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I.  Introduction 

The presence of excess fishing capacity has become one of the most pressing problems 

facing fisheries throughout the world.  Aside from dissipating rents, shortening fishing seasons, 

and diminishing efficiency and productivity, excess capacity can have other significant and 

detrimental effects on a fishery.  First, it may create pressure for managers to keep the total 

allowable catch (TAC) above sustainable levels in order to preserve employment.  Second, with 

the little remaining economic rents spread among so many vessels, fishermen are more 

vulnerable to changes in regulations and TAC’s instituted to curb excess capacity.  As a result, 

policy tools available to resource managers become more difficult to implement, both politically 

and socially (Kirkley and Squires, 1999).  

The aforementioned problems have prompted recent policy initiatives focused on 

managing capacity, including the FAO’s International Plan of Action for the Management of 

Fishing Capacity (FAO, 1999) and other international agreements1.  The FAO plan urges 

countries to develop national fishery management plans by 2002, which would include an 

assessment of domestic fishing capacity and introduction of measures to prevent or eliminate 

excess fishing capacity.  In response to this plan, the National Oceanic and Atmospheric 

Association  (NOAA) has adopted a formal objective of reducing the number of overcapitalized 

fisheries by fifteen percent by 2004 (NOAA, 1999).  The NOAA plan has led to the formation of 

the National Marine Fisheries Service (NMFS) Excess Capacity Task Force, which has 

recommended that capacity estimates be constructed for each of the federally managed fisheries 

(NMFS, 1999). 

                                                
1 Such as the Food and Agricultural Organization (FAO) Code of Conduct for Responsible Fisheries, the FAO Agreement on 
Compliance, and the United Nations Agreement on Highly Migratory and Straddling Fish Stocks. 
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To meet the guidelines of the plan, fishing capacity estimates must be generated and 

subsequently used to assign each fishery to one of the following three categories: “no appreciable 

excess-capacity”, “moderate excess-capacity”, and “substantial excess capacity” (NMFS, 1999).  

Such categorizations will require comparisons among the fisheries based on their relative levels 

of excess capacity.  Therefore, it is important that the methods used to estimate capacity in each 

of the federally managed fisheries are consistent and generate comparable estimates2.  

Unfortunately, this may be more difficult than it sounds, as there is still no consensus among 

researchers over the “best” method for generating such estimates.  

A central purpose of this is paper to illustrate the marked differences in capacity 

estimates that can arise based on one’s choices over estimation techniques, “definitions” of 

capacity, and other relevant factors in capacity estimation.  In particular, we examine two 

alternative frameworks that have been recommended by the NMFS Excess Capacity Task Force 

for estimating fishing capacity: data envelopment analysis (DEA) and stochastic production 

frontier (SPF) models3.   

The possibility of generating substantially different estimates of fishing capacity (for a 

given data set) exists not only because of the inherent differences between the two alternative 

specifications, but also because of the different estimates that can arise within each framework 

due to some subjective choices that must be made.  While it is frequently necessary for 

researchers to make such choices, it is the eventual coordinated comparisons and categorizations 

that punctuate the need for a consistent method of capacity estimation.  In addition, given the 

                                                
2 To make appropriate determinations and comparisons among different fisheries, capacity estimates must derived under the same 
model specifications.  Though there may be minor differences in the variables included in capacity estimation models (as data 
collection efforts are not identical for all federally managed fisheries), the underlying assumptions and empirical techniques 
should be the same. 
3 The peak-to-peak method is also considered an option, though it has been the subject of much criticism.  It is somewhat of a 
“last resort” option for fisheries in which data is lacking for a satisfactory DEA or SPF model.  Given that existing data for the 
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range of capacity estimates that may be generated by alternative specifications and assumptions, 

it may be prudent to derive a distribution of capacity estimates for each fishery, rather than just 

“one number”.   

To illustrate the proposed capacity measurement techniques -- and the different capacity 

estimates that may arise -- an empirical application of both DEA and SPF methods is presented.  

