  As the absolute value

of β increases, reflecting more certainty in the cointegrating relationship between xt and

the latent variable y*t, the bias becomes stronger.  From this result, we infer that sample

sizes must be very large (greater than 250 observations) for the asymptotic consistency to

apply when the model is strongly cointegrated.  

The standard errors of β are positively correlated with β.  The response surface

regression below indicates that the distribution of β converges at rate n-- a rapid rate

relative to the convergence rate expected in the stationary case of n1/2.

1/ 4 1

2

( ) 0.224 0.475 0.472 4.865
(0.039) (0.010) (0.156) (0.877)

0.960

se n n

R

β β − −= − + + +

=
(3.4)

                                                          
3 Amemiya (1985) shows that 

1 1ˆ ( , )N A BAθ θ − −→ .  When the equation is correctly specified

plim(A)=plim(B) and 
1ˆ ˆ( , )N Aθ θ −→ (Gauss Maximum likelihood Applications Module).  Because we



8

 Unlike the distribution of β arising from probit estimation of related stationary

series, the standard error falls as β nears 0 and the strength of cointegration wanes.  In the

extreme case, the regression suggests that asymptotic standard errors become negative for

the independence case.  This is of course, not possible.  Rather it implies that the

relationship exhibited in 3.4 breaks down as β approaches 0, the independence case.

Skewness in the distribution of β implies skewness in the associated z-statistic, as

well.  To investigate the properties of the z-test for ML estimation of nonstationary

models, we calculate z statistic 0
ˆ ˆ( ) / ββ β σ−  for each replication,.  The percentiles of the

z-statistic for the two-variable cointegrated case are reported in Table 2.  The critical

values indicate that strong deviations from the normal distribution are not found in the

cointegrated case.  Nevertheless, differences do exist.  When plotted against the

cumulative probability function of the normal distribution using a quantile-quantile plot,

the distribution is platykurtic, having thinner tails than the standard normal distribution.

The departure is not extreme, however.  More importantly, there is evidence of right

skewness in the distribution.  For β close to zero (β=0.1 or .2), the empirical test statistic

for the 50% percentile is slightly negative in 4 of the 6 cases. However, at higher absolute

values of β, a strong negative bias is observed with virtually all of the test-statistics.  The

situation is reversed when moving toward the left tail.  Here, for β close to zero, the z-

statistic is very close to the value expected from the normal distribution.  As β increases

                                                                                                                                                                            
are interested in finite sample results, we utilize the quasi-maximum likelihood covariance matrix.
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in absolute value, upward bias is observed in the lower tail quantiles.  The skewness

becomes more pronounced at larger sample sizes4.

To evaluate the tails of the distribution, we ran response surface regressions of the

form:

0 1 2 3( ) ( )i i i j ij iC p f nγ γ α γ β γ ε= + + + + (3.1)

where ( )iC p is the pth percentile of the ith experiment and ( )ijf n are inverse polynomial

functions of n such as n-1, n-1/2, n-3/4 and so on.  These regressions did not exhibit any

explanatory power for the right tail percentiles of the distribution.  Percentiles of the left

tail, for probabilities close to 0, are correlated with the cointegrating coefficient β so that:

1/ 4ˆ (.01) 2.85 0.628 1.83
(0.037) (0.029) (0.107)

iC nβ −= − − + (3.2)

Equation 3.2 suggests that, for values of approaching zero, that the statistic converges to

an asympotic value of –2.85, somewhat larger than the statistic associated with the

normal distribution.  However, as the strength of cointegration increases,  the left tail

moves closer to the mean value, and the distribution begins to take on the skewed

characteristic evidenced in Table 2.

The apparent right skewness of the z distribution under the cointegrated case and

small samples will impact inference.  Normal based inference will be conservative

because we will be more likely to accept the null hypotheses than if we had the empirical

distribution from Table 2.  This will be particularly true for test statistics falling below

the mean and for two-tail tests.  For instance, when using two-tail tests for independence,

                                                          
4 This is supported by regressions of the left tail empirical critical values using powers of the sample size as
independent variables.
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we will be more likely to fail to reject the null of no correlation between the latent

variable and the regressor than if we knew the true distribution.

Table 3 presents the empirical Wald statistic for the null hypothesis that α=β=0

under the cointegrated case.

Like the z-statistics, the empirical distribution of the Wald statistic does not deviate

in a dramatic fashion from its asymptotic distribution, the chi-square.    Nevertheless, like

the z-statistic, the tail percentiles vary with the degree of cointegration between the

independent and latent variable.  Equation 3.3 below reveals that the 0.99 percentile of

the Wald statistic, W(.99), rises with the level of cointegration.  For values of β close to

-1, the asymptotic Wald statistic approaches 8.28, somewhat less than the chi-square

value.  The distribution converges to the asymptotic distribution at rate of n. The impact

of sample size is dampened, particularly in small samples, by the n-1/4 term in the

regression.

1/ 4 1ˆ (.99) 6.707 1.573 7.461 67.44
(0.907) (0.262) (3.633) (20.187)

iW n nβ − −= − + − (3.3)

In review, several pertinent observations arise from the Monte Carlo experiment

performed on the cointegrated case.  First, small sample parameter distributions are right

skewed, making normal-based inference conservative for two-tail tests. The skewness

diminishes with sample size.  Perhaps more importantly, the bias and asymmetry

diminish as β approaches zero.  This fact, together with the well-known result that OLS

potentially understates parameter variances when faced with nonstationarity, suggests

that the results for the standard errors and z-statistics may be entirely different for the
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independence case than for the cointegrated case.  Therefore, we turn to an investigation

of the independence case

4. Independence Case

In case two, we investigate the independence model where β=0, specifically:

1t t tx x u−= + (4.1)

1* *t t ty y v−= +
*

*

1

0

t

t
t

for y
y

for y

α
α

>
= 

≤

Table 4 reports the standard errors of the cointegrated case.  The table also lists

the empirical sizes of a z-test of the null hypothesis that the parameter in question equals

zero with nominal size 0.05.  The results are quite striking.  For both the intercept and

slope term, the probability we reject the null hypothesis when it is, in fact, true actually

increases with the sample size.

For the β coefficient, at sample sizes over 200, we reject the true null hypothesis

over 65% of the time.  In other words, over 65% of the time, we are likely to infer

correlation that is entirely spurious.  Further, at large samples, we are likely to estimate

non-zero threshold term, α, even when the actual threshold is zero.

The response surface regression in 4.2 reveals that the fast n rate of convergence

associated with OLS estimation of  nonstationary series applies in the latent variable case

as well.   This result, together with the severe size distortions that are observed for the z –

statistic imply that extreme caution must be taken when drawing inference from probit-

based regressions of latent variable models subject to nonstationarity.  More often than

not, using standard t-statistics will lead to erroneous inference, and one will accept

apparent relationships between entirely unrelated series.
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1

2

( ) 0.016 8.168
(0.002) (0.162)

0.996

se n

R

β −= +

=
(4.2)

The empirical z-statistics are reported in Table 5 for increasing values of n.  As

expected, the empirical values are greatly exaggerated.  Even for small sample sizes, the

likelihood of rejecting a true null hypothesis is disturbing large if the critical values are

mistakenly taken from the normal distribution.  For modest sample sizes in excess of 100,

the empirical z-statistic is 2-3 times that taken from the corresponding normal. At

samples greater than 100 the distortion causes the empirical statistic to exceed the normal

by a factor of 3 to 4.

 We recall the seminal works by Granger and Newbold (1974) and Phillips (1986)

that showed that for the model  t t ty x uα β= + +  unless some cointegrating value of β

exists so that ut is I(0), OLS is likely to produce spurious results.  In the observed variable

case, the existence of a cointegrating value suggests a cure for spurious correlation:

evaluate the stationarity properties of the error term.  If the error term is stationary, OLS

parameters estimates are super-consistent converging at rate n rather than the n  rate of

expected when the model variables are stationary (Hamilton 1994).

Unfortunately, simple error-based tests for cointegration are not available for the

latent variable case, because the error term is unobservable. Further, standard cures for

spurious regressions such as first differencing are also inappropriate due to the binary

nature of the independent variable.  This poses a serious dilemma for practitioners using

latent variable models based on nonstationary series.  When regressions are spurious, the

standard errors and the test-statistics diverge as the sample size increases.  As such, until
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methods are developed that are capable of correcting for spurious regressions in latent

variable models, all parameter estimates based on nonstationary series are highly suspect.

Fortunately, the result obtained in case 1, the cointegrating regression, suggests a

situation where the distribution of the probit parameter is better behaved than when the

model is spurious.  If at least one of the model regressors is cointegrated with the latent

variable, Park and Phillips (1999b) show that the parameter estimates are consistent and

asymptotically normal.  In the next section, we investigate the small sample properties for

partially correctly specified models.  We show that spurious results are much less likely if

some cointegration exists in the model.

5. Three Variable Mixed Independent and Cointegrated Case

In our final case, of the two nonstationary independent variables, only one is

cointegrated with the latent variable.  Here, we hope to observe the dual rates of

convergence found by Park and Phillips (1999b).  The DGP is:

1 1, 1 1,t t tx x u−= +

2 2, 1 2t t tx x u−= +

1 1 2 2*t t t ty x x vβ β= + +
*

*

1

0

t

t
t

for y
y

for y

α
α

>
= 

≤

We let β1 vary between -0 .1 and -1 while holding β2 constant at 0.