We derive capacity estimates under both specifications as well as for two suggested “definitions” 

of technical fishing capacity.  The analysis focuses on one of the US federally managed fisheries 

of interest: the Bering Sea and Aleutian Island Groundfish fisheries.  In particular, we examine 

the factory trawlers operating in the pollock fishery.   

While much of the fishing effort is geared toward pollock harvesting, there are multiple 

other species caught throughout the year.  As will be discussed further in the paper, the usual 

SPF framework does not deal well with multiple outputs; to date there have been no studies to 

use the SPF technique for measuring capacity in multi-output fisheries4.  Therefore, the standard 

SPF capacity framework is augmented to allow for multiple outputs through use of a stochastic 

distance function.  This application represents the first use of a stochastic distance function to 

measure fishing capacity. 

Finally, the analysis allows us to addresses one question that naturally arises upon 

obtaining capacity estimates: “what to do now?”  If there is in fact substantial excess capacity in 

a fishery, how should one curb or eliminate it?  One method that has been proposed is the 

introduction of individually transferable fishing quota (NMFS, 1999).  The data used in this 

empirical application includes observations before and after property rights were established the 

                                                                                                                                                       
federally managed fisheries has been deemed sufficient to construct DEA models (NMFS, 1999), the peak-to peak method will 
not be discussed further in this paper. 
4 A September 1999 draft by Dupont, Grafton, Kirkley and Squires claims to be the first capacity study of a multi-species fishery, 
and uses DEA.  
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American Fisheries Act (AFA) of 1998.  As a result, it allows one to examine the effect of 

introducing property rights on fishing capacity.  The AFA allowed vessels to form a cooperative 

and decide for themselves how many vessels to use and how many to idle.  An indication of the 

degree to which introducing property rights can reduce capacity may be helpful for policy 

makers once they have estimates of capacity in hand for each of the fisheries of interest. 

II.  Methods for Capacity Measurement 

The recent agreements to assess capacity in many of the world’s fisheries have 

accentuated the need to develop better methods for measuring fishing capacity.  To date, a 

variety of methods have been suggested for estimation purposes – as well as many different 

“definitions” and interpretations of capacity (there will be more on this issue later).  One of the 

reasons for this lack of consensus is because much of the literature on capacity measurement was 

developed for applications in more “standard” manufacturing industries.  Using such models to 

measure fishing capacity requires one to make adaptations to account for factors particular to 

fisheries industries.   

However, much of the existing literature available for assessing alternative methods does 

not address applications to fisheries5, and thus has not led researchers to a strong consensus over 

the “best” model for fisheries applications.  As a result, the lack of a widely accepted method for 

measuring fishing capacity has slowed the formation of a consensus regarding levels of capacity 

in many of the world’s fisheries.  The key points of contention in the literature over capacity 

measurement have basically revolved two main issues: the use of primal versus dual models, and 

the empirical techniques used in these models. 

                                                
5 One exception is Lee and Holland (1999), which analyzes SPF and DEA models in the context of a fishery setting. 
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Frameworks: Primal and Dual 

The literature on capacity measurement has consisted of two general approaches: primal 

and dual.  Dual models explicitly build upon an economic foundation and incorporate hypotheses 

regarding agents’ objectives.  Morrison (1985a,b; 1986), Nelson (1989), Berndt and Fuss (1989), 

and Segerson and Squires (1990, 1992, 1995) all offer economic approaches for defining and 

measuring capacity.  Alternatively, primal models  (Färe, Grosskopf, and Kokkelenberg [1989], 

(Kalirajan and Salim [1997]) focus solely on the production technology.   

When choosing between the two frameworks, one’s choice really comes down to two 

main trade-offs: the interpretability of the resulting capacity estimates and the appropriateness of 

the underlying assumptions in the model.  For example, dual models give a more economic 

interpretation of capacity -- comparing current levels to “optimal” levels -- but do so at the 

expense of behavioral assumptions that may not be accurate (cost minimization in a race for 

fish?)6.  On the other hand, primal models of capacity say nothing about the economic 

“optimality” of a particular fleet size, only indicating the maximum that could be produced with 

the observed factors of production, resource stock, state of technology, etc.  However, they do 

allow one to relax behavioral assumptions that may not hold.  This may be particularly important 

in fisheries, where the presence of regulations may cause standard optimization behavior to be an 

inappropriate assumption (Coelli, 1998). 