Table 6 reports the empirical means and standard errors of β1 and β2 for different

values of the parameters and different sample sizes. The results in the three variable case

are closer to the cointegrated case than the independence case.  The estimate of β1 is

strongly biased in small samples.  For instance, the mean estimate for β1 is –0.2614 for an
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actual parameter value of –0.20, a difference of approximately 30%.  The bias diminishes

as the sample size grows.  Nevertheless, even at relatively large sample sizes, the ML

estimate is still 10 percent off the true parameter value, on average.  The estimate of β2,

equal to zero for all of the replications in the three variable case, is apparently unbiased.

According to Park and Phillips (1999) dual rates of convergence should be found

in the model.  Convergence to the null distribution (in our case β2) proceeds at a rate of

n3/4 and convergence in all other directions, including the true parameter vector, at a rate

of n 1/4.  The dual convergence rates are evident in Figure 2.  Here, the parameter vector,

β, is (1,0)’, β ⊥  is (0,1)’and 1 1't t tx xβ β= .  For β1=-1, the parameter converges at a

relatively slow rate compared to the orthogonal direction, β2=0.  This particular case is

charted in Park and Phillips (1999) paper for sample sizes 100 to 500.  In their results, the

right skewness of the distribution is not apparent.  At the smaller sample sizes depicted

here, the asymmetry dominates the β1 distribution, just as the β2 distribution retains its

symmetrical shape for all sample sizes.

The asymmetry of the distribution of β1 is reflected in the critical values for the z-

statistic 
11 0( ) / ββ β σ− reported in Table 7. Like the cointegrated case, the z-statistic is

negatively correlated with β1 and positively correlated with the sample size.

The response surface regression for the left tail of the distribution is reported in

equation 5.1.

1/ 4
1

ˆ (.01) 2.73 0.398 1.61
(0.035) (0.018) (0.105)

C nβ −= − − + (5.1)

The regression is virtually indistinguishable from the results found in the two

variable cointegrated case reported above.  The statistic converges to an asympotitic
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value of –2.73, larger than the statistic associated with the normal distribution.  As

before, as the strength of cointegration increases,  the left tail moves closer to the mean

value, and the distribution begins to take on the skewed form found in the simple

cointegrated case.

The distribution of the z-statistic for the second coefficient, β2, is perhaps more

interesting because we have shown in case II, the independence case, that the z-statistic

performs poorly when the null hypothesis of independence is in fact true. Table 7 reports

the empirical size of the test statistic for a nominal size of 0.05.  As the results show,

when at least one of the model variables is, in fact, correlated with the latent variable,

spurious inference is avoided.  The empirical size is perhaps slightly smaller than the

nominal size, suggesting that the z-test is slightly conservative.

Examination of Table 8 reveals some important differences between the z-statistic

for the non-correlated variable, β2, and the correlated variable, β1.  Most importantly, the

statistic is centered about zero for β2, and the distribution does not exhibit the skewness

found in distribution associated with the  β1 coefficient.  The distribution has a smaller

variance than the normal distribution, exhibited by the lower absolute critical values for

the distribution as compared to the normal.  This support the finding that the z-test is

somewhat conservative, more likely to fail to reject independence than under the true

underlying distribution.

Mild correlation is found between β1 and the empirical z-statistic so that the

strength of the cointegrated relationship actually influences the distribution of the

unrelated independent variable.  Given that x2t is in fact completely unrelated to either x1t

or yt*, this is a rather unexpected, yet fortunate result.  In contrast to the independence
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case, the empirical z-distribution is tighter than the normal.  Thus, the presence of one

truly cointegrating relationship forces the z-distribution of the parameter of the other,

unrelated, variable, into a distribution rather close to the normal.  Therefore, the z-test in

the three variable case is far less likely to find spurious correlation than in the

independence case, where no cointegrating relationships exist between any of the

variables.

Although z-tests are often used in econometric modeling, joint tests are equally

important for evaluating model validity.  Table 9 reports the results of the Wald test for

the null hypothesis that both coefficients, β1 and β2, are equal to zero.  The results are

reminiscent of the Wald test in the cointegrated case.  Strong cointegration between x1

and y*, represented by relatively large absolute values of β1,  imparts higher empirical

Wald statistics than found in the true chi-square distribution with two degrees of freedom.

As the strength of cointegration weakens, and β1 moves closer to 0, the empirical

distribution of the test statistic more closely matches that of the chi-square.

The results from the empirical Wald distribution and the empirical z-distributions

from the three variable case indicate the if some level of cointegration exists in the

model, spurious inference concerning extraneous model variables may be avoided. The

result is quite striking and is the core finding of the paper.  This means that in a model at

least one cointegrating relationship exists, the z-test will work reasonably well to

eliminate other irrelevant variables.  In contrast, if all of the model regressors are

independent of the latent variable, ML estimates will we excessively prone to accepting

spurious results. Thus, although one cannot be certain of a model’s validity, conditioning

on the relationship between two variables will lead to tests for other, more suspect,
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variables.  For instance, assuming a non-zero relationship between quantity demanded

and price would allow us to test for income effects on quantity demanded.  Nevertheless,

assuming economic relationships is not standard econometric practice, and will leave

some practitioners uneasy.  A clear need for a cointegration test is apparent, but, because

of the latent error term, does not immediately suggest itself.

6. Summary

The basic finding of this study is that many of the familiar findings of OLS models

containing nonstationary variables extend to the binary choice model.  When probit is

used to estimate the relationship between independent integrated series, spurious

correlation is a problem.  Because parameter estimates diverge at rate n, spurious

correlation becomes more likely at large sample sizes, a disturbing result.

Fortunately, like standard OLS models of nonstationarity, cointegration and

corresponding n rate parameter convergence is also a feature of the nonstationary binary

choice model.  Thus, if any of the model variables are cointegrated with the latent

variable, normal-based tests are consistent.  However, caution should be used in

cointegrated models because the parameter distribution may exhibit significant skewness

in small samples.

As a final note, although the potential for cointegration and the resulting

convergent test-statistics is comforting, a test for cointegration does not exist for

nonstationary binary choice models.  Until a test is developed, a high degree of

uncertainty surrounds the validity of nonstationary binary choice models.



18

References

Alm, J. and L. Whittington. 1995.  Does the income tax affect marital decisions? National
Tax Journal 48, 365-72.

Alm, J. M. McKee, and M. Skidmore. 1993.  Fiscal pressure, tax competition, and the
introduction of state lotteries. National Tax Journal 46,463-76.

Amemiya,T.1985. Advanced Econometrics. Harvard University Press: Cambridge.

Granger, C.W.J. and P. Newbold. 1974. Spurious Regressions in Econometrics, Journal
of Econometrics 2 111-120.

Hamilton, J.D. 1994. Time Series Analysis. Princeton University Press, Princeton.

Park, J.Y. and P.C.B. Phillips. 1999a. Asymptotics for nonlinear transformations of
integrated time series.” Econometric Theory  (forthcoming).

Park, J.Y. and P.C.B. Phillips. 1999b. Nonstationary Binary Choice, Yale University
Working Paper.

Phillips, P.C.B. 1986.  Understanding Spurious Regression in Econometrics. Journal of
Econometrics 33, 311-40.

White, H. 1994.  Estimation, Inference and Specification Analysis.  Cambridge
University Press, Cambridge.



19

Table 1.  Standard errors for β coefficient, se(β) and empirical mean, E( β̂ ),
for different values of n and b: cointegrated two-variable case.

n β se( β̂ ) E( β̂ ) β se( β̂ ) E( β̂ ) β se( β̂ ) E( β̂ )
25 -0.1 0.173 -0.128 -0.5 0.435 -0.699 -0.8 0.644 -1.044
45 -0.1 0.093 -0.106 -0.5 0.271 -0.599 -0.8 0.494 -1.018
65 -0.1 0.065 -0.103 -0.5 0.241 -0.599 -0.8 0.428 -0.991
85 -0.1 0.050 -0.106 -0.5 0.222 -0.599 -0.8 0.403 -0.967

105 -0.1 0.041 -0.105 -0.5 0.207 -0.606 -0.8 0.361 -0.953
125 -0.1 0.036 -0.105 -0.5 0.183 -0.573 -0.8 0.356 -0.949
145 -0.1 0.032 -0.105 -0.5 0.183 -0.580 -0.8 0.321 -0.941
165 -0.1 0.023 -0.102 -0.5 0.150 -0.557 -0.8 0.283 -0.919
185 -0.1 0.025 -0.101 -0.5 0.146 -0.552 -0.8 0.310 -0.935
205 -0.1 0.023 -0.102 -0.5 0.149 -0.558 -0.8 0.295 -0.927
225 -0.1 0.022 -0.102 -0.5 0.153 -0.564 -0.8 0.293 -0.929
245 -0.1 0.021 -0.102 -0.5 0.146 -0.556 -0.8 0.287 -0.920

Table 2. Percentiles of the z statistic for different values of n, and β and the cointegrated
case.

n β 0.010 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

25 -0.1 -2.0299 -1.862 -1.6196 -1.3735 -0.1565 1.2518 1.6236 1.9120 2.1953
25 -0.2 -1.9683 -1.8041 -1.5891 -1.2147 -0.0947 1.1933 1.5846 1.8715 2.1492
25 -0.4 -1.7681 -1.5783 -1.4187 -1.2300 -0.1994 1.1334 1.4877 1.7654 2.0053
25 -0.5 -1.6865 -1.4772 -1.3256 -1.1492 -0.1853 1.2426 1.6528 2.0406 2.4025
25 -0.6 -1.5436 -1.423 -1.2791 -1.1034 -0.1556 1.1935 1.5864 1.9756 2.3303
25 -0.7 -1.5841 -1.3787 -1.2303 -1.0720 -0.1506 1.1697 1.6810 2.0524 2.4338
25 -0.8 -1.4328 -1.2942 -1.1652 -0.9851 -0.1204 1.2359 1.6700 2.1519 2.4606