Regardless of the theoretical merits of either framework, it is the data that often 

ultimately decides which approach one must take.  Even though some economists have 

recommended the use of economic notions of capacity for capacity management, these 

approaches are often not feasible tools for fisheries.  The data required for these approaches is 

                                                
6 Such models also rely on price data, which is often of questionable quality in many fisheries settings. 
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typically unavailable, and is currently lacking in the most of the federally managed fisheries7.  In 

addition, fishery managers seeking to limit capacity as a means of limiting catch are also 

interested in estimates of the maximum a fleet can catch, and not just how current catch levels 

compare to “optimal” levels (Lee and Holland [1999a]). 

Therefore, capacity management plans are likely to use, in the near term, technical 

(primal) rather than economic (dual) measures of fishing capacity.  This implies that researchers 

will be faced with choosing among competing estimators of technical fishing capacity.  The two 

primary methods that have been proposed (and also advocated by the NMFS Excess Capacity 

Task Force) are DEA and SPF models. 

Empirical Methods: DEA and SPF 

Both DEA and SPF approaches attempt to identify a production frontier for a group of 

producers characterized by a particular technology.  However, DEA and SPF models differ in the 

manner in which they generate the frontiers.  DEA is a non-parametric method that uses 

mathematical programming to construct a piece-wise linear representation of the frontier of 

technology.  In an output orientation, those who get the most output from a particular set of 

inputs define the frontier of the output set.  Deviations from the frontier are interpreted as 

evidence of inefficient production, as other agents were able to produce more output from a 

given level of inputs.   

Although DEA models were originally designed to measure technical efficiency (TE), 

Färe, Grosskopf, and Kokkelenberg (hereafter “FGK”, (1989a)) proposed a variation on the 

standard DEA model that was explicitly designed to provide measures of capacity output and 

                                                
7 Recent changes in data collection, however, may allow for cost-based models to be estimated in the near future. 
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capacity utilization8.  To implement FGK DEA model, one computes the maximum 

proportionate increase in outputs when variable inputs are allowed to vary, but fixed inputs are 

held at observed values.  The following output-oriented linear program also allows for variable 

returns to scale (VRS): 
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The variable factors are denoted by α̂ , the fixed factors are denoted by α.  In the FGK 

specification the use of variable inputs is not restricted to observed levels.  As such, the third 

constraint involving λ tells one the necessary variable input use required to achieve frontier 

output levels, and thus serves a check on the sensibility of capacity estimates9.  The “activity 

levels” (zj) of y and x are the weights for the points that define the frontier.  The first three 

constraints ensure that such projections stay on or within the feasible set, while the last constraint 

allows for VRS.  A VRS approach ensures that each firm is only benchmarked against firms of 

                                                
8 Section III provides a thorough discussion of the distinction between TE measurement and capacity measurement for both DEA 
and SPF models.  Here the intention is to provide a brief introduction of the DEA and SPF models.  
9 For example, use of variable inputs such as fishing time (or days at sea) at full capacity should not exceed the fishing time 
possible.  Such input use would be unrealistic, as would the associated capacity estimates. 
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similar size, as projected points for firms below the frontier are formed as a convex (rather than 

linear) combination of frontier observations (Coelli et al.,1998). 

Using the results from the program above, one can determine fishing capacity by 

analyzing each vessel’s frontier output levels.  The value of the parameter θ is the reciprocal of 

the output distance function10 and therefore provides a measure of the possible (radial) increase 

in outputs.  For example, an objective value of θ =1.1 indicates that the capacity output equals 

1.1 times the current observed output vector. 

If instead one employs an SPF model, this approach uses parametric methods to estimate 

production frontiers by econometrically “fitting” the frontier of the technology.  SPF models 

allow for deviations from the frontier for two reasons: random variation/noise and productive 

inefficiency.  The following section presents a discussion of single output (production function) 

and multiple output (distance function) SPF models. 