125 -0.1 -2.4323 -1.9639 -1.7508 -1.4103 -0.0769 1.2721 1.6022 1.8776 2.2008
125 -0.2 -2.3262 -1.9375 -1.6618 -1.3133 -0.1511 1.1833 1.5264 1.7841 2.2220
125 -0.4 -2.056 -1.7545 -1.5391 -1.3057 -0.1659 1.1900 1.5771 1.9722 2.4468
125 -0.5 -1.9261 -1.6981 -1.4443 -1.2139 -0.1509 1.1149 1.5786 1.9290 2.3551
125 -0.6 -1.941 -1.6711 -1.4862 -1.2631 -0.1582 1.1769 1.4987 1.8468 2.2364
125 -0.7 -1.9296 -1.6891 -1.5043 -1.2560 -0.1658 1.1583 1.5800 1.9875 2.3083
125 -0.8 -1.8355 -1.5926 -1.4124 -1.1870 -0.2213 1.1883 1.7313 2.0925 2.6959

245 -0.1 -2.3118 -2.0089 -1.6729 -1.3548 -0.0287 1.3009 1.6400 1.9824 2.3662
245 -0.2 -2.1756 -1.8757 -1.6187 -1.3053 -0.0749 1.1887 1.5666 1.9615 2.2292
245 -0.4 -2.0911 -1.8461 -1.5563 -1.2985 -0.1815 1.1771 1.5852 1.8101 2.2352
245 -0.5 -2.0201 -1.7418 -1.5474 -1.2827 -0.1292 1.1767 1.5666 2.0071 2.4656
245 -0.6 -2.027 -1.8404 -1.5224 -1.2546 -0.1799 1.1782 1.5695 1.8577 2.3700
245 -0.7 -1.8868 -1.6691 -1.4683 -1.2618 -0.1171 1.2383 1.7080 2.1295 2.5550
245 -0.8 -1.915 -1.6722 -1.4628 -1.2139 -0.1688 1.1870 1.5998 2.0224 2.3620

z-statistic  -2.3263  -1.9600  -1.6449  -1.2816  0.0000 1.2816  1.6449  1.9600  2.3263



20

Table 3. Percentiles of the Wald statistic for different
values of n and β: Cointegrated case.

n β 0.9 0.95 0.975 0.99

25 0.1 4.0178 4.907 5.7714 6.8027
45 0.1 4.3273 5.4741 6.4734 8.0932
65 0.1 4.5448 5.8872 6.8416 8.1126
85 0.1 4.4262 5.7136 6.9198 8.5712

105 0.1 4.4902 5.6289 6.6655 8.3152
125 0.1 4.8708 6.0273 7.4325 9.2405
145 0.1 4.6682 5.843 7.1641 8.6889
165 0.1 4.5977 5.8569 7.5786 8.9715
185 0.1 4.5024 5.7106 6.9929 8.9993
205 0.1 4.3142 5.6783 7.1149 9.0737
225 0.1 4.4169 5.6915 6.701 8.6643
245 0.1 4.6518 6.1288 7.4056 8.685

25 0.5 3.8816 4.9167 6.3408 7.9737
45 0.5 4.1393 5.2322 6.4779 7.9778
65 0.5 4.1418 5.2608 6.7826 8.9535
85 0.5 4.4309 5.7603 7.2814 8.8778

105 0.5 4.0781 5.285 7.0675 8.3196
125 0.5 4.1031 5.1561 6.6691 8.9615
145 0.5 4.1342 5.3784 6.7063 9.1204
165 0.5 4.2024 5.548 6.8347 8.6479
185 0.5 4.2007 5.6258 7.2722 9.8328
205 0.5 4.2836 5.6918 7.0929 9.3505
225 0.5 4.2348 5.6831 7.1186 9.3082
245 0.5 4.0586 5.2447 6.8313 8.9129

25 0.8 3.8743 5.3422 7.1964 9.8342
45 0.8 3.9291 5.1136 6.6112 10.2564
65 0.8 4.0618 5.6062 7.1968 10.1526
85 0.8 4.1324 5.2549 6.6131 8.3532

105 0.8 3.9735 5.9501 7.9961 9.9244
125 0.8 4.1925 5.786 7.9161 10.7701
145 0.8 4.1784 5.7287 7.5398 9.2966
165 0.8 4.137 5.1789 6.8367 9.6573
185 0.8 4.3625 5.5633 7.2475 10.1438
205 0.8 4.0928 5.5419 7.3361 9.2924
225 0.8 4.3263 5.8637 7.4545 9.3082
245 0.8 4.0775 5.4816 6.6303 8.5938

χ2,d.f=2 4.605 5.991 7.378 9.21
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Table 4.  Standard errors, empirical sizes, and nominal sizes for α and β at different
sample sizes: independence case

n empirical size α empirical size β nominal size se( α̂ ) se( β̂ )
25 0.3113 0.1753 0.05 0.7019 0.3415
45 0.4591 0.3194 0.05 0.511 0.2007
65 0.576 0.4251 0.05 0.4292 0.1398
85 0.6331 0.4862 0.05 0.3766 0.1155

105 0.6714 0.4916 0.05 0.3386 0.098
125 0.6761 0.5224 0.05 0.3315 0.0873
145 0.6839 0.5536 0.05 0.2928 0.0723
165 0.7099 0.5739 0.05 0.2484 0.0525
185 0.7295 0.6102 0.05 0.252 0.0577
205 0.7449 0.6275 0.05 0.2484 0.0525
225 0.7471 0.6547 0.05 0.2349 0.0566
245 0.7613 0.6487 0.05 0.2276 0.0549

Table 5.  Percentiles of the z-statistic, independence case.
n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

25 -2.876 -2.666 -2.423 -2.027 -0.100 1.987 2.401 2.569 2.831
45 -3.756 -3.430 -3.155 -2.605 -0.056 2.791 3.370 3.683 3.886
65 -4.599 -4.277 -3.834 -3.252 0.045 3.295 3.917 4.331 4.689
85 -5.326 -4.812 -4.404 -3.827 -0.042 3.670 4.468 4.964 5.437

105 -5.827 -5.319 -4.861 -4.060 -0.112 3.913 4.735 5.297 5.705
125 -6.288 -5.791 -5.342 -4.363 -0.089 4.432 5.457 5.987 6.576
145 -7.041 -6.519 -5.828 -4.931 0.053 4.963 5.918 6.441 6.830
165 -8.284 -7.558 -6.764 -5.689 -0.298 5.631 6.829 7.681 8.359
185 -7.972 -7.235 -6.487 -5.544 0.213 5.387 6.508 7.054 7.565
205 -8.284 -7.558 -6.764 -5.689 -0.298 5.631 6.829 7.681 8.359
225 -8.652 -7.965 -7.117 -5.780 -0.237 5.706 7.136 7.906 8.533
245 -8.987 -8.110 -7.238 -5.982 -0.116 6.184 7.465 8.412 9.242

 Z-stat -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
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Table 6. Standard errors, empirical means, power and size for β1 and β2: Three variable
case.
n

1β 2β se( 1β̂ ) se( 2β̂ ) E( 1β̂ ) E( 2β̂ ) Power 1β Size 2β
25 -0.2 0 0.2535 0.2470 -0.2614 0.0082 0.1583 0.0389
45 -0.2 0 0.1411 0.1387 -0.2396 -0.0062 0.4478 0.0431
65 -0.2 0 0.1054 0.1027 -0.2302 -0.0021 0.6653 0.0477
85 -0.2 0 0.0896 0.0864 -0.2272 0.0005 0.7801 0.0421

105 -0.2 0 0.0738 0.0725 -0.2206 -0.0020 0.8884 0.0450
125 -0.2 0 0.0697 0.0653 -0.2228 0.0007 0.9257 0.0537
145 -0.2 0 0.0632 0.0609 -0.2201 -0.0014 0.9480 0.0535
165 -0.2 0 0.0491 0.0448 -0.2127 0.0008 0.9584 0.0512
185 -0.2 0 0.0548 0.0492 -0.2197 0.0016 0.9635 0.0465
205 -0.2 0 0.0491 0.0448 -0.2127 0.0008 0.9730 0.0440
225 -0.2 0 0.0493 0.0436 -0.2186 -0.0023 0.9730 0.0495
245 -0.2 0 0.0462 0.0394 -0.2136 0.0000 0.9734 0.0376

25 -0.5 0 0.4723 0.3868 -0.7050 0.0094 0.3305 0.0215
45 -0.5 0 0.3329 0.2618 -0.6632 -0.0114 0.6438 0.0294
65 -0.5 0 0.2870 0.2076 -0.6479 -0.0086 0.7416 0.0319
85 -0.5 0 0.2508 0.1665 -0.6273 0.0089 0.8327 0.0384

105 -0.5 0 0.2314 0.1553 -0.6194 0.0030 0.8460 0.0300
125 -0.5 0 0.2226 0.1312 -0.6226 0.0003 0.8544 0.0355
145 -0.5 0 0.2029 0.1275 -0.5982 0.0036 0.8682 0.0410
165 -0.5 0 0.1851 0.1093 -0.5959 0.0043 0.8723 0.0426
185 -0.5 0 0.1795 0.1056 -0.5864 0.0013 0.8895 0.0403
205 -0.5 0 0.1851 0.1093 -0.5959 0.0043 0.8907 0.0382
225 -0.5 0 0.1774 0.1000 -0.5943 0.0058 0.9016 0.0412
245 -0.5 0 0.1638 0.0937 -0.5810 -0.0006 0.9048 0.0430