To begin, consider the single output SPF model with the production technology 

expressed as  

y = f(x ;�� � 0          (2) 

Where y is output, f(• ) is a functional form of the production technology, x is a vector of inputs, 

� LV D YHFWRU RI SDUDPHWHUV WR EH HVWLPDWHG� DQG 0 LV DQ HUURU WHUP� 1RWH WKDW DFWXDO RXWSXW� Ô PD\

differ from potential output due thH REVHUYHG HUURU WHUP� 0� 7KLV HUURU LV W\SLFDOO\ VSHFLILHG DV

including two components.   

The first component represents differences in observed and potential output due 

inefficient input use, and is denoted by u.  The second component is purely random variations in 

output (unrelated to inefficient factor use), analogous to the error term in standard regression 

                                                
10 A thorough discussion of the properties of the output distance function is given in Färe and Primont (1995). 
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models, and is denoted by v.  In fisheries contexts, such random errors are often attributed to 

weather conditions, variations in stock conditions, luck, or possibly introduced by data 

measurement errors.  It is usually assumed that v is an i.i.d. normal random variable and u is 

distributed as an iid truncated normal random variable11.  The resulting specification with u ≥ 0 

can be seen more clearly as  

 y = f(x ;�) - u + v,          (3) 

0  - u + v; 

Given these distributional assumptions, standard MLE routines such as Frontier can be 

used to estimate the parameters of the model.  Note that by accounting for inefficiency, u, the 

fitted values f([� �^) represent the technically efficient output levels for each firm.  However, in 

order to convert estimates of technically efficient output into estimates of capacity output, one 

must then augment the TE output levels to reflect the relevant definition of capacity.  More will 

be said on this later, but it essentially involves evaluating the TE output levels at a particular 

level of variable input use12.  

 One important limitation of the standard SPF framework is that it does not allow one to 

specify multiple outputs, which are common in many of the federally managed fisheries where 

capacity assessment will be undertaken.  And, if one chooses to include data on multiple outputs 

in this specification, one must aggregate outputs into a composite output.  Aside from the 

restrictive assumptions implied by aggregating outputs in such a way, one also loses much of the 

information contained in a parametric specification, such as the cross-terms between multiple 

                                                
11 The truncation ensures that the inefficiency term takes only positive values, thus putting firms below the production frontier in 
cases of inefficient production. 
12 Unfortunately, the existence of various definitions for “capacity” gives rise to multiple resulting ways of evaluating capacity 
output.  For example, one definition of technical capacity involves evaluating technically efficient production at fully utilized 
levels of variable inputs.  Full utilization levels of variable inputs correspond to the maximum observed usage of each variable 
input for an agent.  Alternatively, full utilization levels may be defined as the maximum observed variable input levels for a 
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inputs and outputs; with estimates of these parameters can examine jointness among and between 

inputs and outputs13 and to calculate substitution elasticities. 

If instead one estimates a stochastic output distance function, one is able to retain a multi-

input, multi-output specification, while still incorporating the error term decomposition discussed 

in the previous single output model14.  Written generally, one may define the stochastic output 

distance function as15 

Do = f (x,y; β) + v,          (4) 

where Do is a distance measure representing the difference between observed and frontier output 

(or technical efficiency), f(• ) is a functional form of the production technology, x is a vector of 

inputs, y is a vector of outputs, β is a vector of parameters to be estimated, and v is a vector of 

random errors (equivalent to the random noise v in the single output specification discussed 

above).   

Note however, that estimation cannot proceed as usual without data on the dependent 

variable (Do), which is typically unknown.  Therefore, one must devise a method to 

“operationalize” the distance function.  One suggestion has been a two-step method (Hetemäki, 

1996) in which one first obtains values of Do(x,y) for the LHS using DEA, and then implements 

the econometric SPF model16. 