25 -1 0 0.8786 0.5158 -1.3413 -0.0315 0.3474 0.0054
45 -1 0 0.6909 0.3406 -1.3184 0.0205 0.6015 0.0115
65 -1 0 0.5731 0.2649 -1.2487 0.0190 0.6958 0.0199
85 -1 0 0.5288 0.2494 -1.2365 -0.0182 0.7468 0.0305

105 -1 0 0.4907 0.2197 -1.2155 0.0108 0.7703 0.0288
125 -1 0 0.4798 0.1903 -1.2259 -0.0054 0.7879 0.0305
145 -1 0 0.4695 0.1855 -1.2254 0.0068 0.8001 0.0268
165 -1 0 0.4177 0.1601 -1.2119 -0.0088 0.8254 0.0367
185 -1 0 0.4233 0.1525 -1.2056 -0.0091 0.8228 0.0274
205 -1 0 0.4177 0.1601 -1.2119 -0.0088 0.8393 0.0375
225 -1 0 0.3737 0.1357 -1.1590 -0.0023 0.8631 0.0350
245 -1 0 0.3600 0.1257 -1.1573 0.0033 0.8674 0.0322
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Table 7. Percentiles of the z-statistic for β1, three variable case.
n β1 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

25 -0.2 -1.995 -1.817 -1.630 -1.333 -0.096 1.307 1.610 1.854 2.062
25 -0.4 -1.783 -1.602 -1.431 -1.226 -0.266 1.179 1.539 1.800 2.216
25 -0.4 -1.790 -1.603 -1.413 -1.211 -0.200 1.172 1.538 1.857 2.222
25 -0.5 -1.753 -1.581 -1.444 -1.209 -0.224 1.193 1.541 1.852 2.206
25 -0.7 -1.543 -1.391 -1.300 -1.111 -0.221 1.159 1.509 1.924 2.410
25 -0.8 -1.574 -1.426 -1.273 -1.066 -0.191 1.221 1.747 2.096 2.473
25 -0.9 -1.423 -1.288 -1.141 -1.005 -0.157 1.302 1.728 2.135 2.643
25 -1.0 -1.391 -1.287 -1.136 -0.965 -0.174 1.237 1.642 2.053 2.524

125 -0.2 -2.117 -1.888 -1.681 -1.352 -0.161 1.184 1.632 1.969 2.416
125 -0.4 -2.048 -1.834 -1.637 -1.363 -0.240 1.195 1.533 1.950 2.404
125 -0.5 -1.982 -1.754 -1.586 -1.369 -0.297 0.993 1.437 1.914 2.318
125 -0.7 -1.897 -1.661 -1.519 -1.286 -0.203 1.151 1.601 1.936 2.444
125 -0.8 -1.878 -1.678 -1.465 -1.251 -0.246 1.105 1.628 2.050 2.666
125 -0.9 -1.833 -1.624 -1.419 -1.225 -0.267 1.159 1.574 1.875 2.397
125 -1.0 -1.824 -1.621 -1.439 -1.189 -0.206 1.169 1.635 2.013 2.646

245 -0.2 -2.233 -1.904 -1.567 -1.286 -0.128 1.155 1.526 1.869 2.192
245 -0.4 -2.130 -1.859 -1.638 -1.342 -0.187 1.154 1.530 1.863 2.413
245 -0.5 -2.145 -1.899 -1.643 -1.354 -0.276 1.055 1.498 1.937 2.430
245 -0.7 -2.084 -1.788 -1.601 -1.312 -0.274 1.128 1.583 1.968 2.427
245 -0.8 -1.936 -1.694 -1.508 -1.247 -0.219 1.156 1.552 1.986 2.450
245 -0.9 -1.907 -1.672 -1.489 -1.284 -0.286 1.133 1.562 2.036 2.550
245 -1.0 -1.830 -1.615 -1.468 -1.236 -0.215 1.222 1.661 2.126 2.718

Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
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Table 8. Percentiles of the z-statistic for β2, three variable case.
n β1 β2 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

25 -0.2 0 -2.132 -1.862 -1.616 -1.351 0.027 1.317 1.666 1.928 2.106
25 -0.4 0 -2.002 -1.792 -1.547 -1.284 -0.015 1.265 1.496 1.742 2.026
25 -0.4 0 -2.123 -1.788 -1.549 -1.254 0.006 1.286 1.632 1.833 2.070
25 -0.5 0 -1.956 -1.738 -1.490 -1.228 -0.011 1.248 1.542 1.804 2.050
25 -0.7 0 -1.832 -1.582 -1.412 -1.184 -0.011 1.211 1.471 1.653 1.849
25 -0.8 0 -1.857 -1.638 -1.458 -1.207 -0.047 1.123 1.370 1.621 1.847
25 -0.9 0 -1.840 -1.667 -1.470 -1.188 -0.003 1.177 1.423 1.544 1.712
25 -1.0 0 -1.790 -1.608 -1.417 -1.194 -0.055 1.161 1.427 1.644 1.851