                                                                                                                                                       
group of agents with a particular fixed input endowment; in this case it is important that full utilization levels are selected from 
set of producers with a similar set of limiting fixed inputs.  
13 Tests of jointness may even allow the researcher to test down and actually estimate a simpler model with fewer outputs and 
parameters.   
14 An alternative to the stochastic distance function is the ray production frontier model proposed by Löthgren (1997).  In this 
model one defines the dependent variable as a Euclidean norm of the output vector and the independent variables as 
transformations of the inputs and the polar-coordinate angles of the outputs. 
15 Here I discuss the output distance function (rather than the input distance function) since it nests the production function, and 
also because it indicates the proportional gain in outputs possible from technically efficient production, which has been the 
focus of the discussion.  
16 However, as one of the goals of this work will be to compare the DEA and SPF, such hybridization would obscure the 
comparisons and therefore will not be used. 
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The more common approach is to utilize the homogeneity properties of distance 

functions.  That is, linear homogeneity in outputs for Do(x,y) implies: Do(x,λy) = λ Do (x,y) for 

λ> 0.  This allows one to isolate an observed variable for the LHS of the econometric model.  A 

possible choice for the scaling variable λ is one of the outputs.  For example, if one chooses 

chose the mth output, and set λ=1/ym, the distance function may be written as 

Do(x, y/ym) = Do(x, y) / ym        (5) 

A common functional form in distance function studies is the translog (Färe et al. [1993], Lovell 

[1994], Grosskopf et al. [1996], Coelli and Perelman [1996], Coggins and Swinton [1996]).  

Using this flexible form, equation (5) can then be written as  

ln(Do(x,y)/ym) = f (x, y/ym;β),        (6) 

where f denotes the translog functional form and β its parameters.  Splitting the LHS of (6) into 

two terms allows us to re-arrange the equation into one with an observable LHS variable:  

-ln (ym) = f(x,y/ym;β) - ln (Do)       (7) 

Note that in the last term in equation (7), 0 ≤ - ln (Do) ≤ ∞, and thus, this term is equivalent to the 

inefficiency term u in the single output production function specification discussed above.  By 

renaming -ln(Do) as “u” and appending the additive error term v to (7), one obtains 

-ln (ym) = f(x, y/ym; β) + u + v,        (8) 

0 = u + v 

Thus, the result of the homogeneity transformation is an estimable stochastic distance 

IXQFWLRQ LQ ZKLFK WKH REVHUYHG HUURU� 0� FRQVLVWV RI DQ LQHIILFLHQF\ WHUP� u, representing the value 

of Do, and a random error term, v.  One can then proceed similarly to the single-output SPF 
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model using standard OLS, MLE, or SPF packages17.  And, analogous to the single-output SPF 

model, capacity estimates can be obtained by evaluating the technically efficient frontier at the 

levels of variable input use commensurate with one’s chosen definition of capacity. 

Once capacity estimates have been derived using either the SPF or DEA models, the 

estimates results can be used to specify total fishery capacity by summing each vessel’s capacity 

output levels over all species.  In addition, one may also specify the efficient number of vessels 

for a fishery.  One first orders the vessels’ capacity estimates by their respective TE scores and 

then sums over the ranked capacity estimates until the cumulative output level equals the given 

level of TAC.  This resulting group of vessels represents the most relatively efficient fleet for 

catching the particular TAC. 

III.  Issues in Modeling Technical Capacity  

General Strengths and Weaknesses of DEA and SPF 

The production literature provides a discussion of the relative merits of both DEA and 

SPF models in general applications (Fried, Lovell, Schmidt [1993], Kalaitzondonakes and Dunn 

[1995], Sharma, Leung and Zaleski [1997], Hjalmarsson, Kumbhakar and Heshmati [1996], 

Coelli [1998], Cummins and Zi [1998]).  However, since much of the focus is on theoretical 

properties of the estimators and makes little mention of adaptations to resource applications, I 

will discuss the two approaches in the context of fisheries applications and capacity estimation. 

To begin, DEA easily accommodates multiple inputs and outputs (common in fisheries), 

while use of SPF in multi-output contexts necessitates restrictive aggregation assumptions or the 

development of more complicated multiple output models.  Another strength of DEA is that is 

                                                
17 Hetemäki (1996) notes that the endogenous variable (here, output ym) now appears on both sides of the equation to be 
estimated and thus may lead to problems with simultaneity bias.  However, Coelli and Perelman (1996) argue that this 
transformation does not necessarily make the right-hand side variable endogenous.  Only ratios of the outputs appear as 
regressors, which may be assumed to be exogenous; since the distance function is defined for radial expansion of all outputs, by 
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does not impose an arbitrary functional form on the technology, while SPF models require that 

the researcher assume some form for the technology.  However, as noted by Färe et al. (1989), 

some functional forms are theoretically inconsistent with a maximum level of output, which may 

make their use inappropriate for measuring technical capacity18. 

DEA also easily accommodates zero valued outputs, which a common occurrence in 

fisheries data due to seasonal and geographical fishing patterns; fishermen will often target one 

species at a time, but land multiple species throughout a season.  Alternatively, SPF estimates 

suffer from censoring problems when used along with data that exhibits frequent zero valued 

outputs (Tobin, 1958).  Lastly, DEA allows one to include constraints for stock levels, bycatch or 

other fishing restrictions, which cannot be said for the SPF models. 

Note, however, that there are caveats to DEA’s “ease” with multiple inputs and outputs 

and zero-valued observations.  One must be selective in choosing the appropriate variables to 

include in analysis in order to facilitate the appropriate “peer” comparisons.  For example, in 

analyzing a multi-species fishery there are often many species that comprise “incidental catch”, 

but are still included in the data for completeness.  If all of these species were included as 

outputs in the models output vector, a majority of observations for the incidental species would 

be zero, and would rise to a large number of permutations of output composition.   

Since DEA relies on making comparisons among peers who use similar bundles of inputs 

and outputs, a large number of permutations of output composition may nullify potential 

efficiency comparisons among agents whose primary outputs (target species) and input usage are 

quite similar.  Thus, many of the observations will be unique in that they will have no peers, and 

                                                                                                                                                       
definition these ratios are held constant for each observation.  Therefore, to address said concerns, one should perform a 
Hausman endogeneity test when implementing the homogeneity transformation. 
18 However, one may not be seeking capacity estimates that represent a theoretical maximum.  Rather, one may want to estimate 
the output levels that would be generated under technically efficient production using realistic (or observed) input levels (which 
may fall well below the point where marginal products are zero and a maximal output is obtained). 
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will form a unique segment of the production frontier.  When this occurs, no comparisons are 

made and an observation is deemed relatively efficient by default.  However, it may actually be 

the case that when these vessels are compared to others who harvest the same composition of 

target species, the vessels appear to be relatively inefficient.   

As for the strengths of SPF models, their most appealing trait is the ability to account for 

random variations and data noise, which are both common in fisheries data.  Random variations 

in output may occur because of the inherent variability of the fishing industry; for a given level 

of input use, output levels may differ from trip to trip or week to week due to random factors 

such as weather, luck, resource conditions, etc.  Similarly, data noise may be present in fisheries 

data because of the susceptibility of data collection to reporting errors; the size of the some of the 

operations and the amount of fish harvested often makes it necessary for data recorders to 

provide “rough” estimates catch levels and composition.  For these reasons, SPF’s ability to 

account for noise is very attractive and valuable in fisheries applications.   

Recent Monte Carlo analysis by Lee and Holland (1999b) has provided empirical 

evidence of the differences that may arise when one uses DEA and SPF models with “noisy” 

data.  The authors generate observations using a Cobb-Douglas production function and examine 

the effects of introducing various levels of noise.  They show that when the SPF model is 

specified correctly (proper choice of functional form), the mean bias in TE scores is often 

substantially larger for DEA than SPF.  And, as noise levels increase, the bias in DEA models 

tends to increase quite rapidly relative to SPF19. 