125 -0.2 0 -2.137 -1.921 -1.558 -1.256 0.016 1.326 1.732 2.042 2.305
125 -0.4 0 -2.062 -1.826 -1.590 -1.275 -0.025 1.285 1.563 1.873 2.192
125 -0.4 0 -2.060 -1.830 -1.590 -1.256 0.023 1.266 1.591 1.851 2.041
125 -0.5 0 -2.281 -1.841 -1.629 -1.293 0.025 1.230 1.566 1.829 2.147
125 -0.7 0 -2.167 -1.859 -1.631 -1.259 0.014 1.257 1.528 1.777 2.016
125 -0.8 0 -2.179 -1.912 -1.624 -1.298 0.015 1.295 1.565 1.805 2.111
125 -0.9 0 -2.078 -1.809 -1.529 -1.209 0.026 1.271 1.590 1.851 2.030
125 -1.0 0 -2.182 -1.823 -1.583 -1.280 0.004 1.242 1.584 1.798 2.080

245 -0.2 0 -2.359 -1.908 -1.601 -1.284 0.027 1.248 1.530 1.858 2.068
245 -0.4 0 -2.362 -2.050 -1.689 -1.321 0.019 1.308 1.654 2.009 2.284
245 -0.4 0 -2.201 -1.768 -1.531 -1.195 -0.043 1.231 1.533 1.797 2.169
245 -0.5 0 -2.252 -1.891 -1.633 -1.266 0.033 1.256 1.624 1.927 2.270
245 -0.7 0 -2.244 -1.874 -1.604 -1.282 0.022 1.260 1.538 1.809 2.163
245 -0.8 0 -2.178 -1.906 -1.613 -1.295 0.010 1.255 1.526 1.762 1.972
245 -0.9 0 -2.208 -1.875 -1.628 -1.250 0.004 1.296 1.606 1.831 2.164
245 -1.0 0 -2.200 -1.862 -1.598 -1.269 0.015 1.234 1.533 1.784 2.061

Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326

 



25

Table 9. Percentiles of the Wald statistic for different
values of n β1, β2, and n: three variable case.

n β1 β2 0.9 0.95 0.975 0.99

25 -1 0 3.711 4.778 6.204 9.202
45 -1 0 3.511 4.824 6.604 8.779
65 -1 0 4.040 5.815 7.995 10.779
85 -1 0 4.115 5.974 8.115 11.345

105 -1 0 4.111 5.903 7.444 10.379
125 -1 0 4.084 5.948 7.832 11.081
145 -1 0 4.160 5.388 7.271 10.668
165 -1 0 4.289 5.980 7.352 9.622
185 -1 0 4.244 5.774 7.365 9.046
205 -1 0 4.059 5.353 6.814 10.058
225 -1 0 4.293 5.770 7.154 10.304
245 -1 0 4.323 5.829 8.024 12.100

25 -0.5 0 3.788 4.852 5.629 7.250
45 -0.5 0 3.704 4.910 6.332 8.171
65 -0.5 0 4.002 5.385 6.639 8.775
85 -0.5 0 3.970 5.058 6.765 9.315

105 -0.5 0 3.999 5.219 6.600 7.657
125 -0.5 0 4.157 5.437 6.876 9.320
145 -0.5 0 4.134 5.670 6.934 9.558
165 -0.5 0 4.113 5.457 6.943 8.999
185 -0.5 0 3.994 5.144 6.549 8.530
205 -0.5 0 4.245 5.367 6.905 9.765
225 -0.5 0 3.975 5.500 6.950 8.689

25 -0.2 0 3.954 4.741 5.639 6.663
45 -0.2 0 4.214 5.269 6.223 7.358
65 -0.2 0 4.375 5.483 6.937 8.243
85 -0.2 0 4.515 5.560 6.575 8.139

105 -0.2 0 4.219 5.360 6.425 8.103
125 -0.2 0 4.460 5.502 6.796 8.382
145 -0.2 0 4.276 5.750 7.057 8.389
165 -0.2 0 4.617 5.849 6.653 7.810
185 -0.2 0 4.489 5.853 6.927 8.470
205 -0.2 0 4.259 5.189 6.594 8.528
225 -0.2 0 4.536 5.638 6.857 8.828
245 -0.2 0 4.152 5.382 6.731 8.288

χ2   d.f=2 4.605 5.991 7.378 9.21
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Figure 1.  Kernel densities for β=-0.90 and β=-0.15 and n=25 and n=245: cointegrated

model
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Figure 2.  Kernel densities for the three variable case
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