                                                
19  However, one could argue that this exercise systematically puts DEA at a disadvantage.  While SPF does have the ability to 
handle random errors, its performance will suffer if one mis-specifies the form of the technology.  Given that the authors have 
eliminated a potentially significant source of bias in SPF models (by using a Cobb-Douglas specification for their SPF model), 
one might expect a priori for the SPF method to out-perform DEA.  In an experiment based on how two frameworks handle 
random noise, it seems quite intuitive that the framework designed to handle errors would certainly prevail.  Still, these results do 
highlight the potential bias that DEA models can introduce when used on noisy data. 
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An additional benefit of the SPF error structure is the ability to conduct conventional 

statistical tests on estimates of production inefficiency and other technological characteristics of 

interest (such as substitution elasticities, scale economies, or scope economies).  Statistical tests 

can provide an indication of the robustness of one’s results and may be especially important if 

capacity estimates are to be used for policy-related decisions.  

Defining “Capacity” in SPF and DEA Models 

To this point the discussion has focused on the different attributes of the methods 

proposed for measuring fishing capacity.  However, given that both the SPF and DEA models 

were originally developed for measuring TE, in order to use the models to generate estimates of 

capacity one must make the necessary adaptations to TE estimates.  The changes one makes to 

each of the standard models depends upon one’s interpretation of what represents fishing 

capacity.  The different definitions of technical capacity that have been suggested essentially 

differ in their views regarding variable input use.  Some authors claim that technical capacity 

should be based on some maximal level of variable input use (Johansen [1968], Färe, Grosskopf, 

and Kokkelenberg [1989]), while others suggest a more sustainable notion of capacity. 

More specifically, the definition offered by Johansen20 is “ the maximum amount that can 

be produced per unit of time with existing plant and equipment, provided the availability of 

variable factors of production is not restricted.”  This definition of capacity corresponds to the 

output that could be produced under technical efficiency and full utilization of variable inputs 

(the maximum observed variable input levels for a given stock of fixed factors), but constrained 

by the fixed factors and the state of technology.  These output levels corresponds to those 

estimated by the aforementioned FGK model.   
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In contrast, the National Excess Capacity Taskforce has suggested that capacity be 

defined relative to more “normal” output levels: “the output that a fleet could reasonably expect 

to catch if variable inputs are utilized under normal operating conditions, for a given resource 

condition, state of technology, and other constraints.”  Using this definition one would generate 

smaller capacity estimates than with the Johansen definition, due to relaxation of Johansen’s 

equired “full variable input utilization.”  That is, the word “normal” indicates that full utilization 

levels of variable inputs may not be reasonable for all vessels with a similar endowment of fixed 

inputs21.      

If one is interested in deriving estimates based on either of these definitions, there are 

cases in which DEA is easier to implement than SPF and vice versa.  The standard TE model is 

easily accomplished through either method, while the model incorporating TE and full variable 

input utilization is more easily assessed with the DEA model of FGK. 

As discussed earlier, in the FGK approach constraints on variable inputs are dropped.  

Thus, to be on the frontier, firms must have produced the most output for a given level of fixed 

inputs.  Firms that are not on the frontier may be below it because they are either using fixed 

inputs inefficiently, or because they are using lower levels of variable inputs than frontier firms.  

Regardless, their production levels do not represent maximal capacity for their fixed input 

endowment.  This framework is based solely on determining the potential output levels for a 

given endowment of fixed inputs, rather than judging agents’ efficiency or optimality of variable 

input use.  While this focus obviously differs from the standard DEA focus on TE with respect to 

                                                                                                                                                       
20 Johansen’s definition is equivalent to the current FAO definition of capacity agreed upon by researchers agreed upon by 
researchers representing forty nations at a Technical Working Group meeting.  It is also equivalent to that offered by Christy 
(1996), Prochaska (1978), and the US Congressional Task Force on capacity and subsidies in fisheries. 
21 In addition, the word “reasonably” seems to pertain to whether or not all vessels in the sample can actually attain the 
“technically efficient” output levels determined my the model.  If one thinks vessel-wise comparisons of TE are inappropriate, 
one could consider estimating single-vessel DEA or SPF models.  Such models would define TE output as the most output 
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all inputs, the results of the FGK model provide what some might think of as a reasonable idea 

of capacity. 

SPF models, on the other hand, estimate each vessel’s capacity output for a given set of 

observed inputs.  Thus, frontier estimates provide an indication of technically efficient output 

levels, differing from Johansen’s “full variable input utilization” notion of capacity.  If one seeks 

capacity estimates representing full utilization of variable inputs, one must evaluate the estimated 

frontier at “maximum levels” of variable inputs.   

The question that remains, however, is how to determine the appropriate “maximum” for 

each agent.  DEA makes such choices internally (through the selection of peers), while SPF 

requires that the researcher make the decision, which can be difficult.  Should one use the 

maximum observed variable input levels for a certain vessel when evaluating their capacity, or 

should one look at the maximum variable input levels used by all vessels with similar fixed input 

endowments?  If so, then what is the appropriate range of comparable vessels sizes?     

IV.  Empirical Application: The Bering Sea and Aleutian Island Pollock Fishery 

The Setting 

The North Pacific groundfish fisheries (NPGF) of the Bering Sea and Aleutian Islands 

are among the largest and most valuable in the world, generating two-thirds of a billion dollars 

per year in sales at first wholesale.  Within the NPGF, the pollock fishery is by far the most 

valuable, as it accounts for approximately 80% of the yearly value generated.  Despite the size 

and value of the pollock fishery, relatively little is known about the economic performance of the 

industry.  In particular, concern has loomed over the presence of excess fishing capacity and the 

associated effects on efficiency and productivity. 

                                                                                                                                                       
obtained from the inputs used by that vessel alone (comparing the vessel’s production in various weeks within a season).  
However, one would have substantially fewer observations with which to perform the analysis. 
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Up until 1998, the NPGF was operated entirely as a regulated open access fishery 

wherein the TAC was set and vessels were allowed to fish until particular quotas were met.  

Recent legislation has changed the structure of the fishery in an attempt to address some of the 

aforementioned concerns.  In late 1998 Congress passed the American Fisheries Act (AFA), 

which altered the open-access characteristics of the pollock fishery.  In short, the AFA provided 

incentives to “rationalize” the pollock fishery by limiting access, specifying those who may 

harvest and process pollock, and by allowing these agents to form cooperatives.   

Therefore, in evaluating the fishing capacity of the pollock fishery, one can look at the 

changes that occurred after the introduction of property rights specified in the AFA.  Such 

information will provide a preliminary indication of how effective (and quickly) such measures 

helped to decrease capacity.   

The data used in the capacity estimation represents weekly harvesting and processing for 

1991-1999, and comes primarily from Weekly Processor Reports (WPR) filed by operators with 

state and federal authorities.  The data used here in the models consists of observations by vessel 

from 1991-1999 on landings of groundfish, landings of bycatch species, a fictitious vessel id 

number, vessel characteristics (length, tonnage, horsepower, age, engine and hull type, holding 

capacity) area fished, crew size, days at sea, number of tows, and duration of tows.   

To appropriately develop the models of production technology, one must first separate 

the sample into groups that are characterized by similar harvesting and processing operations 

(e.g. vessels that target pollock with trawl gear).  The presence of fictitious operator id numbers 

given in the data makes it possible to track production by individual operators over time, as well 

as to separate the data into several modes of operation and “fleets” that are defined based on 

common production patterns.  That is, commonality of production patterns in the data suggests 
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commonality of production technology onboard22.  Such delineations will help ensure that the 

models characterize all vessels in each sample fairly well, and that any resulting comparisons are 

made among the appropriate agents. 

Model Specifications 

 Using this data we compute and compare the results from the following specifications: 

1) DEA TE model 

2) DEA FGK model (with TE and full variable input utilization) 

3) SPF TE model 

4) SPF TE model with full variable input utilization (evaluated at variable input levels of the 

“peers” found in (2)    

Results   

 Unfortunately, the data to be used in the empirical analysis was not made available to the 

author by the NMFS by the submission deadline.  When it soon becomes available, all attempts 

will be made to complete the empirical work in a timely manner and send a revised version of 

this manuscript to the session moderator -- including a discussion of the capacity estimates and 

other measures to be derived.  
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